-
1
-
-
34249697099
-
Forecasting the global burden of Alzheimer’s disease
-
Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, M.H. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimer’s & Dementia: the Journal of the Alzheimer’s Association, 3(3), 186–191.
-
(2007)
Alzheimer’s & Dementia: the Journal of the Alzheimer’s Association
, vol.3
, Issue.3
, pp. 186-191
-
-
Brookmeyer, R.1
Johnson, E.2
Ziegler-Graham, K.3
Arrighi, M.H.4
-
2
-
-
84855418467
-
Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data
-
PID: 22008371
-
Cho, Y., Seong, J.-K., Jeong, Y., & Shin, S.Y. (2012). Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. NeuroImage, 59(3), 2217–2230.
-
(2012)
NeuroImage
, vol.59
, Issue.3
, pp. 2217-2230
-
-
Cho, Y.1
Seong, J.-K.2
Jeong, Y.3
Shin, S.Y.4
-
3
-
-
79955059574
-
Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database
-
PID: 20542124
-
Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.-O., Chupin, M., Benali, H., & Colliot, O. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage, 56(2), 766–781.
-
(2011)
NeuroImage
, vol.56
, Issue.2
, pp. 766-781
-
-
Cuingnet, R.1
Gerardin, E.2
Tessieras, J.3
Auzias, G.4
Lehéricy, S.5
Habert, M.-O.6
Chupin, M.7
Benali, H.8
Colliot, O.9
-
4
-
-
37749016410
-
Longitudinal CSF isoprostane and MRI atrophy in the progression to AD
-
COI: 1:CAS:528:DC%2BD1cXhvVCmtb4%3D, PID: 17994313
-
De Leon, M.J., Mosconi, L., Li, J., De Santi, S., Yao, Y., Tsui, W.H., Pirraglia, E., Rich, K., Javier, E., Brys, M., Glodzik, L., Switalski, R., Saint Louis, L.A., & Pratico, D. (2007). Longitudinal CSF isoprostane and MRI atrophy in the progression to AD. Journal of Neurology, 254(12), 1666–1675.
-
(2007)
Journal of Neurology
, vol.254
, Issue.12
, pp. 1666-1675
-
-
De Leon, M.J.1
Mosconi, L.2
Li, J.3
De Santi, S.4
Yao, Y.5
Tsui, W.H.6
Pirraglia, E.7
Rich, K.8
Javier, E.9
Brys, M.10
Glodzik, L.11
Switalski, R.12
Saint Louis, L.A.13
Pratico, D.14
-
6
-
-
34347251908
-
Multivariate examination of brain abnormality using both structural and functional MRI
-
PID: 17512218
-
Fan, Y., Rao, H., Hurt, H., Giannetta, J., Korczykowski, M., Shera, D., Avants, B.B., Gee, J.C., Wang, J., & Shen, D. (2007). Multivariate examination of brain abnormality using both structural and functional MRI. NeuroImage, 36(4), 1189–1199.
-
(2007)
NeuroImage
, vol.36
, Issue.4
, pp. 1189-1199
-
-
Fan, Y.1
Rao, H.2
Hurt, H.3
Giannetta, J.4
Korczykowski, M.5
Shera, D.6
Avants, B.B.7
Gee, J.C.8
Wang, J.9
Shen, D.10
-
7
-
-
76649123574
-
the Alzheimer’s Disease Neuroimaging Initiative CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease
-
COI: 1:CAS:528:DC%2BC3cXkt12ltL4%3D, PID: 20147537
-
Fjell, A.M., Walhovd, K.B., Fennema-Notestine, C., McEvoy, L.K., Hagler, D.J., Holland, D., Brewer, J.B., & Dale, A.M. (2010). the Alzheimer’s Disease Neuroimaging Initiative CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. The Journal of Neuroscience, 30(6), 2088–2101.
-
(2010)
The Journal of Neuroscience
, vol.30
, Issue.6
, pp. 2088-2101
-
-
Fjell, A.M.1
Walhovd, K.B.2
Fennema-Notestine, C.3
McEvoy, L.K.4
Hagler, D.J.5
Holland, D.6
Brewer, J.B.7
Dale, A.M.8
-
8
-
-
1842427969
-
Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI
-
COI: 1:CAS:528:DC%2BD2cXjtFKisLg%3D, PID: 15070770
-
Greicius, M.D., Srivastava, G., Reiss, A.L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4637–4642.
