메뉴 건너뛰기




Volumn 22, Issue 3, 2018, Pages 874-885

A deep convolutional neural network-based framework for automatic fetal facial standard plane recognition

Author keywords

Deep convolutional neural network; standard plane recognition; transfer learning; ultrasound image

Indexed keywords

CONVOLUTION; DEEP NEURAL NETWORKS; DIAGNOSIS; FACE RECOGNITION; TRANSFER LEARNING; ULTRASONIC IMAGING;

EID: 85045917483     PISSN: 21682194     EISSN: 21682208     Source Type: Journal    
DOI: 10.1109/JBHI.2017.2705031     Document Type: Article
Times cited : (86)

References (68)
  • 1
    • 84929224706 scopus 로고    scopus 로고
    • Automatic recognition of fetal facial standard plane in ultrasound image via fisher vector
    • Art. no. e0121838
    • B. Lei et al., "Automatic recognition of fetal facial standard plane in ultrasound image via fisher vector," PLoS One, vol. 10, no. 5, 2015, Art. no. e0121838.
    • (2015) PLoS One , vol.10 , Issue.5
    • Lei, B.1
  • 2
    • 84938541633 scopus 로고    scopus 로고
    • Discriminative learning for automatic staging of placental maturity via multi-layer fisher vector
    • Art. no. 12818
    • B. Lei et al., "Discriminative learning for automatic staging of placental maturity via multi-layer fisher vector," Sci. Rep., vol. 5, no. 2015, Art. no. 12818.
    • Sci. Rep. , vol.5 , Issue.2015
    • Lei, B.1
  • 4
    • 84947424557 scopus 로고    scopus 로고
    • Automatic fetal ultrasound standard pane detection using knowledge transferred recurrent neural networks
    • H. Chen et al., "Automatic fetal ultrasound standard pane detection using knowledge transferred recurrent neural networks," in Proc. Med. Imag. Comput. Comput. Assist. Interv., 2015, pp. 507-514.
    • (2015) Proc. Med. Imag. Comput. Comput. Assist. Interv , pp. 507-514
    • Chen, H.1
  • 5
    • 84940970126 scopus 로고    scopus 로고
    • Standard plane localization in fetal ultrasound via domain transferred deep neural networks
    • H. Chen et al., "Standard plane localization in fetal ultrasound via domain transferred deep neural networks," IEEE J. Biomed. Health. Inf., vol. 19, no. 5, pp. 1627-1636, 2015.
    • (2015) IEEE J. Biomed. Health. Inf. , vol.19 , Issue.5 , pp. 1627-1636
    • Chen, H.1
  • 7
    • 84864666518 scopus 로고    scopus 로고
    • Intelligent scanning: Automated standard plane selection and biometric measurement of early gestational sac in routine ultrasound examination
    • L. Zhang, S. Chen, C. T. Chin, T. Wang, and S. Li, "Intelligent scanning: Automated standard plane selection and biometric measurement of early gestational sac in routine ultrasound examination," Med. Phys., vol. 39, no. 8, pp. 5015-5027, 2012.
    • (2012) Med. Phys. , vol.39 , Issue.8 , pp. 5015-5027
    • Zhang, L.1    Chen, S.2    Chin, C.T.3    Wang, T.4    Li, S.5
  • 8
    • 84904737750 scopus 로고    scopus 로고
    • Anatomical object detection in fetal ultrasound: Computer-expert agreements
    • B. Rahmatullah and J. A. Noble, "Anatomical object detection in fetal ultrasound: Computer-expert agreements," in Proc. Biomed. Inf. Technol., 2014, pp. 207-218.
    • (2014) Proc. Biomed. Inf. Technol , pp. 207-218
    • Rahmatullah, B.1    Noble, J.A.2
  • 9
    • 0036130202 scopus 로고    scopus 로고
    • The importance of quality management in fetal measurement
    • N. Dudley and E. Chapman, "The importance of quality management in fetal measurement," Ultrasound Obstet. Gynecol., vol. 19, no. 2, pp. 190-196, 2002.
    • (2002) Ultrasound Obstet. Gynecol. , vol.19 , Issue.2 , pp. 190-196
    • Dudley, N.1    Chapman, E.2
  • 10
    • 84951821800 scopus 로고    scopus 로고
    • Guided random forests for identification of key fetal anatomy and image categorization in ultrasound scans
    • M. Yaqub, B. Kelly, A. Papageorghiou, and J. A. Noble, "Guided random forests for identification of key fetal anatomy and image categorization in ultrasound scans," in Proc. Med. Imag. Comput. Comput. Assist. Interv., 2015, pp. 687-694.
    • (2015) Proc. Med. Imag. Comput. Comput. Assist. Interv , pp. 687-694
    • Yaqub, M.1    Kelly, B.2    Papageorghiou, A.3    Noble, J.A.4
  • 13
    • 84912116967 scopus 로고    scopus 로고
    • FR-KECA: Fuzzy robust kernel entropy component analysis
