메뉴 건너뛰기




Volumn 63, Issue 3, 2016, Pages 607-618

Subspace Regularized Sparse Multitask Learning for Multiclass Neurodegenerative Disease Identification

Author keywords

Alzheimer's disease; feature selection; mild cognitive impairment; multi class classification; neuroimaging data analysis; sparse coding; subspace learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); DIAGNOSIS; DISCRIMINANT ANALYSIS; FEATURE EXTRACTION; LEARNING SYSTEMS; NEURODEGENERATIVE DISEASES; NEUROIMAGING;

EID: 84962091523     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2015.2466616     Document Type: Article
Times cited : (196)

References (62)
  • 1
    • 84858225391 scopus 로고    scopus 로고
    • 2012 Alzheimer's disease facts and figures
    • Alzheimer's Association
    • Alzheimer's Association, "2012 Alzheimer's disease facts and figures," Alzheimer's Dementia, vol. 8, no. 2, pp. 131-168, 2012.
    • (2012) Alzheimer's Dementia , vol.8 , Issue.2 , pp. 131-168
  • 2
    • 1842427969 scopus 로고    scopus 로고
    • Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functionalMRI
    • M. D. Greicius et al., "Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functionalMRI," Proc. Nat. Acad. Sci. United States Amer., vol. 101, no. 13, pp. 4637-4642, 2004.
    • (2004) Proc. Nat. Acad. Sci. United States Amer. , vol.101 , Issue.13 , pp. 4637-4642
    • Greicius, M.D.1
  • 3
    • 70450222689 scopus 로고    scopus 로고
    • Voxel-based assessment of gray and white matter volumes in Alzheimer's disease
    • X. Guo et al., "Voxel-based assessment of gray and white matter volumes in Alzheimer's disease," Neurosci. Lett., vol. 468, no. 2, pp. 146-150, 2010.
    • (2010) Neurosci. Lett. , vol.468 , Issue.2 , pp. 146-150
    • Guo, X.1
  • 4
    • 84860113078 scopus 로고    scopus 로고
    • Hierarchical oriented predictions for resolution scalable lossless and near-lossless compression of CT andMRI biomedical images
    • May
    • J. Taquet and C. Labit, "Hierarchical oriented predictions for resolution scalable lossless and near-lossless compression of CT andMRI biomedical images," IEEE Trans. Image Process., vol. 21, no. 5, pp. 2641-2652, May 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.5 , pp. 2641-2652
    • Taquet, J.1    Labit, C.2
  • 5
    • 82255164574 scopus 로고    scopus 로고
    • Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression
    • H.Wang et al., "Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression," Med. Image Comput. Comput. Assist. Interv., vol. 14, pp. 115-123, 2011.
    • (2011) Med. Image Comput. Comput. Assist. Interv. , vol.14 , pp. 115-123
    • Wang, H.1
  • 6
    • 83055184373 scopus 로고    scopus 로고
    • Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
    • D. Zhang and D. Shen, "Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease," NeuroImage, vol. 59, no. 2, pp. 895-907, 2012.
    • (2012) NeuroImage , vol.59 , Issue.2 , pp. 895-907
    • Zhang, D.1    Shen, D.2
  • 7
    • 84907019192 scopus 로고    scopus 로고
    • Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
    • H.-I. Suk et al., "Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis," NeuroImage, vol. 101, pp. 569-582, 2014.
    • (2014) Neuro Image , vol.101 , pp. 569-582
    • Suk, H.-I.1
  • 8
    • 84923814844 scopus 로고    scopus 로고
    • Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
    • H.-I. Suk et al., "Latent feature representation with stacked auto-encoder for AD/MCI diagnosis," Brain Structure Function, vol. 220, no. 2, pp. 841-859, 2015.
    • (2015) Brain Structure Function , vol.220 , Issue.2 , pp. 841-859
    • Suk, H.-I.1
  • 9
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database
    • R. Cuingnet et al., "Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database," NeuroImage, vol. 56, no. 2, pp. 766-781, 2011.
    • (2011) NeuroImage , vol.56 , Issue.2 , pp. 766-781
    • Cuingnet, R.1
  • 10
    • 84866683998 scopus 로고    scopus 로고
    • Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer's disease
    • J.Wan et al., "Sparse bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer's disease," in Proc. Comput. Vis. Pattern Recog., 2012, pp. 940-947.
