메뉴 건너뛰기




Volumn 10, Issue 3, 2016, Pages 818-828

Canonical feature selection for joint regression and multi-class identification in Alzheimer’s disease diagnosis

Author keywords

Alzheimer s disease; Canonical correlation analysis; Feature selection; Mild cognitive impairment conversion; Multi class classification

Indexed keywords

ADULT; AGED; ALZHEIMER DISEASE; ARTICLE; CLINICAL DEMENTIA RATING; CORRELATION ANALYSIS; DAILY LIFE ACTIVITY; DIGITAL IMAGING AND COMMUNICATIONS IN MEDICINE; DISEASE CLASSIFICATION; HUMAN; IMAGE ANALYSIS; IMAGE PROCESSING; MAJOR CLINICAL STUDY; MILD COGNITIVE IMPAIRMENT; MINI MENTAL STATE EXAMINATION; NEUROIMAGING; NUCLEAR MAGNETIC RESONANCE IMAGING; POSITRON EMISSION TOMOGRAPHY; PRIORITY JOURNAL; SUPPORT VECTOR MACHINE; ALGORITHM; BRAIN; CLASSIFICATION; DIAGNOSTIC IMAGING; FEMALE; INFORMATION PROCESSING; MALE; MENTAL HEALTH; MIDDLE AGED; NEUROPSYCHOLOGICAL TEST; PATHOPHYSIOLOGY; PROCEDURES; REGRESSION ANALYSIS; VERY ELDERLY;

EID: 84938780497     PISSN: 19317557     EISSN: 19317565     Source Type: Journal    
DOI: 10.1007/s11682-015-9430-4     Document Type: Article
Times cited : (110)

