메뉴 건너뛰기




Volumn 36, Issue 7, 2017, Pages 1561-1572

HEp-2 Specimen Image Segmentation and Classification Using Very Deep Fully Convolutional Network

Author keywords

Cell patterns; classification; fully convolutional network; segmentation

Indexed keywords

CELL MEMBRANES; CLASSIFICATION (OF INFORMATION); CONVOLUTION; DIAGNOSIS; IMAGE CLASSIFICATION; PATTERN RECOGNITION; PATTERN RECOGNITION SYSTEMS; SEMANTICS;

EID: 85028407444     PISSN: 02780062     EISSN: 1558254X     Source Type: Journal    
DOI: 10.1109/TMI.2017.2672702     Document Type: Article
Times cited : (57)

References (39)
  • 2
    • 77956026985 scopus 로고    scopus 로고
    • Segmentation of anti-nuclear antibody images based on the watershed approach
    • Jun
    • C. C. Cheng, J. S. Taur, T. Y. Hsieh, and C. W. Tao, "Segmentation of anti-nuclear antibody images based on the watershed approach," in Proc. IEEE Conf. Ind. Electron. Appl., Jun. 2010, pp. 1695-1700.
    • (2010) Proc. IEEE Conf. Ind. Electron. Appl , pp. 1695-1700
    • Cheng, C.C.1    Taur, J.S.2    Hsieh, T.Y.3    Tao, C.W.4
  • 3
    • 85032750965 scopus 로고    scopus 로고
    • Cell segmentation: 50 years down the road [life sciences]
    • Sep
    • E. Meijering, "Cell segmentation: 50 years down the road [life sciences]," IEEE Signal Process. Mag., vol. 29, no. 5, pp. 140-145, Sep. 2012.
    • (2012) IEEE Signal Process. Mag , vol.29 , Issue.5 , pp. 140-145
    • Meijering, E.1
  • 4
    • 0036754439 scopus 로고    scopus 로고
    • Mining knowledge for HEp-2 cell image classification
    • P. Perner, H. Perner, and B. Müller, "Mining knowledge for HEp-2 cell image classification," Artif. Intell. Med., vol. 26, nos. 1-2, pp. 161-173, 2002.
    • (2002) Artif. Intell. Med , vol.26 , Issue.1-2 , pp. 161-173
    • Perner, P.1    Perner, H.2    Müller, B.3
  • 5
    • 50949106869 scopus 로고    scopus 로고
    • Adaptive automatic segmentation of HEp-2 cells in indirect immunofluorescence images
    • Ubiquitous Trustworthy Comput., Jun
    • Y. L. Huang, Y. L. Jao, T. Y. Hsieh, and C. W. Chung, "Adaptive automatic segmentation of HEp-2 cells in indirect immunofluorescence images," in Proc. IEEE Int. Conf. Sensor Netw., Ubiquitous Trustworthy Comput., Jun. 2008, pp. 418-422.
    • (2008) Proc. IEEE Int. Conf. Sensor Netw , pp. 418-422
    • Huang, Y.L.1    Jao, Y.L.2    Hsieh, T.Y.3    Chung, C.W.4
  • 6
  • 8
    • 0026172104 scopus 로고
    • Watersheds in digital spaces: An efficient algorithm based on immersion simulations
    • Jun
    • L. Vincent and P. Soille, "Watersheds in digital spaces: An efficient algorithm based on immersion simulations," IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 6, pp. 583-598, Jun. 1991.
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell , vol.13 , Issue.6 , pp. 583-598
    • Vincent, L.1    Soille, P.2
  • 10
    • 84923108380 scopus 로고    scopus 로고
    • An automated approach to the segmentation of HEp-2 cells for the indirect immunofluorescence ANA test
    • Jan
    • S. Tonti, S. D. Cataldo, A. Bottino, and E. Ficarra, "An automated approach to the segmentation of HEp-2 cells for the indirect immunofluorescence ANA test," Comput. Med. Imag. Graph., vol. 40, pp. 62-69, Jan. 2015.
    • (2015) Comput. Med. Imag. Graph , vol.40 , pp. 62-69
    • Tonti, S.1    Cataldo, S.D.2    Bottino, A.3    Ficarra, E.4
  • 11
    • 84885138103 scopus 로고    scopus 로고
    • Benchmarking HEp-2 cells classification methods
    • Oct
    • P. Foggia, G. Percannella, P. Soda, and M. Vento, "Benchmarking HEp-2 cells classification methods," IEEE Trans. Med. Imag., vol. 32, no. 10, pp. 1878-1889, Oct. 2013.
    • (2013) IEEE Trans. Med. Imag , vol.32 , Issue.10 , pp. 1878-1889