    • (2012) Proc. Comput. Vis. Pattern Recog. , pp. 940-947
    • Wan, J.1
  • 11
    • 84864142669 scopus 로고    scopus 로고
    • A feature-based learning framework for accurate prostate localization in CT images
    • Aug.
    • S. Liao and D. Shen, "A feature-based learning framework for accurate prostate localization in CT images," IEEE Trans. Image Process., vol. 21, no. 8, pp. 3546-3559, Aug. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.8 , pp. 3546-3559
    • Liao, S.1    Shen, D.2
  • 12
    • 84899902574 scopus 로고    scopus 로고
    • A review of feature reduction techniques in neuroimaging
    • B.Mwangi et al., "A review of feature reduction techniques in neuroimaging," Neuroinformatics, vol. 12, no. 2, pp. 229-244, 2014.
    • (2014) Neuroinformatics , vol.12 , Issue.2 , pp. 229-244
    • Mwangi, B.1
  • 13
    • 84921826931 scopus 로고    scopus 로고
    • A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis
    • X. Zhu et al., "A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis," NeuroImage, vol. 14, pp. 1-30, 2014.
    • (2014) NeuroImage , vol.14 , pp. 1-30
    • Zhu, X.1
  • 14
    • 85029378778 scopus 로고    scopus 로고
    • Manifold alignment and transfer learning for classification of Alzheimer's disease
    • New York, NY, USA: Springer
    • R. Guerrero et al., "Manifold alignment and transfer learning for classification of Alzheimer's disease," in Machine Learning in Medical Imaging. New York, NY, USA: Springer, 2014.
    • (2014) Machine Learning in Medical Imaging
    • Guerrero, R.1
  • 15
    • 84881226895 scopus 로고    scopus 로고
    • Locally linear embedding for MRI based Alzheimer's disease classification
    • X. Liu et al., "Locally linear embedding for MRI based Alzheimer's disease classification," NeuroImage, vol. 83, pp. 148-157, 2013.
    • (2013) NeuroImage , vol.83 , pp. 148-157
    • Liu, X.1
  • 16
    • 84862776712 scopus 로고    scopus 로고
    • Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
    • C. Chu et al., "Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images," NeuroImage, vol. 60, no. 1, pp. 59-70, 2012.
    • (2012) NeuroImage , vol.60 , Issue.1 , pp. 59-70
    • Chu, C.1
  • 17
    • 78149434145 scopus 로고    scopus 로고
    • Feature selection using factor analysis for Alzheimers diagnosis using F18-FDG PET images
    • D. Salas-Gonzalez et al., "Feature selection using factor analysis for Alzheimers diagnosis using F18-FDG PET images," Med. Phys., vol. 37, no. 11, pp. 6084-6095, 2010.
    • (2010) Med. Phys. , vol.37 , Issue.11 , pp. 6084-6095
    • Salas-Gonzalez, D.1
  • 18
    • 84860739936 scopus 로고    scopus 로고
    • Classification of Alzheimer's disease patients with hippocampal shape, wrapper based feature selection and support vector machine
    • J. Young et al., "Classification of Alzheimer's disease patients with hippocampal shape, wrapper based feature selection and support vector machine," Proc. SPIE, vol. 8314, 2012.
    • (2012) Proc. SPIE , vol.8314
    • Young, J.1
  • 19
    • 84904556055 scopus 로고    scopus 로고
    • Subclass-based multi-task learning for Alzheimer's disease diagnosis
    • H.-I. Suk et al., "Subclass-based multi-task learning for Alzheimer's disease diagnosis," Frontiers Aging Neurosci., vol. 6, no. 168, 2014.
    • (2014) Frontiers Aging Neurosci. , vol.6 , Issue.168
    • Suk, H.-I.1
  • 20
    • 84971348588 scopus 로고    scopus 로고
    • Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis
    • H.-I. Suk et al., "Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis," Brain Structure Function, pp. 1-19, 2015.
    • (2015) Brain Structure Function , pp. 1-19
    • Suk, H.-I.1
  • 22
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin, "Model selection and estimation in regression with grouped variables," J. Royal Statist. Soc. Series B, vol. 68, no. 1, pp. 49-67, 2006.