References (47)
  • 2
    • 84855418467 scopus 로고    scopus 로고
    • Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data
    • PID: 22008371
    • Cho, Y., Seong, J.-K., Jeong, Y., & Shin, S.Y. (2012). Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. NeuroImage, 59(3), 2217–2230.
    • (2012) NeuroImage , vol.59 , Issue.3 , pp. 2217-2230
    • Cho, Y.1    Seong, J.-K.2    Jeong, Y.3    Shin, S.Y.4
  • 3
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database
    • PID: 20542124
    • Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.-O., Chupin, M., Benali, H., & Colliot, O. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage, 56(2), 766–781.
    • (2011) NeuroImage , vol.56 , Issue.2 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3    Auzias, G.4    Lehéricy, S.5    Habert, M.-O.6    Chupin, M.7    Benali, H.8    Colliot, O.9
  • 7
    • 76649123574 scopus 로고    scopus 로고
    • the Alzheimer’s Disease Neuroimaging Initiative CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease
    • COI: 1:CAS:528:DC%2BC3cXkt12ltL4%3D, PID: 20147537
    • Fjell, A.M., Walhovd, K.B., Fennema-Notestine, C., McEvoy, L.K., Hagler, D.J., Holland, D., Brewer, J.B., & Dale, A.M. (2010). the Alzheimer’s Disease Neuroimaging Initiative CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. The Journal of Neuroscience, 30(6), 2088–2101.
    • (2010) The Journal of Neuroscience , vol.30 , Issue.6 , pp. 2088-2101
    • Fjell, A.M.1    Walhovd, K.B.2    Fennema-Notestine, C.3    McEvoy, L.K.4    Hagler, D.J.5    Holland, D.6    Brewer, J.B.7    Dale, A.M.8
  • 8
  • 9
    • 70450222689 scopus 로고    scopus 로고
    • Voxel-based assessment of gray and white matter volumes in Alzheimer’s disease
    • COI: 1:CAS:528:DC%2BD1MXhsV2ksb3F, PID: 19879920
    • Guo, X., Wang, Z., Li, K., Li, Z., Qi, Z., Jin, Z., Yao, L., & Chen, K. (2010). Voxel-based assessment of gray and white matter volumes in Alzheimer’s disease. Neuroscience Letters, 468(2), 146–150.
    • (2010) Neuroscience Letters , vol.468 , Issue.2 , pp. 146-150
    • Guo, X.1    Wang, Z.2    Li, K.3    Li, Z.4    Qi, Z.5    Jin, Z.6    Yao, L.7    Chen, K.8
  • 11
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • PID: 15516276
    • Hardoon, D.R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12), 2639– 2664.
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 13
    • 0342723538 scopus 로고    scopus 로고
    • 3D anatomical atlas of the human brain
    • Kabani, N.J. (1998). 3D anatomical atlas of the human brain. NeuroImage, 7, 0700–0717.
    • (1998) NeuroImage , vol.7 , pp. 0700-0717
    • Kabani, N.J.1
  • 14
    • 38049026697 scopus 로고    scopus 로고
    • Multi-view regression via canonical correlation analysis
    • Kakade, S.M., & Foster, D.P. (2007). Multi-view regression via canonical correlation analysis. In Learning theory (pp. 82–96).
    • (2007) In Learning theory , pp. 82-96
    • Kakade, S.M.1    Foster, D.P.2
  • 15
    • 82755161873 scopus 로고    scopus 로고
    • Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features
    • PID: 21272960
    • Li, Y., Wang, Y., Wu, G., Shi, F., Zhou, L., Lin, W., & Shen, D. (2012). Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features. Neurobiology of aging, 33(2), 427–15.
    • (2012) Neurobiology of aging , vol.33 , Issue.2 , pp. 415-427
    • Li, Y.1    Wang, Y.2    Wu, G.3    Shi, F.4    Zhou, L.5    Lin, W.6    Shen, D.7
  • 16
    • 80053145416 scopus 로고    scopus 로고
    • 2,1-Norm minimization. In UAI (pp. 339–348)
    • 2,1-Norm minimization. In UAI (pp. 339–348).
  • 17
    • 84862778147 scopus 로고    scopus 로고
    • Ensemble sparse classification of Alzheimer’s disease
    • PID: 22270352
    • Liu, M., Zhang, D., & Shen, D. (2012). Ensemble sparse classification of Alzheimer’s disease. NeuroImage, 60(2), 1106–1116.
    • (2012) NeuroImage , vol.60 , Issue.2 , pp. 1106-1116
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 18
    • 84898987594 scopus 로고    scopus 로고
    • Correlated random features for fast semi-supervised learning
    • McWilliams, B., Balduzzi, D., & Buhmann, J.M. (2013). Correlated random features for fast semi-supervised learning. In NIPS (pp. 440–448).
    • (2013) In NIPS , pp. 440-448
    • McWilliams, B.1    Balduzzi, D.2    Buhmann, J.M.3
  • 19
    • 0035099984 scopus 로고    scopus 로고
    • Mild cognitive impairment represents early-stage Alzheimer disease
    • COI: 1:STN:280:DC%2BD3M7pvVCisA%3D%3D, PID: 11255443
    • Morris, J., Storandt, M., Miller, J., & et al. (2001). Mild cognitive impairment represents early-stage Alzheimer disease. Archives of Neurology, 58(3), 397–405.
    • (2001) Archives of Neurology , vol.58 , Issue.3 , pp. 397-405