    • Foggia, P.1    Percannella, G.2    Soda, P.3    Vento, M.4
  • 12
    • 84907421490 scopus 로고    scopus 로고
    • Pattern recognition in stained HEp-2 cells: Where are we now?
    • P. Foggia, G. Percannella, A. Saggese, and M. Vento, "Pattern recognition in stained HEp-2 cells: Where are we now?" Pattern Recognit., vol. 47, no. 7, pp. 2305-2314, 2014.
    • (2014) Pattern Recognit , vol.47 , Issue.7 , pp. 2305-2314
    • Foggia, P.1    Percannella, G.2    Saggese, A.3    Vento, M.4
  • 13
    • 84939614531 scopus 로고    scopus 로고
    • Benchmarking human epithelial type 2 interphase cells classification methods on a very large dataset
    • P. Hobson, B. C. Lovell, G. Percannella, M. Vento, and A. Wiliem, "Benchmarking human epithelial type 2 interphase cells classification methods on a very large dataset," Artif. Intell. Med., vol. 65, no. 3, pp. 239-250, 2015.
    • (2015) Artif. Intell. Med , vol.65 , Issue.3 , pp. 239-250
    • Hobson, P.1    Lovell, B.C.2    Percannella, G.3    Vento, M.4    Wiliem, A.5
  • 14
    • 84995646098 scopus 로고    scopus 로고
    • HEp-2 staining pattern recognition at cell and specimen levels: Datasets, algorithms and results
    • Oct
    • P. Hobson, B. C. Lovell, G. Percannella, A. Saggese, M. Vento, and A. Wiliem, "HEp-2 staining pattern recognition at cell and specimen levels: Datasets, algorithms and results," Pattern Recognit. Lett., vol. 82, pp. 12-22, Oct. 2016.
    • (2016) Pattern Recognit. Lett , vol.82 , pp. 12-22
    • Hobson, P.1    Lovell, B.C.2    Percannella, G.3    Saggese, A.4    Vento, M.5    Wiliem, A.6
  • 15
    • 84979790094 scopus 로고    scopus 로고
    • Computer aided diagnosis for anti-nuclear antibodies HEp-2 images: Progress and challenges
    • Mar
    • P. Hobson, B. C. Lovell, G. Percannella, A. Saggese, M. Vento, and A. Wiliem, "Computer aided diagnosis for anti-nuclear antibodies HEp-2 images: Progress and challenges," Pattern Recognit. Lett., vol. 82, pp. 3-11, Mar. 2016.
    • (2016) Pattern Recognit. Lett , vol.82 , pp. 3-11
    • Hobson, P.1    Lovell, B.C.2    Percannella, G.3    Saggese, A.4    Vento, M.5    Wiliem, A.6
  • 16
    • 67349187542 scopus 로고    scopus 로고
    • Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis
    • May
    • P. Soda and G. Iannello, "Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis," IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 3, pp. 322-329, May 2009.
    • (2009) IEEE Trans. Inf. Technol. Biomed , vol.13 , Issue.3 , pp. 322-329
    • Soda, P.1    Iannello, G.2
  • 18
    • 84897111309 scopus 로고    scopus 로고
    • HEp-2 image classification using intensity order pooling based features and bag of words
    • Jul
    • L. Shen, J. Lin, S. Wu, and S. Yu, "HEp-2 image classification using intensity order pooling based features and bag of words," Pattern Recognit., vol. 47, no. 7, pp. 2419-2427, Jul. 2014.
    • (2014) Pattern Recognit , vol.47 , Issue.7 , pp. 2419-2427
    • Shen, L.1    Lin, J.2    Wu, S.3    Yu, S.4
  • 19
    • 84955722039 scopus 로고    scopus 로고
    • An automated pattern recognition system for classifying indirect immunofluorescence images of HEp-2 cells and specimens
    • Mar
    • S. Manivannan, W. Li, S. Akbar, R. Wang, J. Zhang, and S. J. Mckenna, "An automated pattern recognition system for classifying indirect immunofluorescence images of HEp-2 cells and specimens," Pattern Recognit., vol. 51, pp. 12-26, Mar. 2016.
    • (2016) Pattern Recognit , vol.51 , pp. 12-26
    • Manivannan, S.1    Li, W.2    Akbar, S.3    Wang, R.4    Zhang, J.5    Mckenna, S.J.6
  • 20
    • 84973161022 scopus 로고    scopus 로고