    • (2006) J. Royal Statist. Soc. Series B , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 23
    • 84877334125 scopus 로고    scopus 로고
    • Modeling disease progression via multi-task learning
    • J. Zhou et al., "Modeling disease progression via multi-task learning," NeuroImage, vol. 78, pp. 233-248, 2013.
    • (2013) NeuroImage , vol.78 , pp. 233-248
    • Zhou, J.1
  • 24
    • 84931011132 scopus 로고    scopus 로고
    • Supervised discriminative group sparse representation for mild cognitive impairment diagnosis
    • H.-I. Suk et al., "Supervised discriminative group sparse representation for mild cognitive impairment diagnosis," Neuroinformatics, vol. 13, no. 3, pp. 277-295, 2015.
    • (2015) Neuroinformatics , vol.13 , Issue.3 , pp. 277-295
    • Suk, H.-I.1
  • 25
    • 84905046755 scopus 로고    scopus 로고
    • A sparse embedding and least variance encoding approach to hashing
    • Sep.
    • X. Zhu et al., "A sparse embedding and least variance encoding approach to hashing," IEEE Trans. Image Process., vol. 23, no. 9, pp. 3737-3750, Sep. 2014.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.9 , pp. 3737-3750
    • Zhu, X.1
  • 26
    • 84987687148 scopus 로고    scopus 로고
    • Voxelwise spectral diffusional connectivity and its applications to Alzheimer's disease and intelligence prediction
    • J. Li et al., "Voxelwise spectral diffusional connectivity and its applications to alzheimer's disease and intelligence prediction," Med. Image Comput. Comput. Assist. Interv., vol. 16, pp. 655-662, 2013.
    • (2013) Med. Image Comput. Comput. Assist. Interv. , vol.16 , pp. 655-662
    • Li, J.1
  • 28
    • 70350723774 scopus 로고    scopus 로고
    • Laplacian score for feature selection
    • X. He et al., "Laplacian score for feature selection," in Proc. Neural Inform. Process. Syst., 2005, pp. 1-8.
    • (2005) Proc. Neural Inform. Process. Syst. , pp. 1-8
    • He, X.1
  • 29
    • 84864144566 scopus 로고    scopus 로고
    • Conjunctive patches subspace learning with side information for collaborative image retrieval
    • Aug.
    • L. Zhang et al., "Conjunctive patches subspace learning with side information for collaborative image retrieval," IEEE Trans. Image Process., vol. 21, no. 8, pp. 3707-3720, Aug. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.8 , pp. 3707-3720
    • Zhang, L.1
  • 30
    • 84878612787 scopus 로고    scopus 로고
    • Sparse hashing for fast multimedia search
    • X. Zhu et al., "Sparse hashing for fast multimedia search," ACM Trans. Inform. Syst., vol. 31, no. 2, p. 9, 2013.
    • (2013) ACM Trans. Inform. Syst. , vol.31 , Issue.2 , pp. 9
    • Zhu, X.1
  • 31
    • 84992236271 scopus 로고    scopus 로고
    • Comparison of 9 tractography algorithms for detecting abnormal structural brain networks in alzheimers disease
    • L. Zhan et al., "Comparison of 9 tractography algorithms for detecting abnormal structural brain networks in alzheimers disease," Frontiers Aging Neurosci., vol. 7, no. 48, 2015.
    • (2015) Frontiers Aging Neurosci. , vol.7 , Issue.48
    • Zhan, L.1
  • 32
    • 78649402552 scopus 로고    scopus 로고
    • Missing value estimation for mixed-attribute data sets
    • Jan.
    • X. Zhu et al., "Missing value estimation for mixed-attribute data sets," IEEE Trans. Knowl. Data Eng., vol. 23, no. 1, pp. 110-121, Jan. 2011.
    • (2011) IEEE Trans. Knowl. Data Eng. , vol.23 , Issue.1 , pp. 110-121
    • Zhu, X.1
  • 33
    • 84855185464 scopus 로고    scopus 로고
    • A review of multivariate methods for multimodal fusion of brain imaging data
    • J. Sui et al., "A review of multivariate methods for multimodal fusion of brain imaging data," J. Neurosci. Methods, vol. 204, no. 1, pp. 68-81, 2012.
