-
1
-
-
84929224706
-
Automatic recognition of fetal facial standard plane in ultrasound image via fisher vector
-
Art. no. e0121838
-
B. Lei et al., "Automatic recognition of fetal facial standard plane in ultrasound image via fisher vector," PLoS One, vol. 10, no. 5, 2015, Art. no. e0121838.
-
(2015)
PLoS One
, vol.10
, Issue.5
-
-
Lei, B.1
-
2
-
-
84938541633
-
Discriminative learning for automatic staging of placental maturity via multi-layer fisher vector
-
Art. no. 12818
-
B. Lei et al., "Discriminative learning for automatic staging of placental maturity via multi-layer fisher vector," Sci. Rep., vol. 5, no. 2015, Art. no. 12818.
-
Sci. Rep.
, vol.5
, Issue.2015
-
-
Lei, B.1
-
3
-
-
80053988779
-
Automated selection of standardized planes from ultrasound volume
-
B. Rahmatullah,A. Papageorghiou, and J.A.Noble, "Automated selection of standardized planes from ultrasound volume," in Proc. Mach. Learn. Med. Imag., 2011, pp. 35-42.
-
(2011)
Proc. Mach. Learn. Med. Imag
, pp. 35-42
-
-
Rahmatullah, B.1
Papageorghiou, A.2
Noble, J.A.3
-
4
-
-
84947424557
-
Automatic fetal ultrasound standard pane detection using knowledge transferred recurrent neural networks
-
H. Chen et al., "Automatic fetal ultrasound standard pane detection using knowledge transferred recurrent neural networks," in Proc. Med. Imag. Comput. Comput. Assist. Interv., 2015, pp. 507-514.
-
(2015)
Proc. Med. Imag. Comput. Comput. Assist. Interv
, pp. 507-514
-
-
Chen, H.1
-
5
-
-
84940970126
-
Standard plane localization in fetal ultrasound via domain transferred deep neural networks
-
H. Chen et al., "Standard plane localization in fetal ultrasound via domain transferred deep neural networks," IEEE J. Biomed. Health. Inf., vol. 19, no. 5, pp. 1627-1636, 2015.
-
(2015)
IEEE J. Biomed. Health. Inf.
, vol.19
, Issue.5
, pp. 1627-1636
-
-
Chen, H.1
-
6
-
-
84927933573
-
Automatic recognition of fetal standard plane in ultrasound image
-
B. Lei, L. Zhuo, S. Chen, S. Li, D. Ni, and T.Wang, "Automatic recognition of fetal standard plane in ultrasound image," in Proc. IEEE 11th Int. Symp. Biomed. Imag., 2014, pp. 85-88.
-
(2014)
Proc. IEEE 11th Int. Symp. Biomed. Imag
, pp. 85-88
-
-
Lei, B.1
Zhuo, L.2
Chen, S.3
Li, S.4
Ni, D.5
Wang, T.6
-
7
-
-
84864666518
-
Intelligent scanning: Automated standard plane selection and biometric measurement of early gestational sac in routine ultrasound examination
-
L. Zhang, S. Chen, C. T. Chin, T. Wang, and S. Li, "Intelligent scanning: Automated standard plane selection and biometric measurement of early gestational sac in routine ultrasound examination," Med. Phys., vol. 39, no. 8, pp. 5015-5027, 2012.
-
(2012)
Med. Phys.
, vol.39
, Issue.8
, pp. 5015-5027
-
-
Zhang, L.1
Chen, S.2
Chin, C.T.3
Wang, T.4
Li, S.5
-
8
-
-
84904737750
-
Anatomical object detection in fetal ultrasound: Computer-expert agreements
-
B. Rahmatullah and J. A. Noble, "Anatomical object detection in fetal ultrasound: Computer-expert agreements," in Proc. Biomed. Inf. Technol., 2014, pp. 207-218.
-
(2014)
Proc. Biomed. Inf. Technol
, pp. 207-218
-
-
Rahmatullah, B.1
Noble, J.A.2
-
9
-
-
0036130202
-
The importance of quality management in fetal measurement
-
N. Dudley and E. Chapman, "The importance of quality management in fetal measurement," Ultrasound Obstet. Gynecol., vol. 19, no. 2, pp. 190-196, 2002.