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.13
, pp. 4637-4642
-
-
Greicius, M.D.1
Srivastava, G.2
Reiss, A.L.3
Menon, V.4
-
9
-
-
70450222689
-
Voxel-based assessment of gray and white matter volumes in Alzheimer’s disease
-
COI: 1:CAS:528:DC%2BD1MXhsV2ksb3F, PID: 19879920
-
Guo, X., Wang, Z., Li, K., Li, Z., Qi, Z., Jin, Z., Yao, L., & Chen, K. (2010). Voxel-based assessment of gray and white matter volumes in Alzheimer’s disease. Neuroscience Letters, 468(2), 146–150.
-
(2010)
Neuroscience Letters
, vol.468
, Issue.2
, pp. 146-150
-
-
Guo, X.1
Wang, Z.2
Li, K.3
Li, Z.4
Qi, Z.5
Jin, Z.6
Yao, L.7
Chen, K.8
-
10
-
-
20744451888
-
Geometric representation of high dimension, low sample size data
-
Hall, P., Marron, J., & Neeman, A. (2005). Geometric representation of high dimension, low sample size data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(3), 427–444.
-
(2005)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.67
, Issue.3
, pp. 427-444
-
-
Hall, P.1
Marron, J.2
Neeman, A.3
-
11
-
-
10044285992
-
Canonical correlation analysis: An overview with application to learning methods
-
PID: 15516276
-
Hardoon, D.R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12), 2639– 2664.
-
(2004)
Neural Computation
, vol.16
, Issue.12
, pp. 2639-2664
-
-
Hardoon, D.R.1
Szedmak, S.2
Shawe-Taylor, J.3
-
13
-
-
0342723538
-
3D anatomical atlas of the human brain
-
Kabani, N.J. (1998). 3D anatomical atlas of the human brain. NeuroImage, 7, 0700–0717.
-
(1998)
NeuroImage
, vol.7
, pp. 0700-0717
-
-
Kabani, N.J.1
-
14
-
-
38049026697
-
Multi-view regression via canonical correlation analysis
-
Kakade, S.M., & Foster, D.P. (2007). Multi-view regression via canonical correlation analysis. In Learning theory (pp. 82–96).
-
(2007)
In Learning theory
, pp. 82-96
-
-
Kakade, S.M.1
Foster, D.P.2
-
15
-
-
82755161873
-
Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features
-
PID: 21272960
-
Li, Y., Wang, Y., Wu, G., Shi, F., Zhou, L., Lin, W., & Shen, D. (2012). Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features. Neurobiology of aging, 33(2), 427–15.
-
(2012)
Neurobiology of aging
, vol.33
, Issue.2
, pp. 415-427
-
-
Li, Y.1
Wang, Y.2
Wu, G.3
Shi, F.4
Zhou, L.5
Lin, W.6
Shen, D.7
-
16
-
-
80053145416
-
-
2,1-Norm minimization. In UAI (pp. 339–348)
-
2,1-Norm minimization. In UAI (pp. 339–348).
-
-
-
-
17
-
-
84862778147
-
Ensemble sparse classification of Alzheimer’s disease
-
PID: 22270352
-
Liu, M., Zhang, D., & Shen, D. (2012). Ensemble sparse classification of Alzheimer’s disease. NeuroImage, 60(2), 1106–1116.
-
(2012)
NeuroImage
, vol.60
, Issue.2
, pp. 1106-1116
-
-
Liu, M.1
Zhang, D.2
Shen, D.3
-
18
-
-
84898987594
-
Correlated random features for fast semi-supervised learning
-
McWilliams, B., Balduzzi, D., & Buhmann, J.M. (2013). Correlated random features for fast semi-supervised learning. In NIPS (pp. 440–448).
-
(2013)
In NIPS
, pp. 440-448
-
-
McWilliams, B.1
Balduzzi, D.2
Buhmann, J.M.3
-
19
-
-
0035099984
-
Mild cognitive impairment represents early-stage Alzheimer disease
-
COI: 1:STN:280:DC%2BD3M7pvVCisA%3D%3D, PID: 11255443
-
Morris, J., Storandt, M., Miller, J., & et al. (2001). Mild cognitive impairment represents early-stage Alzheimer disease. Archives of Neurology, 58(3), 397–405.