    • J. Shi, Q. Jiang, R. Mao, M. Lu, and T. Wang, "FR-KECA: Fuzzy robust kernel entropy component analysis," Neurocomputing, vol. 149, Part C, pp. 1415-1423, 2015.
    • (2015) Neurocomputing , vol.149 , pp. 1415-1423
    • Shi, J.1    Jiang, Q.2    Mao, R.3    Lu, M.4    Wang, T.5
  • 14
    • 85029929139 scopus 로고    scopus 로고
    • Histopathological image classification with color pattern
    • random binary hashing based PCANet and matrix-form classifier doi: 10.1109/JBHI.2016.2602823
    • J. Shi, J. Wu, Y. Li, Q. Zhang, and S. Ying, "Histopathological image classification with color pattern random binary hashing based PCANet and matrix-form classifier," IEEE J. Biomed. Health Inf., doi: 10.1109/JBHI.2016.2602823.
    • IEEE J. Biomed. Health Inf.
    • Shi, J.1    Wu, J.2    Li, Y.3    Zhang, Q.4    Ying, S.5
  • 15
    • 84977930046 scopus 로고    scopus 로고
    • Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset
    • J. Shi, S. Zhou, X. Liu, Q. Zhang, M. Lu, and T. Wang, "Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset," Neurocomputing, vol. 194, pp. 87-94, 2016.
    • (2016) Neurocomputing , vol.194 , pp. 87-94
    • Shi, J.1    Zhou, S.2    Liu, X.3    Zhang, Q.4    Lu, M.5    Wang, T.6
  • 16
    • 84907972162 scopus 로고    scopus 로고
    • Standard plane localization in ultrasound by radial component model and selective search
    • D. Ni et al., "Standard plane localization in ultrasound by radial component model and selective search," Ultrasound Med. Biol., vol. 40, no. 11, pp. 2728-2742, 2014.
    • (2014) Ultrasound Med. Biol. , vol.40 , Issue.11 , pp. 2728-2742
    • Ni, D.1
  • 17
    • 84928277299 scopus 로고    scopus 로고
    • Saliency-driven image classification method based on histogram mining and image score
    • B. Lei, E.-L. Tan, S. Chen, D. Ni, and T. Wang, "Saliency-driven image classification method based on histogram mining and image score," Pattern Recognit., vol. 48, no. 8, pp. 2567-2580, 2015.
    • (2015) Pattern Recognit. , vol.48 , Issue.8 , pp. 2567-2580
    • Lei, B.1    Tan, E.-L.2    Chen, S.3    Ni, D.4    Wang, T.5
  • 18
    • 84923658744 scopus 로고    scopus 로고
    • Block-row sparse multiview multilabel learning for image classification
    • Feb
    • X. Zhu, X. Li, and S. Zhang, "Block-row sparse multiview multilabel learning for image classification," IEEE Trans. Cybern., vol. 46, no. 2, pp. 450-461, Feb. 2016.
    • (2016) IEEE Trans. Cybern. , vol.46 , Issue.2 , pp. 450-461
    • Zhu, X.1    Li, X.2    Zhang, S.3
  • 19
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 20
    • 79953049203 scopus 로고    scopus 로고
    • SIFT Flow: Dense correspondence across scenes and its applications
    • May
    • C. Liu, J. Yuen, and A. Torralba, "SIFT Flow: Dense correspondence across scenes and its applications," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 978-994, May 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.5 , pp. 978-994
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 23
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramidmatching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: Spatial pyramidmatching for recognizing natural scene categories," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2006, pp. 2169-2178.
    • (2006) Proc. IEEE Conf. Comput. Vis. Pattern Recognit , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 26
    • 84883487458 scopus 로고    scopus 로고
    • Image classification with the fisher vector: Theory and practice
    • J. Sanchez, F. Perronnin, T. Mensink, and J.Verbeek, "Image classification with the fisher vector: Theory and practice," Int. J. Comput. Vis., vol. 105, no. 3, pp. 222-245, 2013.
    • (2013) Int. J. Comput. Vis. , vol.105 , Issue.3 , pp. 222-245
    • Sanchez, J.1    Perronnin, F.2    Mensink, T.3    Verbeek, J.4
  • 31
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in Proc. Int. Conf. Mach. Learn., 2015, pp. 448-456.
    • (2015) Proc. Int. Conf. Mach. Learn , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 32
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," in Proc. Int.Conf. Learn. Represent., 2015, pp. 1-14.
    • (2015) Proc. Int.Conf. Learn. Represent , pp. 1-14
    • Simonyan, K.1    Zisserman, A.2
  • 34
    • 84904482223 scopus 로고    scopus 로고