-
(2002)
Ultrasound Obstet. Gynecol.
, vol.19
, Issue.2
, pp. 190-196
-
-
Dudley, N.1
Chapman, E.2
-
10
-
-
84951821800
-
Guided random forests for identification of key fetal anatomy and image categorization in ultrasound scans
-
M. Yaqub, B. Kelly, A. Papageorghiou, and J. A. Noble, "Guided random forests for identification of key fetal anatomy and image categorization in ultrasound scans," in Proc. Med. Imag. Comput. Comput. Assist. Interv., 2015, pp. 687-694.
-
(2015)
Proc. Med. Imag. Comput. Comput. Assist. Interv
, pp. 687-694
-
-
Yaqub, M.1
Kelly, B.2
Papageorghiou, A.3
Noble, J.A.4
-
11
-
-
84996563600
-
Real-time standard scan plane detection and localisation in fetal ultrasound using fully convolutional neural networks
-
C. F. Baumgartner, K. Kamnitsas, J. Matthew, S. Smith, B. Kainz, and D. Rueckert, "Real-time standard scan plane detection and localisation in fetal ultrasound using fully convolutional neural networks," in Proc. Med. Imag. Comput. Comput. Assist. Interv., 2016, pp. 203-211.
-
(2016)
Proc. Med. Imag. Comput. Comput. Assist. Interv
, pp. 203-211
-
-
Baumgartner, C.F.1
Kamnitsas, K.2
Matthew, J.3
Smith, S.4
Kainz, B.5
Rueckert, D.6
-
12
-
-
84898420173
-
The devil is in the details: An evaluation of recent feature encoding methods
-
K. Chatfield, V. S. Lempitsky, A. Vedaldi, and A. Zisserman, "The devil is in the details: An evaluation of recent feature encoding methods," in Proc. Brit. Mach. Vis. Conf., 2011, pp. 76.1-76.12.
-
(2011)
Proc. Brit. Mach. Vis. Conf
, pp. 761-7612
-
-
Chatfield, K.1
Lempitsky, V.S.2
Vedaldi, A.3
Zisserman, A.4
-
13
-
-
84912116967
-
FR-KECA: Fuzzy robust kernel entropy component analysis
-
J. Shi, Q. Jiang, R. Mao, M. Lu, and T. Wang, "FR-KECA: Fuzzy robust kernel entropy component analysis," Neurocomputing, vol. 149, Part C, pp. 1415-1423, 2015.
-
(2015)
Neurocomputing
, vol.149
, pp. 1415-1423
-
-
Shi, J.1
Jiang, Q.2
Mao, R.3
Lu, M.4
Wang, T.5
-
14
-
-
85029929139
-
Histopathological image classification with color pattern
-
random binary hashing based PCANet and matrix-form classifier doi: 10.1109/JBHI.2016.2602823
-
J. Shi, J. Wu, Y. Li, Q. Zhang, and S. Ying, "Histopathological image classification with color pattern random binary hashing based PCANet and matrix-form classifier," IEEE J. Biomed. Health Inf., doi: 10.1109/JBHI.2016.2602823.
-
IEEE J. Biomed. Health Inf.
-
-
Shi, J.1
Wu, J.2
Li, Y.3
Zhang, Q.4
Ying, S.5
-
15
-
-
84977930046
-
Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset
-
J. Shi, S. Zhou, X. Liu, Q. Zhang, M. Lu, and T. Wang, "Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset," Neurocomputing, vol. 194, pp. 87-94, 2016.
-
(2016)
Neurocomputing
, vol.194
, pp. 87-94
-
-
Shi, J.1
Zhou, S.2
Liu, X.3
Zhang, Q.4
Lu, M.5
Wang, T.6
-
16
-
-
84907972162
-
Standard plane localization in ultrasound by radial component model and selective search
-
D. Ni et al., "Standard plane localization in ultrasound by radial component model and selective search," Ultrasound Med. Biol., vol. 40, no. 11, pp. 2728-2742, 2014.
-
(2014)
Ultrasound Med. Biol.