-
(2001)
Archives of Neurology
, vol.58
, Issue.3
, pp. 397-405
-
-
Morris, J.1
Storandt, M.2
Miller, J.3
-
21
-
-
70350061949
-
Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease
-
COI: 1:CAS:528:DC%2BD1MXht1KntLvO, PID: 19829371
-
Perrin, R.J., Fagan, A.M., & Holtzman, D.M. (2009). Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature, 461, 916–922.
-
(2009)
Nature
, vol.461
, pp. 916-922
-
-
Perrin, R.J.1
Fagan, A.M.2
Holtzman, D.M.3
-
22
-
-
78149434145
-
ADNI, Feature selection using factor analysis for Azheimer’s diagnosis using F18-FDG PET images
-
COI: 1:STN:280:DC%2BC3M%2FksFKksA%3D%3D, PID: 21158320
-
Salas-Gonzalez, D., Garriz, J.M., Ramarez, J., Illan, I.A., Lapez, M., Segovia, F., Chaves, R., Padilla, P., & Puntonet, C.G. (2010). ADNI, Feature selection using factor analysis for Azheimer’s diagnosis using F18-FDG PET images. Medical Physics, 37(11), 6084–6095.
-
(2010)
Medical Physics
, vol.37
, Issue.11
, pp. 6084-6095
-
-
Salas-Gonzalez, D.1
Garriz, J.M.2
Ramarez, J.3
Illan, I.A.4
Lapez, M.5
Segovia, F.6
Chaves, R.7
Padilla, P.8
Puntonet, C.G.9
-
23
-
-
0034974107
-
Hippocampal formation glucose metabolism and volume losses in MCI and AD
-
PID: 11445252
-
Santi, S.D., de Leon, M.J., Rusinek, H., Convit, A., Tarshish, C.Y., Roche, A., Tsui, W.H., Kandil, E., Boppana, M., Daisley, K., Wang, G.J., Schlyer, D., & Fowler, J. (2001). Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiology of Aging, 22(4), 529–539.
-
(2001)
Neurobiology of Aging
, vol.22
, Issue.4
, pp. 529-539
-
-
Santi, S.D.1
de Leon, M.J.2
Rusinek, H.3
Convit, A.4
Tarshish, C.Y.5
Roche, A.6
Tsui, W.H.7
Kandil, E.8
Boppana, M.9
Daisley, K.10
Wang, G.J.11
Schlyer, D.12
Fowler, J.13
-
24
-
-
0036880516
-
HAMMER: hierarchical attribute matching mechanism for elastic registration
-
PID: 12575879
-
Shen, D., & Davatzikos, C. (2002). HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging, 21(11), 1421–1439.
-
(2002)
IEEE Transactions on Medical Imaging
, vol.21
, Issue.11
, pp. 1421-1439
-
-
Shen, D.1
Davatzikos, C.2
-
25
-
-
0031987382
-
A nonparametric method for automatic correction of intensity nonuniformity in MRI data
-
COI: 1:STN:280:DyaK1c3nvVCksA%3D%3D, PID: 9617910
-
Sled, J.G., Zijdenbos, A.P., & Evans, A.C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87– 97.
-
(1998)
IEEE Transactions on Medical Imaging
, vol.17
, Issue.1
, pp. 87-97
-
-
Sled, J.G.1
Zijdenbos, A.P.2
Evans, A.C.3
-
26
-
-
77952888499
-
Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease
-
PID: 20347044
-
Stonnington, C.M., Chu, C., Klöppel, S., Jack, C.R. Jr, Ashburner, J., & Frackowiak, R.S. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51(4), 1405–1413.
-
(2010)
NeuroImage
, vol.51
, Issue.4
, pp. 1405-1413
-
-
Stonnington, C.M.1
Chu, C.2
Klöppel, S.3
Jack, C.R.4
Ashburner, J.5
Frackowiak, R.S.6
-
27
-
-
84871786784
-
A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces
-
PID: 22431526
-
Suk, H.-I., & Lee, S.-W. (2013). A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(2), 286–299.