    • Decaf: A deep convolutional activation feature for generic visual recognition
    • J. Donahue et al., "Decaf: A deep convolutional activation feature for generic visual recognition," in Proc. Int. Conf. Mach. Learn., 2014, pp. 647-655.
    • (2014) Proc. Int. Conf. Mach. Learn , pp. 647-655
    • Donahue, J.1
  • 35
    • 84968542337 scopus 로고    scopus 로고
    • Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
    • Feb
    • Q. Dou et al., "Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1182-1195, Feb. 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1182-1195
    • Dou, Q.1
  • 40
    • 84949058046 scopus 로고    scopus 로고
    • A novel relational regularization feature selection method for joint regression and classification in AD diagnosis
    • X. Zhu, H. Suk, L. Wang, S.-W. Lee, and D. Shen, "A novel relational regularization feature selection method for joint regression and classification in AD diagnosis," Med. Imag. Anal., vol. 38, pp. 205-214, 2017.
    • Med. Imag. Anal. , vol.38 , Issue.2017 , pp. 205-214
    • Zhu, X.1    Suk, H.2    Wang, L.3    Lee, S.-W.4    Shen, D.5
  • 41
    • 84960157230 scopus 로고    scopus 로고
    • Robust joint graph sparse coding for unsupervised spectral feature selection
    • Jun
    • X. Zhu, X. Li, S. Zhang, C. Ju, and X. Wu, "Robust joint graph sparse coding for unsupervised spectral feature selection," IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 6, pp. 1263-1275, Jun. 2017.
    • (2017) IEEE Trans. Neural Netw. Learn. Syst. , vol.28 , Issue.6 , pp. 1263-1275
    • Zhu, X.1    Li, X.2    Zhang, S.3    Ju, C.4    Wu, X.5
  • 42
    • 84905046755 scopus 로고    scopus 로고
    • A sparse embedding and least variance encoding approach to hashing
    • Sep
    • X. Zhu, L. Zhang, and Z. Huang, "A sparse embedding and least variance encoding approach to hashing," IEEE Trans. Image Process., vol. 23, no. 9, pp. 3737-3750, Sep. 2014.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.9 , pp. 3737-3750
    • Zhu, X.1    Zhang, L.2    Huang, Z.3
  • 43
  • 44
    • 33745855044 scopus 로고    scopus 로고
    • The pyramid match kernel: Discriminative classification with sets of image features
    • K. Grauman and T. Darrell, "The pyramid match kernel: Discriminative classification with sets of image features," in Proc. IEEE Int. Conf. Comput. Vis., 2005, pp. 1458-1465.
    • (2005) Proc. IEEE Int. Conf. Comput. Vis , pp. 1458-1465
    • Grauman, K.1    Darrell, T.2
  • 45
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 46
    • 84968661778 scopus 로고    scopus 로고
    • Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique
    • May
    • H. Greenspan, B. van Ginneken, and R. M. Summers, "Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1153-1159, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1153-1159
    • Greenspan, H.1    Van Ginneken, B.2    Summers, R.M.3
  • 47
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," in Proc. Int. Conf. Artif. Intell. Statist., 2010, pp. 249-256.
    • (2010) Proc. Int. Conf. Artif. Intell. Statist , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 48
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1026-1034.
    • (2015) Proc. IEEE Conf. Comput. Vis. Pattern Recognit , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 52
    • 84904548965 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Y. Bengio, "Deep learning of representations for unsupervised and transfer learning," in Proc. ICML Workshop Unsupervised Transfer Learn., 2012, pp. 1-20.
    • (2012) Proc. ICML Workshop Unsupervised Transfer Learn , pp. 1-20
    • Bengio, Y.1
  • 53
    • 84968662241 scopus 로고    scopus 로고
    • Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
    • May
    • M. Anthimopoulos, S. Christodoulidis, A. C. L. Ebner, and S. Mougiakakou, "Lung pattern classification for interstitial lung diseases using a deep convolutional neural network," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1207-1216, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1207-1216
    • Anthimopoulos, M.1    Christodoulidis, S.2    Ebner, A.C.L.3    Mougiakakou, S.4
  • 54
    • 85015719821 scopus 로고    scopus 로고
    • Hep-2 cell image classification with deep convolutional neural networks