, vol.40
, Issue.11
, pp. 2728-2742
-
-
Ni, D.1
-
17
-
-
84928277299
-
Saliency-driven image classification method based on histogram mining and image score
-
B. Lei, E.-L. Tan, S. Chen, D. Ni, and T. Wang, "Saliency-driven image classification method based on histogram mining and image score," Pattern Recognit., vol. 48, no. 8, pp. 2567-2580, 2015.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.8
, pp. 2567-2580
-
-
Lei, B.1
Tan, E.-L.2
Chen, S.3
Ni, D.4
Wang, T.5
-
18
-
-
84923658744
-
Block-row sparse multiview multilabel learning for image classification
-
Feb
-
X. Zhu, X. Li, and S. Zhang, "Block-row sparse multiview multilabel learning for image classification," IEEE Trans. Cybern., vol. 46, no. 2, pp. 450-461, Feb. 2016.
-
(2016)
IEEE Trans. Cybern.
, vol.46
, Issue.2
, pp. 450-461
-
-
Zhu, X.1
Li, X.2
Zhang, S.3
-
19
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
-
(2004)
Int. J. Comput. Vis.
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
20
-
-
79953049203
-
SIFT Flow: Dense correspondence across scenes and its applications
-
May
-
C. Liu, J. Yuen, and A. Torralba, "SIFT Flow: Dense correspondence across scenes and its applications," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 978-994, May 2011.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.5
, pp. 978-994
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
-
22
-
-
33845519142
-
Visual categorization with bags of keypoints
-
G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, "Visual categorization with bags of keypoints," in Proc. Eur. Conf. Comput. Vis. Workshop Statist. Learn. Comput. Vis., pp. 950-953, 2011.
-
(2011)
Proc. Eur. Conf. Comput. Vis. Workshop Statist. Learn. Comput. Vis.
, pp. 950-953
-
-
Csurka, G.1
Dance, C.2
Fan, L.3
Willamowski, J.4
Bray, C.5
-
23
-
-
33845572523
-
Beyond bags of features: Spatial pyramidmatching for recognizing natural scene categories
-
S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: Spatial pyramidmatching for recognizing natural scene categories," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2006, pp. 2169-2178.
-
(2006)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 2169-2178
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
24
-
-
84865584175
-
Aggregating local image descriptors into compact codes
-
H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C. Schmid, "Aggregating local image descriptors into compact codes," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012, pp. 1704-1716.
-
(2012)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 1704-1716
-
-
Jegou, H.1
Perronnin, F.2
Douze, M.3
Sanchez, J.4
Perez, P.5
Schmid, C.6
-
25
-
-
78149348137
-
Improving the fisher kernel for large-scale image classification
-
F. Perronnin, J. Sanchez, and T.Mensink, "Improving the fisher kernel for large-scale image classification," in Proc. 11th Eur. Conf. Comput. Vis., 2010, pp. 143-156.
-
(2010)
Proc. 11th Eur. Conf. Comput. Vis
, pp. 143-156
-
-
Perronnin, F.1
Sanchez, J.2
Mensink, T.3
-
26
-
-
84883487458
-
Image classification with the fisher vector: Theory and practice
-
J. Sanchez, F. Perronnin, T. Mensink, and J.Verbeek, "Image classification with the fisher vector: Theory and practice," Int. J. Comput. Vis., vol. 105, no. 3, pp. 222-245, 2013.
-
(2013)
Int. J. Comput. Vis.
, vol.105
, Issue.3
, pp. 222-245
-
-
Sanchez, J.1
Perronnin, F.2
Mensink, T.3
Verbeek, J.4
-
27
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, K. L. L.-J. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248-255.
-
(2009)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, K.L.L.-J.4
Fei-Fei, L.5
-
28
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097-1105.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
30
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770-778.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
31
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in Proc. Int. Conf. Mach. Learn., 2015, pp. 448-456.
-
(2015)
Proc. Int. Conf. Mach. Learn
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
32
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in Proc. Int.Conf. Learn. Represent., 2015, pp. 1-14.
-
(2015)
Proc. Int.Conf. Learn. Represent
, pp. 1-14
-
-
Simonyan, K.1
Zisserman, A.2
-
34
-
-
84904482223
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
J. Donahue et al., "Decaf: A deep convolutional activation feature for generic visual recognition," in Proc. Int. Conf. Mach. Learn., 2014, pp. 647-655.