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.2
, pp. 286-299
-
-
Suk, H.-I.1
Lee, S.-W.2
-
28
-
-
84907019192
-
Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
-
PID: 25042445
-
Suk, H.-I., Lee, S.-W., & Shen, D. (2014a). Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage, 101(0), 569–582.
-
(2014)
NeuroImage
, vol.101
, pp. 569-582
-
-
Suk, H.-I.1
Lee, S.-W.2
Shen, D.3
-
29
-
-
84904556055
-
Subclass-based multi-task learning for Alzheimer’s disease diagnosis
-
Suk, H.-I., Lee, S.-W., & Shen, D. (2014b). Subclass-based multi-task learning for Alzheimer’s disease diagnosis. Frontiers in Aging Neuroscience, 6(168).
-
(2014)
Frontiers in Aging Neuroscience
, vol.6
, Issue.168
-
-
Suk, H.-I.1
Lee, S.-W.2
Shen, D.3
-
30
-
-
84971348588
-
Deep sparse multi-tasklearning for feature selection in Alzheimer’s disease diagnosis
-
Suk, H.-I., Lee, S.-W., & Shen, D. (2015a). Deep sparse multi-tasklearning for feature selection in Alzheimer’s disease diagnosis. Brain Structure and Function, 1–19.
-
(2015)
Brain Structure and Function
, pp. 1-19
-
-
Suk, H.-I.1
Lee, S.-W.2
Shen, D.3
-
31
-
-
84923814844
-
Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
-
PID: 24363140
-
Suk, H.-I., Lee, S.-W., & Shen, D. (2015b). Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Structure and Function, 220(2), 841–859.
-
(2015)
Brain Structure and Function
, vol.220
, Issue.2
, pp. 841-859
-
-
Suk, H.-I.1
Lee, S.-W.2
Shen, D.3
-
32
-
-
84931011132
-
Supervised discriminative group sparse representation for mild cognitive impairment diagnosis
-
PID: 25501275
-
Suk, H.-I., Wee, C.-Y., Lee, S.-W., & Shen, D. (2015c). Supervised discriminative group sparse representation for mild cognitive impairment diagnosis. Neuroinformatics, 13(3), 277–295.
-
(2015)
Neuroinformatics
, vol.13
, Issue.3
, pp. 277-295
-
-
Suk, H.-I.1
Wee, C.-Y.2
Lee, S.-W.3
Shen, D.4
-
33
-
-
67651154142
-
RABBIT: rapid alignment of brains by building intermediate templates
-
PID: 19285145
-
Tang, S., Fan, Y., Wu, G., Kim, M., & Shen, D. (2009). RABBIT: rapid alignment of brains by building intermediate templates. NeuroImage, 47(4), 1277–1287.
-
(2009)
NeuroImage
, vol.47
, Issue.4
, pp. 1277-1287
-
-
Tang, S.1
Fan, Y.2
Wu, G.3
Kim, M.4
Shen, D.5
-
34
-
-
82255164574
-
Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression
-
Wang, H., Nie, F., Huang, H., Risacher, S., Saykin, A.J., & Shen, L. (2011). Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression. In MICCAI (pp. 115–123).
-
(2011)
In MICCAI
, pp. 115-123
-
-
Wang, H.1
Nie, F.2
Huang, H.3
Risacher, S.4
Saykin, A.J.5
Shen, L.6
-
35
-
-
84855453290
-
Identification of MCI individuals using structural and functional connectivity networks
-
PID: 22019883
-
Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., & Shen, D. (2012). Identification of MCI individuals using structural and functional connectivity networks. Neuroimage, 59(3), 2045–2056.
-
(2012)
Neuroimage
, vol.59
, Issue.3
, pp. 2045-2056
-
-
Wee, C.-Y.1
Yap, P.-T.2
Zhang, D.3
Denny, K.4
Browndyke, J.N.5
Potter, G.G.6
Welsh-Bohmer, K.A.7
Wang, L.8
Shen, D.9
-
36
-
-
84861645859
-
Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion
-
PID: 22580170
-
Westman, E., Muehlboeck, J.-S., & Simmons, A. (2012). Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion. NeuroImage, 62(1), 229–238.