    • (2012) J. Neurosci. Methods , vol.204 , Issue.1 , pp. 68-81
    • Sui, J.1
  • 35
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • D. Hardoon et al., "Canonical correlation analysis: An overview with application to learning methods," Neural Comput., vol. 16, no. 12, pp. 2639-2664, 2004.
    • (2004) Neural Comput. , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.1
  • 36
    • 84862798157 scopus 로고    scopus 로고
    • Dimensionality reduction by mixed kernel canonical correlation analysis
    • X. Zhu et al., "Dimensionality reduction by mixed kernel canonical correlation analysis," Pattern Recog., vol. 45, no. 8, pp. 3003-3016, 2012.
    • (2012) Pattern Recog. , vol.45 , Issue.8 , pp. 3003-3016
    • Zhu, X.1
  • 38
    • 84961745739 scopus 로고    scopus 로고
    • Block-row sparse multiview multilabel learning for image classification
    • Feb.
    • X. Zhu et al., "Block-row sparse multiview multilabel learning for image classification," IEEE Trans. Cybern., Feb. 2015.
    • (2015) IEEE Trans. Cybern
    • Zhu, X.1
  • 39
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, pp. 2323-2326, 2000.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 40
    • 84922326849 scopus 로고    scopus 로고
    • Multi-modality canonical feature selection for Alzheimer's disease diagnosis
    • X. Zhu et al., "Multi-modality canonical feature selection for Alzheimer's disease diagnosis," Med. Image Comput. Comput. Assist. Interv., vol. 17, pp. 162-169, 2014.
    • (2014) Med. Image Comput. Comput. Assist. Interv. , vol.17 , pp. 162-169
    • Zhu, X.1
  • 41
    • 84866033003 scopus 로고    scopus 로고
    • Self-taught dimensionality reduction on the highdimensional small-sized data
    • X. Zhu et al., "Self-taught dimensionality reduction on the highdimensional small-sized data," Pattern Recog., vol. 46, no. 1, pp. 215-229, 2013.
    • (2013) Pattern Recog. , vol.46 , Issue.1 , pp. 215-229
    • Zhu, X.1
  • 42
    • 0031987382 scopus 로고    scopus 로고
    • A nonparametric method for automatic correction of intensity nonuniformity in MRI data
    • Feb.
    • J. G. Sled et al., "A nonparametric method for automatic correction of intensity nonuniformity in MRI data," IEEE Trans. Med. Imag., vol. 17, no. 1, pp. 87-97, Feb. 1998.
    • (1998) IEEE Trans. Med. Imag. , vol.17 , Issue.1 , pp. 87-97
    • Sled, J.G.1
  • 43
    • 84896373761 scopus 로고    scopus 로고
    • Knowledge-guided robustMRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates
    • Y.Wang et al., "Knowledge-guided robustMRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates," PLoS One, vol. 9, p. e77810, 2014.
    • (2014) PLoS One , vol.9 , pp. e77810
    • Wang, Y.1
  • 44
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov
    • random field model and the expectation-maximization algorithm Jan.
    • Y. Zhang et al., "Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm," IEEE Trans. Med. Imag., vol. 20, no. 1, pp. 45-57, Jan. 2001.
    • (2001) IEEE Trans. Med. Imag. , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1
  • 45
    • 0036880516 scopus 로고    scopus 로고
    • HAMMER: Hierarchical attribute matching mechanism for elastic registration
    • Nov.
    • D. Shen and C. Davatzikos, "HAMMER: Hierarchical attribute matching mechanism for elastic registration," IEEE Trans. Med. Imag., vol. 21, no. 11, pp. 1421-1439, Nov. 2002.
    • (2002) IEEE Trans. Med. Imag. , vol.21 , Issue.11 , pp. 1421-1439
    • Shen, D.1    Davatzikos, C.2
  • 46
    • 0342723538 scopus 로고    scopus 로고
    • 3D anatomical atlas of the human brain
    • N. J. Kabani, "3D anatomical atlas of the human brain," NeuroImage, vol. 7, pp. 0700-0717, 1998.
    • (1998) Neuro Image , vol.7 , pp. 0700-0717
    • Kabani, N.J.1
  • 47
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou et al., "Convex multi-task feature learning," Mach. Learning, vol. 73, no. 3, pp. 243-272, 2008.