-
(2014)
Proc. Int. Conf. Mach. Learn
, pp. 647-655
-
-
Donahue, J.1
-
35
-
-
84968542337
-
Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
-
Feb
-
Q. Dou et al., "Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1182-1195, Feb. 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1182-1195
-
-
Dou, Q.1
-
36
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 580-587.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
37
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 3431-3440.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
38
-
-
84951834022
-
U-net: Convolutional networks for biomedical image segmentation
-
O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in Proc. Med. Imag. Comput. Comput. Assist. Interv., 2015, pp. 234-241.
-
(2015)
Proc. Med. Imag. Comput. Comput. Assist. Interv
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
39
-
-
84949924589
-
Medical image classification with convolutional neural network
-
Q. Li,W. Cai, X.Wang, Y. Zhou, D. Feng, and M. Chen, "Medical image classification with convolutional neural network," in Proc. 13th Int. Conf. Control Autom. Robot. Vis., 2014, pp. 844-848.
-
(2014)
Proc. 13th Int. Conf. Control Autom. Robot. Vis
, pp. 844-848
-
-
Liw Cai, Q.1
Wang, X.2
Zhou, Y.3
Feng, D.4
Chen, M.5
-
40
-
-
84949058046
-
A novel relational regularization feature selection method for joint regression and classification in AD diagnosis
-
X. Zhu, H. Suk, L. Wang, S.-W. Lee, and D. Shen, "A novel relational regularization feature selection method for joint regression and classification in AD diagnosis," Med. Imag. Anal., vol. 38, pp. 205-214, 2017.
-
Med. Imag. Anal.
, vol.38
, Issue.2017
, pp. 205-214
-
-
Zhu, X.1
Suk, H.2
Wang, L.3
Lee, S.-W.4
Shen, D.5
-
41
-
-
84960157230
-
Robust joint graph sparse coding for unsupervised spectral feature selection
-
Jun
-
X. Zhu, X. Li, S. Zhang, C. Ju, and X. Wu, "Robust joint graph sparse coding for unsupervised spectral feature selection," IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 6, pp. 1263-1275, Jun. 2017.
-
(2017)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.28
, Issue.6
, pp. 1263-1275
-
-
Zhu, X.1
Li, X.2
Zhang, S.3
Ju, C.4
Wu, X.5
-
42
-
-
84905046755
-
A sparse embedding and least variance encoding approach to hashing
-
Sep
-
X. Zhu, L. Zhang, and Z. Huang, "A sparse embedding and least variance encoding approach to hashing," IEEE Trans. Image Process., vol. 23, no. 9, pp. 3737-3750, Sep. 2014.
-
(2014)
IEEE Trans. Image Process.
, vol.23
, Issue.9
, pp. 3737-3750
-
-
Zhu, X.1
Zhang, L.2
Huang, Z.3
-
43
-
-
51949098112
-
Classification using intersection kernel support vector machines is efficient
-
S. Maji, A. C. Berg, and J. Malik, "Classification using intersection kernel support vector machines is efficient," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2008, pp. 1-8.
-
(2008)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 1-8
-
-
Maji, S.1
Berg, A.C.2
Malik, J.3
-
44
-
-
33745855044
-
The pyramid match kernel: Discriminative classification with sets of image features
-
K. Grauman and T. Darrell, "The pyramid match kernel: Discriminative classification with sets of image features," in Proc. IEEE Int. Conf. Comput. Vis., 2005, pp. 1458-1465.
-
(2005)
Proc. IEEE Int. Conf. Comput. Vis
, pp. 1458-1465
-
-
Grauman, K.1
Darrell, T.2
-
45
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
46
-
-
84968661778
-
Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique
-
May
-
H. Greenspan, B. van Ginneken, and R. M. Summers, "Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1153-1159, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1153-1159
-
-
Greenspan, H.1
Van Ginneken, B.2
Summers, R.M.3
-
47
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," in Proc. Int. Conf. Artif. Intell. Statist., 2010, pp. 249-256.