    • Mar
    • Z. Gao, L. Wang, L. Zhou, and J. Zhang, "Hep-2 cell image classification with deep convolutional neural networks," IEEE J. Biomed. Health. Inf., vol. 21, no. 2, pp. 416-428, Mar. 2017.
    • (2017) IEEE J. Biomed. Health. Inf. , vol.21 , Issue.2 , pp. 416-428
    • Gao, Z.1    Wang, L.2    Zhou, L.3    Zhang, J.4
  • 55
    • 84968680221 scopus 로고    scopus 로고
    • Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition
    • May
    • Z. Yan et al., "Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1332-1343, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1332-1343
    • Yan, Z.1
  • 56
    • 84950238277 scopus 로고    scopus 로고
    • Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning
    • Oct
    • Y. Song, L. Zhang, S. Chen, D. Ni, B. Lei, and T. Wang, "Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning," IEEE Trans. Biomed. Eng., vol. 62, no. 10, pp. 2421-2433, Oct. 2015.
    • (2015) IEEE Trans. Biomed. Eng. , vol.62 , Issue.10 , pp. 2421-2433
    • Song, Y.1    Zhang, L.2    Chen, S.3    Ni, D.4    Lei, B.5    Wang, T.6
  • 58
    • 85007153968 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histology images via deep cascaded networks
    • H. Chen, Q. Dou, X. Wang, J. Qin, and P. A. Heng, "Mitosis detection in breast cancer histology images via deep cascaded networks," in Proc. AAAI Conf. Artif. Intell., 2016, pp. 1160-1166.
    • (2016) Proc. AAAI Conf. Artif. Intell , pp. 1160-1166
    • Chen, H.1    Dou, Q.2    Wang, X.3    Qin, J.4    Heng, P.A.5
  • 60
    • 84997796752 scopus 로고    scopus 로고
    • DCAN: Deep contour-aware networks for object instance segmentation from histology images
    • H. Chen, X. Qi, L. Yu, Q. Dou, J. Qin, and P. A. Heng, "DCAN: Deep contour-aware networks for object instance segmentation from histology images," Med. Image Anal., vol. 36, no. pp. 135-146, 2017.
    • Med. Image Anal. , vol.36 , Issue.2017 , pp. 135-146
    • Chen, H.1    Qi, X.2    Yu, L.3    Dou, Q.4    Qin, J.5    Heng, P.A.6
  • 61
    • 85018171435 scopus 로고    scopus 로고
    • VoxResNet: Deep voxelwise residual networks for brain segmentation from 3DMR images
    • H. Chen, Q. Dou, L. Yu, J. Qin, and P. A. Heng, "VoxResNet: Deep voxelwise residual networks for brain segmentation from 3DMR images," Neuroimage, doi: https://doi.org/10.1016/j.neuroimage.2017.04.041.
    • Neuroimage
    • Chen, H.1    Dou, Q.2    Yu, L.3    Qin, J.4    Heng, P.A.5
  • 62
    • 85017139145 scopus 로고    scopus 로고
    • Ultrasound standard plane detection using a composite neural network framework
    • Jun
    • H. Chen, L. Wu, Q. Dou, J. Qin, S. Li, J. Z. Cheng, D. Ni, and P. A. Heng, "Ultrasound standard plane detection using a composite neural network framework," IEEE Trans. Cybern., vol. 47, no. 6, pp. 1576-1586, Jun. 2017.
    • (2017) IEEE Trans. Cybern. , vol.47 , Issue.6 , pp. 1576-1586
    • Chen, H.1    Wu, L.2    Dou, Q.3    Qin, J.4    Li, S.5    Cheng, J.Z.6    Ni, D.7    Heng, P.A.8
  • 65
    • 84968649810 scopus 로고    scopus 로고
    • Convolutional neural networks for medical image analysis: Full training or fine tuning?
    • May
    • N. Tajbakhsh et al., "Convolutional neural networks for medical image analysis: Full training or fine tuning?," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1299-1312, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1299-1312
    • Tajbakhsh, N.1
  • 66
    • 84875134236 scopus 로고    scopus 로고
    • Stochastic dual coordinate ascent methods for regularized loss minimization
    • S. Shalev-Shwartz and Z. Tong, "Stochastic dual coordinate ascent methods for regularized loss minimization," J. Mach. Learn. Res., vol. 14, no. 2, pp. 567-599, 2013.
    • (2013) J. Mach. Learn. Res. , vol.14 , Issue.2 , pp. 567-599
    • Shalev-Shwartz, S.1    Tong, Z.2
  • 68
    • 78650994992 scopus 로고    scopus 로고
    • VLFeat: An open and portable library of computer vision algorithms
    • A. Vedaldi and B. Fulkerson, "VLFeat: An open and portable library of computer vision algorithms," in Proc. 18th Int. Conf. Multimedia, 2010, pp. 1469-1472.
    • (2010) Proc. 18th Int. Conf. Multimedia , pp. 1469-1472
    • Vedaldi, A.1    Fulkerson, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.