    • (2008) Mach. Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1
  • 48
    • 84855418467 scopus 로고    scopus 로고
    • Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data
    • Y. Cho et al., "Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data," NeuroImage, vol. 59, no. 3, pp. 2217-2230, 2012.
    • (2012) NeuroImage , vol.59 , Issue.3 , pp. 2217-2230
    • Cho, Y.1
  • 49
    • 80053145416 scopus 로고    scopus 로고
    • Multi-task feature learning via efficient-2,1-norm minimization
    • J. Liu et al., "Multi-task feature learning via efficient-2,1-norm minimization," in Proc. Uncertainty Artif. Intell., 2009, pp. 339-348.
    • (2009) Proc. Uncertainty Artif. Intell. , pp. 339-348
    • Liu, J.1
  • 50
    • 85161148381 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining, inference and prediction
    • T. Hastie et al., "The elements of statistical learning: Data mining, inference and prediction," Math. Intell., vol. 27, no. 2, pp. 83-85, 2005.
    • (2005) Math. Intell. , vol.27 , Issue.2 , pp. 83-85
    • Hastie, T.1
  • 51
    • 34547964600 scopus 로고    scopus 로고
    • Least squares linear discriminant analysis
    • J. Ye, "Least squares linear discriminant analysis," in Proc. Int. Conf. Mach. Learning, 2007, pp. 1087-1093.
    • (2007) Proc. Int. Conf. Mach. Learning , pp. 1087-1093
    • Ye, J.1
  • 54
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Mining Knowl. Discover, vol. 2, no. 2, pp. 121-167, 1998.
    • (1998) Data Mining Knowl. Discover , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 55
    • 84871786784 scopus 로고    scopus 로고
    • A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces
    • Feb.
    • H.-I. Suk and S.-W. Lee, "A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 2, pp. 286-299, Feb. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.2 , pp. 286-299
    • Suk, H.-I.1    Lee, S.-W.2
  • 56
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C.-C. Chang and C.-J. Lin, "LIBSVM: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, p. 27, 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 27
    • Chang, C.-C.1    Lin, C.-J.2
  • 57
    • 84870535269 scopus 로고    scopus 로고
    • Joint feature selection and subspace learning
    • Q. Gu et al., "Joint feature selection and subspace learning," in Proc. Int. Joint Conf. Artif. Intell., 2011, pp. 1294-1299.
    • (2011) Proc. Int. Joint Conf. Artif. Intell. , pp. 1294-1299
    • Gu, Q.1
  • 58
    • 24144437271 scopus 로고    scopus 로고
    • Learning a kernel matrix for nonlinear dimensionality reduction
    • K. Q. Weinberger et al., "Learning a kernel matrix for nonlinear dimensionality reduction," in Proc. Int. Conf. Mach. Learning, 2004, pp. 17-24.
    • (2004) Proc. Int. Conf. Mach. Learning , pp. 17-24
    • Weinberger, K.Q.1
  • 59
    • 20144379890 scopus 로고    scopus 로고
    • FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment
    • G. Chételat et al., "FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment," Neurocase, vol. 11, no. 1, pp. 14-25, 2005.
    • (2005) Neurocase , vol.11 , Issue.1 , pp. 14-25
    • Chételat, G.1
  • 60
    • 0007234813 scopus 로고    scopus 로고
    • Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimers disease
    • A. Convit et al., "Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimers disease," Neurobiology Aging, vol. 21, no. 1, pp. 19-26, 2000.
    • (2000) Neurobiology Aging , vol.21 , Issue.1 , pp. 19-26
    • Convit, A.1
  • 61
    • 0842283229 scopus 로고    scopus 로고
    • Imaging cerebral atrophy: Normal ageing to Alzheimer's disease
    • N. C. Fox and J. M. Schott, "Imaging cerebral atrophy: Normal ageing to Alzheimer's disease," Lancet, vol. 363, no. 9406, pp. 392-394, 2004.
    • (2004) Lancet , vol.363 , Issue.9406 , pp. 392-394
    • Fox, N.C.1    Schott, J.M.2
  • 62
    • 58149386194 scopus 로고    scopus 로고
    • Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: Results from ADNI
    • C. Misra et al., "Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: Results from ADNI," NeuroImage, vol. 44, no. 4, pp. 1415-1422, 2009
    • (2009) NeuroImage , vol.44 , Issue.4 , pp. 1415-1422
    • Misra, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.