-
(2010)
Proc. Int. Conf. Artif. Intell. Statist
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
48
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1026-1034.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
49
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
50
-
-
84893710272
-
Maxout networks
-
I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Bengio, "Maxout networks," in Proc. 30th Int. Conf. Mach. Learn., 2013, pp. 1319-1327.
-
(2013)
Proc. 30th Int. Conf. Mach. Learn
, pp. 1319-1327
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.C.4
Bengio, Y.5
-
51
-
-
84937508363
-
How transferable are features in deep neural networks?
-
J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, "How transferable are features in deep neural networks?," in Proc. Adv. Neural Inform. Process. Syst., 2014, pp. 3320-3328.
-
(2014)
Proc. Adv. Neural Inform. Process. Syst
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
-
52
-
-
84904548965
-
Deep learning of representations for unsupervised and transfer learning
-
Y. Bengio, "Deep learning of representations for unsupervised and transfer learning," in Proc. ICML Workshop Unsupervised Transfer Learn., 2012, pp. 1-20.
-
(2012)
Proc. ICML Workshop Unsupervised Transfer Learn
, pp. 1-20
-
-
Bengio, Y.1
-
53
-
-
84968662241
-
Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
-
May
-
M. Anthimopoulos, S. Christodoulidis, A. C. L. Ebner, and S. Mougiakakou, "Lung pattern classification for interstitial lung diseases using a deep convolutional neural network," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1207-1216, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1207-1216
-
-
Anthimopoulos, M.1
Christodoulidis, S.2
Ebner, A.C.L.3
Mougiakakou, S.4
-
54
-
-
85015719821
-
Hep-2 cell image classification with deep convolutional neural networks
-
Mar
-
Z. Gao, L. Wang, L. Zhou, and J. Zhang, "Hep-2 cell image classification with deep convolutional neural networks," IEEE J. Biomed. Health. Inf., vol. 21, no. 2, pp. 416-428, Mar. 2017.
-
(2017)
IEEE J. Biomed. Health. Inf.
, vol.21
, Issue.2
, pp. 416-428
-
-
Gao, Z.1
Wang, L.2
Zhou, L.3
Zhang, J.4
-
55
-
-
84968680221
-
Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition
-
May
-
Z. Yan et al., "Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1332-1343, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1332-1343
-
-
Yan, Z.1
-
56
-
-
84950238277
-
Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning
-
Oct
-
Y. Song, L. Zhang, S. Chen, D. Ni, B. Lei, and T. Wang, "Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning," IEEE Trans. Biomed. Eng., vol. 62, no. 10, pp. 2421-2433, Oct. 2015.
-
(2015)
IEEE Trans. Biomed. Eng.
, vol.62
, Issue.10
, pp. 2421-2433
-
-
Song, Y.1
Zhang, L.2
Chen, S.3
Ni, D.4
Lei, B.5
Wang, T.6
-
57
-
-
85009070807
-
Fetal facial standard plane recognition via very deep convolutional networks
-
Z. Yu, D. Ni, S. Chen, S. Li, T. Wang, and B. Lei, "Fetal facial standard plane recognition via very deep convolutional networks," in Proc IEEE 38th Annu. Int. Conf. Eng. Med. Biol. Soc, 2016, pp. 627-630.
-
(2016)
Proc IEEE 38th Annu. Int. Conf. Eng. Med. Biol. Soc
, pp. 627-630
-
-
Yu, Z.1
Ni, D.2
Chen, S.3
Li, S.4
Wang, T.5
Lei, B.6
-
58
-
-
85007153968
-
Mitosis detection in breast cancer histology images via deep cascaded networks
-
H. Chen, Q. Dou, X. Wang, J. Qin, and P. A. Heng, "Mitosis detection in breast cancer histology images via deep cascaded networks," in Proc. AAAI Conf. Artif. Intell., 2016, pp. 1160-1166.
-
(2016)
Proc. AAAI Conf. Artif. Intell
, pp. 1160-1166
-
-
Chen, H.1
Dou, Q.2
Wang, X.3
Qin, J.4
Heng, P.A.5
-
59
-
-
85023641912
-
-
doi: 10.1109/JBHI.2016.2594239
-
Y. Song, L. He, F. Zhou, S. Chen, D. Ni, B. Lei, and T. Wang, "Segmentation, splitting, and classification of overlapping bacteria in microscope images for automatic bacterial vaginosis diagnosis," doi: 10.1109/JBHI.2016.2594239.