    • Morris, J.1    Storandt, M.2    Miller, J.3
  • 21
    • 70350061949 scopus 로고    scopus 로고
    • Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease
    • COI: 1:CAS:528:DC%2BD1MXht1KntLvO, PID: 19829371
    • Perrin, R.J., Fagan, A.M., & Holtzman, D.M. (2009). Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature, 461, 916–922.
    • (2009) Nature , vol.461 , pp. 916-922
    • Perrin, R.J.1    Fagan, A.M.2    Holtzman, D.M.3
  • 22
    • 78149434145 scopus 로고    scopus 로고
    • ADNI, Feature selection using factor analysis for Azheimer’s diagnosis using F18-FDG PET images
    • COI: 1:STN:280:DC%2BC3M%2FksFKksA%3D%3D, PID: 21158320
    • Salas-Gonzalez, D., Garriz, J.M., Ramarez, J., Illan, I.A., Lapez, M., Segovia, F., Chaves, R., Padilla, P., & Puntonet, C.G. (2010). ADNI, Feature selection using factor analysis for Azheimer’s diagnosis using F18-FDG PET images. Medical Physics, 37(11), 6084–6095.
    • (2010) Medical Physics , vol.37 , Issue.11 , pp. 6084-6095
    • Salas-Gonzalez, D.1    Garriz, J.M.2    Ramarez, J.3    Illan, I.A.4    Lapez, M.5    Segovia, F.6    Chaves, R.7    Padilla, P.8    Puntonet, C.G.9
  • 24
    • 0036880516 scopus 로고    scopus 로고
    • HAMMER: hierarchical attribute matching mechanism for elastic registration
    • PID: 12575879
    • Shen, D., & Davatzikos, C. (2002). HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging, 21(11), 1421–1439.
    • (2002) IEEE Transactions on Medical Imaging , vol.21 , Issue.11 , pp. 1421-1439
    • Shen, D.1    Davatzikos, C.2
  • 25
    • 0031987382 scopus 로고    scopus 로고
    • A nonparametric method for automatic correction of intensity nonuniformity in MRI data
    • COI: 1:STN:280:DyaK1c3nvVCksA%3D%3D, PID: 9617910
    • Sled, J.G., Zijdenbos, A.P., & Evans, A.C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87– 97.
    • (1998) IEEE Transactions on Medical Imaging , vol.17 , Issue.1 , pp. 87-97
    • Sled, J.G.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 26
    • 77952888499 scopus 로고    scopus 로고
    • Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease
    • PID: 20347044
    • Stonnington, C.M., Chu, C., Klöppel, S., Jack, C.R. Jr, Ashburner, J., & Frackowiak, R.S. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51(4), 1405–1413.
    • (2010) NeuroImage , vol.51 , Issue.4 , pp. 1405-1413
    • Stonnington, C.M.1    Chu, C.2    Klöppel, S.3    Jack, C.R.4    Ashburner, J.5    Frackowiak, R.S.6
  • 27
    • 84871786784 scopus 로고    scopus 로고
    • A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces
    • PID: 22431526
    • Suk, H.-I., & Lee, S.-W. (2013). A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(2), 286–299.
    • (2013) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.35 , Issue.2 , pp. 286-299
    • Suk, H.-I.1    Lee, S.-W.2
  • 28
    • 84907019192 scopus 로고    scopus 로고
    • Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
    • PID: 25042445
    • Suk, H.-I., Lee, S.-W., & Shen, D. (2014a). Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage, 101(0), 569–582.
    • (2014) NeuroImage , vol.101 , pp. 569-582
    • Suk, H.-I.1    Lee, S.-W.2    Shen, D.3
  • 29
    • 84904556055 scopus 로고    scopus 로고
    • Subclass-based multi-task learning for Alzheimer’s disease diagnosis
    • Suk, H.-I., Lee, S.-W., & Shen, D. (2014b). Subclass-based multi-task learning for Alzheimer’s disease diagnosis. Frontiers in Aging Neuroscience, 6(168).
    • (2014) Frontiers in Aging Neuroscience , vol.6 , Issue.168
    • Suk, H.-I.1    Lee, S.-W.2    Shen, D.3
  • 30
    • 84971348588 scopus 로고    scopus 로고
    • Deep sparse multi-tasklearning for feature selection in Alzheimer’s disease diagnosis
    • Suk, H.-I., Lee, S.-W., & Shen, D. (2015a). Deep sparse multi-tasklearning for feature selection in Alzheimer’s disease diagnosis. Brain Structure and Function, 1–19.
    • (2015) Brain Structure and Function , pp. 1-19
    • Suk, H.-I.1    Lee, S.-W.2    Shen, D.3
  • 31
    • 84923814844 scopus 로고    scopus 로고
    • Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
    • PID: 24363140
    • Suk, H.-I., Lee, S.-W., & Shen, D. (2015b). Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Structure and Function, 220(2), 841–859.
    • (2015) Brain Structure and Function , vol.220 , Issue.2 , pp. 841-859
    • Suk, H.-I.1    Lee, S.-W.2    Shen, D.3
  • 32
    • 84931011132 scopus 로고    scopus 로고
    • Supervised discriminative group sparse representation for mild cognitive impairment diagnosis
    • PID: 25501275
    • Suk, H.-I., Wee, C.-Y., Lee, S.-W., & Shen, D. (2015c). Supervised discriminative group sparse representation for mild cognitive impairment diagnosis. Neuroinformatics, 13(3), 277–295.