    • Cell image classification by a scale and rotation invariant dense local descriptor
    • Feb
    • D. Gragnaniello, C. Sansone, and L. Verdoliva, "Cell image classification by a scale and rotation invariant dense local descriptor," Pattern Recognit. Lett., vol. 82, pp. 72-78, Feb. 2016.
    • (2016) Pattern Recognit. Lett , vol.82 , pp. 72-78
    • Gragnaniello, D.1    Sansone, C.2    Verdoliva, L.3
  • 21
    • 84995611046 scopus 로고    scopus 로고
    • Accurate HEp-2 cell classification based on sparse coding of superpixels
    • S. Ensafi, S. Lu, A. A. Kassim, and C. L. Tan, "Accurate HEp-2 cell classification based on sparse coding of superpixels," Pattern Recognit. Lett., vol. 82, pp. 64-71, 2016.
    • (2016) Pattern Recognit. Lett , vol.82 , pp. 64-71
    • Ensafi, S.1    Lu, S.2    Kassim, A.A.3    Tan, C.L.4
  • 22
    • 84897111566 scopus 로고    scopus 로고
    • HEp-2 cell classification using rotation invariant co-occurrence among local binary patterns
    • Oct
    • R. Nosaka and K. Fukui, "HEp-2 cell classification using rotation invariant co-occurrence among local binary patterns," Pattern Recognit., vol. 47, no. 7, pp. 2428-2436, Oct. 2014.
    • (2014) Pattern Recognit , vol.47 , Issue.7 , pp. 2428-2436
    • Nosaka, R.1    Fukui, K.2
  • 23
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 60, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis , vol.60 , Issue.60 , pp. 91-110
    • Lowe, D.G.1
  • 24
    • 84896867733 scopus 로고    scopus 로고
    • Advanced statistical matrices for texture characterization: Application to cell classification
    • Mar
    • G. Thibault, J. Angulo, and F. Meyer, "Advanced statistical matrices for texture characterization: Application to cell classification," IEEE Trans. Biomed. Eng., vol. 61, no. 3, pp. 630-637, Mar. 2014.
    • (2014) IEEE Trans. Biomed. Eng , vol.61 , Issue.3 , pp. 630-637
    • Thibault, G.1    Angulo, J.2    Meyer, F.3
  • 26
    • 84962812190 scopus 로고    scopus 로고
    • Human epithelial type 2 cell classification with convolutional neural networks
    • Nov
    • N. Bayramoglu, J. Kannala, and J. Heikkila, "Human epithelial type 2 cell classification with convolutional neural networks," in Proc. IEEE Int. Conf. Bioinf. Bioeng., Nov. 2015, pp. 1-6.
    • (2015) Proc. IEEE Int. Conf. Bioinf. Bioeng , pp. 1-6
    • Bayramoglu, N.1    Kannala, J.2    Heikkila, J.3
  • 36
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Feb
    • S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in Proc. Int. Conf. Mach. Learn., Feb. 2015, pp. 448-456.
    • (2015) Proc. Int. Conf. Mach. Learn , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 37
    • 84962815548 scopus 로고    scopus 로고
    • MatConvNet: Convolutional neural networks for MATLAB
    • Brisbane, Australia
    • A. Vedaldi and K. Lenc, "MatConvNet: Convolutional neural networks for MATLAB," in Proc. ACM Int. Conf. Multimedia, Brisbane, Australia, 2015, pp. 689-692.
    • (2015) Proc. ACM Int. Conf. Multimedia , pp. 689-692
    • Vedaldi, A.1    Lenc, K.2
  • 38
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • Jan
    • N. Otsu, "A threshold selection method from gray-level histograms," IEEE Trans. Syst., Man, Cybern., vol. 9, no. 1, pp. 62-66, Jan. 1979.
    • (1979) IEEE Trans. Syst., Man, Cybern , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 39
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • L. van der Maaten and G. Hinton, "Visualizing data using t-SNE," J. Mach. Learn. Res., vol. 9, no. 2605, pp. 2579-2605, 2008.
    • (2008) J. Mach. Learn. Res , vol.9 , Issue.2605 , pp. 2579-2605
    • Maaten Der Van, L.1    Hinton, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.