-
Segmentation, Splitting, and Classification of Overlapping Bacteria in Microscope Images for Automatic Bacterial Vaginosis Diagnosis
-
-
Song, Y.1
He, L.2
Zhou, F.3
Chen, S.4
Ni, D.5
Lei, B.6
Wang, T.7
-
60
-
-
84997796752
-
DCAN: Deep contour-aware networks for object instance segmentation from histology images
-
H. Chen, X. Qi, L. Yu, Q. Dou, J. Qin, and P. A. Heng, "DCAN: Deep contour-aware networks for object instance segmentation from histology images," Med. Image Anal., vol. 36, no. pp. 135-146, 2017.
-
Med. Image Anal.
, vol.36
, Issue.2017
, pp. 135-146
-
-
Chen, H.1
Qi, X.2
Yu, L.3
Dou, Q.4
Qin, J.5
Heng, P.A.6
-
61
-
-
85018171435
-
VoxResNet: Deep voxelwise residual networks for brain segmentation from 3DMR images
-
H. Chen, Q. Dou, L. Yu, J. Qin, and P. A. Heng, "VoxResNet: Deep voxelwise residual networks for brain segmentation from 3DMR images," Neuroimage, doi: https://doi.org/10.1016/j.neuroimage.2017.04.041.
-
Neuroimage
-
-
Chen, H.1
Dou, Q.2
Yu, L.3
Qin, J.4
Heng, P.A.5
-
62
-
-
85017139145
-
Ultrasound standard plane detection using a composite neural network framework
-
Jun
-
H. Chen, L. Wu, Q. Dou, J. Qin, S. Li, J. Z. Cheng, D. Ni, and P. A. Heng, "Ultrasound standard plane detection using a composite neural network framework," IEEE Trans. Cybern., vol. 47, no. 6, pp. 1576-1586, Jun. 2017.
-
(2017)
IEEE Trans. Cybern.
, vol.47
, Issue.6
, pp. 1576-1586
-
-
Chen, H.1
Wu, L.2
Dou, Q.3
Qin, J.4
Li, S.5
Cheng, J.Z.6
Ni, D.7
Heng, P.A.8
-
63
-
-
85072028231
-
Return of the devil in the details: Delving deep into convolutional nets
-
K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, "Return of the devil in the details: Delving deep into convolutional nets," in Proc. Brit. Mach. Vis. Conf., 2014, pp. 1-12.
-
(2014)
Proc. Brit. Mach. Vis. Conf
, pp. 1-12
-
-
Chatfield, K.1
Simonyan, K.2
Vedaldi, A.3
Zisserman, A.4
-
65
-
-
84968649810
-
Convolutional neural networks for medical image analysis: Full training or fine tuning?
-
May
-
N. Tajbakhsh et al., "Convolutional neural networks for medical image analysis: Full training or fine tuning?," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1299-1312, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1299-1312
-
-
Tajbakhsh, N.1
-
66
-
-
84875134236
-
Stochastic dual coordinate ascent methods for regularized loss minimization
-
S. Shalev-Shwartz and Z. Tong, "Stochastic dual coordinate ascent methods for regularized loss minimization," J. Mach. Learn. Res., vol. 14, no. 2, pp. 567-599, 2013.
-
(2013)
J. Mach. Learn. Res.
, vol.14
, Issue.2
, pp. 567-599
-
-
Shalev-Shwartz, S.1
Tong, Z.2
-
67
-
-
0004094721
-
-
Cambridge, MA, USA: MIT Press
-
B. Scholkopf and A. J. Smola, Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.Cambridge, MA, USA: MIT Press, 2001.
-
(2001)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
68
-
-
78650994992
-
VLFeat: An open and portable library of computer vision algorithms
-
A. Vedaldi and B. Fulkerson, "VLFeat: An open and portable library of computer vision algorithms," in Proc. 18th Int. Conf. Multimedia, 2010, pp. 1469-1472.
-
(2010)
Proc. 18th Int. Conf. Multimedia
, pp. 1469-1472
-
-
Vedaldi, A.1
Fulkerson, B.2
|