-
(2012)
NeuroImage
, vol.62
, Issue.1
, pp. 229-238
-
-
Westman, E.1
Muehlboeck, J.-S.2
Simmons, A.3
-
37
-
-
33748095663
-
Learning-based deformable registration of MR brain images
-
PID: 16967800
-
Wu, G., Qi, F., & Shen, D. (2006). Learning-based deformable registration of MR brain images. IEEE Transactions on Medical Imaging, 25(9), 1145–1157.
-
(2006)
IEEE Transactions on Medical Imaging
, vol.25
, Issue.9
, pp. 1145-1157
-
-
Wu, G.1
Qi, F.2
Shen, D.3
-
38
-
-
83055184373
-
Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease
-
PID: 21992749
-
Zhang, D., & Shen, D. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage, 59(2), 895–907.
-
(2012)
NeuroImage
, vol.59
, Issue.2
, pp. 895-907
-
-
Zhang, D.1
Shen, D.2
-
39
-
-
79952073234
-
Multimodal classification of Alzheimer’s disease and mild cognitive impairment
-
PID: 21236349
-
Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55(3), 856–867.
-
(2011)
NeuroImage
, vol.55
, Issue.3
, pp. 856-867
-
-
Zhang, D.1
Wang, Y.2
Zhou, L.3
Yuan, H.4
Shen, D.5
-
40
-
-
0034745001
-
Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
-
COI: 1:STN:280:DC%2BD3MzjvV2luw%3D%3D, PID: 11293691
-
Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57.
-
(2001)
IEEE Transactions on Medical Imaging
, vol.20
, Issue.1
, pp. 45-57
-
-
Zhang, Y.1
Brady, M.2
Smith, S.3
-
42
-
-
84906985073
-
Multi-modality canonical feature selection for Alzheimer’s disease Diagnosis
-
Zhu, X., Suk, H.-I., & Shen, D. (2014a). Multi-modality canonical feature selection for Alzheimer’s disease Diagnosis. In MICCAI (pp. 162–169).
-
(2014)
In MICCAI
, pp. 162-169
-
-
Zhu, X.1
Suk, H.-I.2
Shen, D.3
-
43
-
-
84903899707
-
A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis
-
PID: 24911377
-
Zhu, X., Suk, H., & Shen, D. (2014b). A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. NeuroImage, 100, 91–105.
-
(2014)
NeuroImage
, vol.100
, pp. 91-105
-
-
Zhu, X.1
Suk, H.2
Shen, D.3
-
44
-
-
84905046755
-
A sparse embedding and least variance encoding approach to hashing
-
PID: 24968174
-
Zhu, X., Zhang, L., & Huang, Z. (2014c). A sparse embedding and least variance encoding approach to hashing. IEEE Transactions on Image Processing, 23(9), 3737–3750.
-
(2014)
IEEE Transactions on Image Processing
, vol.23
, Issue.9
, pp. 3737-3750
-
-
Zhu, X.1
Zhang, L.2
Huang, Z.3
-
45
-
-
84862798157
-
Dimensionality reduction by mixed kernel canonical correlation analysis
-
Zhu, X., Huang, Z., Shen, H.T., Cheng, J., & Xu, C. (2012). Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recognition, 45(8), 3003–3016.
-
(2012)
Pattern Recognition
, vol.45
, Issue.8
, pp. 3003-3016
-
-
Zhu, X.1
Huang, Z.2
Shen, H.T.3
Cheng, J.4
Xu, C.5
-
46
-
-
84866033003
-
Self-taught dimensionality reduction on the high-dimensional small-sized data
-
Zhu, X., Huang, Z., Yang, Y., Shen, H.T., Xu, C., & Luo, J. (2013a). Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recognition, 46(1), 215–229.
-
(2013)
Pattern Recognition
, vol.46
, Issue.1
, pp. 215-229
-
-
Zhu, X.1
Huang, Z.2
Yang, Y.3
Shen, H.T.4
Xu, C.5
Luo, J.6
-
47
-
-
84878612787
-
Sparse hashing for fast multimedia search
-
Zhu, X., Huang, Z., Cheng, H., Cui, J., & Shen, H.T. (2013b). Sparse hashing for fast multimedia search. ACM Transactions on Information Systems, 31(2), 1–9.
-
(2013)
ACM Transactions on Information Systems
, vol.31
, Issue.2
, pp. 1-9
-
-
Zhu, X.1
Huang, Z.2
Cheng, H.3
Cui, J.4
Shen, H.T.5
|