    • (2015) Neuroinformatics , vol.13 , Issue.3 , pp. 277-295
    • Suk, H.-I.1    Wee, C.-Y.2    Lee, S.-W.3    Shen, D.4
  • 33
    • 67651154142 scopus 로고    scopus 로고
    • RABBIT: rapid alignment of brains by building intermediate templates
    • PID: 19285145
    • Tang, S., Fan, Y., Wu, G., Kim, M., & Shen, D. (2009). RABBIT: rapid alignment of brains by building intermediate templates. NeuroImage, 47(4), 1277–1287.
    • (2009) NeuroImage , vol.47 , Issue.4 , pp. 1277-1287
    • Tang, S.1    Fan, Y.2    Wu, G.3    Kim, M.4    Shen, D.5
  • 34
    • 82255164574 scopus 로고    scopus 로고
    • Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression
    • Wang, H., Nie, F., Huang, H., Risacher, S., Saykin, A.J., & Shen, L. (2011). Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression. In MICCAI (pp. 115–123).
    • (2011) In MICCAI , pp. 115-123
    • Wang, H.1    Nie, F.2    Huang, H.3    Risacher, S.4    Saykin, A.J.5    Shen, L.6
  • 36
    • 84861645859 scopus 로고    scopus 로고
    • Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion
    • PID: 22580170
    • Westman, E., Muehlboeck, J.-S., & Simmons, A. (2012). Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion. NeuroImage, 62(1), 229–238.
    • (2012) NeuroImage , vol.62 , Issue.1 , pp. 229-238
    • Westman, E.1    Muehlboeck, J.-S.2    Simmons, A.3
  • 37
    • 33748095663 scopus 로고    scopus 로고
    • Learning-based deformable registration of MR brain images
    • PID: 16967800
    • Wu, G., Qi, F., & Shen, D. (2006). Learning-based deformable registration of MR brain images. IEEE Transactions on Medical Imaging, 25(9), 1145–1157.
    • (2006) IEEE Transactions on Medical Imaging , vol.25 , Issue.9 , pp. 1145-1157
    • Wu, G.1    Qi, F.2    Shen, D.3
  • 38
    • 83055184373 scopus 로고    scopus 로고
    • Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease
    • PID: 21992749
    • Zhang, D., & Shen, D. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage, 59(2), 895–907.
    • (2012) NeuroImage , vol.59 , Issue.2 , pp. 895-907
    • Zhang, D.1    Shen, D.2
  • 39
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer’s disease and mild cognitive impairment
    • PID: 21236349
    • Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55(3), 856–867.
    • (2011) NeuroImage , vol.55 , Issue.3 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 40
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • COI: 1:STN:280:DC%2BD3MzjvV2luw%3D%3D, PID: 11293691
    • Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57.
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 42
    • 84906985073 scopus 로고    scopus 로고
    • Multi-modality canonical feature selection for Alzheimer’s disease Diagnosis
    • Zhu, X., Suk, H.-I., & Shen, D. (2014a). Multi-modality canonical feature selection for Alzheimer’s disease Diagnosis. In MICCAI (pp. 162–169).
    • (2014) In MICCAI , pp. 162-169
    • Zhu, X.1    Suk, H.-I.2    Shen, D.3
  • 43
    • 84903899707 scopus 로고    scopus 로고
    • A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis
    • PID: 24911377
    • Zhu, X., Suk, H., & Shen, D. (2014b). A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. NeuroImage, 100, 91–105.
    • (2014) NeuroImage , vol.100 , pp. 91-105
    • Zhu, X.1    Suk, H.2    Shen, D.3
  • 44
    • 84905046755 scopus 로고    scopus 로고
    • A sparse embedding and least variance encoding approach to hashing
    • PID: 24968174
    • Zhu, X., Zhang, L., & Huang, Z. (2014c). A sparse embedding and least variance encoding approach to hashing. IEEE Transactions on Image Processing, 23(9), 3737–3750.
    • (2014) IEEE Transactions on Image Processing , vol.23 , Issue.9 , pp. 3737-3750
    • Zhu, X.1    Zhang, L.2    Huang, Z.3
  • 45
    • 84862798157 scopus 로고    scopus 로고
    • Dimensionality reduction by mixed kernel canonical correlation analysis
    • Zhu, X., Huang, Z., Shen, H.T., Cheng, J., & Xu, C. (2012). Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recognition, 45(8), 3003–3016.
    • (2012) Pattern Recognition , vol.45 , Issue.8 , pp. 3003-3016
    • Zhu, X.1    Huang, Z.2    Shen, H.T.3    Cheng, J.4    Xu, C.5
  • 46
    • 84866033003 scopus 로고    scopus 로고
    • Self-taught dimensionality reduction on the high-dimensional small-sized data
    • Zhu, X., Huang, Z., Yang, Y., Shen, H.T., Xu, C., & Luo, J. (2013a). Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recognition, 46(1), 215–229.
    • (2013) Pattern Recognition , vol.46 , Issue.1 , pp. 215-229
    • Zhu, X.1    Huang, Z.2    Yang, Y.3    Shen, H.T.4    Xu, C.5    Luo, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.