메뉴 건너뛰기




Volumn 100, Issue , 2014, Pages 91-105

A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis

Author keywords

Alzheimer's disease (AD); Feature selection; Joint sparse learning; Manifold learning; Mild Cognitive Impairment (MCI) conversion

Indexed keywords

ADULT; AGED; ALZHEIMER DISEASE; AMYGDALOID NUCLEUS; AREA UNDER THE CURVE; ARTICLE; CEREBROSPINAL FLUID EXAMINATION; COMPARATIVE STUDY; CONTROLLED STUDY; DIAGNOSTIC ACCURACY; DIGITAL IMAGING AND COMMUNICATIONS IN MEDICINE; DISEASE CLASSIFICATION; ENTORHINAL CORTEX; FALSE POSITIVE RESULT; FEMALE; HIPPOCAMPUS; HUMAN; IMAGE ANALYSIS; IMAGE PROCESSING; JOINT REGRESSION; MAJOR CLINICAL STUDY; MALE; MATRIX SIMILARITY BASED LOSS FUNCTION; MILD COGNITIVE IMPAIRMENT; NEUROIMAGING; NUCLEAR MAGNETIC RESONANCE IMAGING; PARAHIPPOCAMPAL GYRUS; PERIRHINAL CORTEX; POSITRON EMISSION TOMOGRAPHY; PREDICTIVE VALUE; PRIORITY JOURNAL; PROCESS OPTIMIZATION; RECEIVER OPERATING CHARACTERISTIC; REGRESSION ANALYSIS; SENSITIVITY AND SPECIFICITY; STATISTICAL ANALYSIS; STATISTICAL MODEL; UNCUS; VALIDATION PROCESS; BRAIN; CEREBROSPINAL FLUID; COMPUTER SIMULATION; MATHEMATICAL COMPUTING; PATHOLOGY; PROCEDURES; PROGNOSIS; SCINTISCANNING; VERY ELDERLY;

EID: 84903899707     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2014.05.078     Document Type: Article
Times cited : (185)

References (62)
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 1998, 2(2):121-167.
    • (1998) Data Min. Knowl. Disc. , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 4
    • 84881085429 scopus 로고    scopus 로고
    • Semi-supervised multimodal relevance vector regression improves cognitive performance estimation from imaging and biological biomarkers
    • Cheng B., Zhang D., Chen S., Kaufer D., Shen D. Semi-supervised multimodal relevance vector regression improves cognitive performance estimation from imaging and biological biomarkers. Neuroinformatics 2013, 11(3):339-353.
    • (2013) Neuroinformatics , vol.11 , Issue.3 , pp. 339-353
    • Cheng, B.1    Zhang, D.2    Chen, S.3    Kaufer, D.4    Shen, D.5
  • 5
    • 20144379890 scopus 로고    scopus 로고
    • FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment
    • Chételat G., Eustache F., Viader F., Sayette V.D.L., Pélerin A., Mézenge F., Hannequin D., Dupuy B., Baron J.-C., Desgranges B. FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 2005, 11(1):14-25.
    • (2005) Neurocase , vol.11 , Issue.1 , pp. 14-25
    • Chételat, G.1    Eustache, F.2    Viader, F.3    Sayette, V.D.L.4    Pélerin, A.5    Mézenge, F.6    Hannequin, D.7    Dupuy, B.8    Baron, J.-C.9    Desgranges, B.10
  • 6
    • 84855418467 scopus 로고    scopus 로고
    • Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data
    • Cho Y., Seong J.-K., Jeong Y., Shin S.Y. Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data. NeuroImage 2012, 59(3):2217-2230.
    • (2012) NeuroImage , vol.59 , Issue.3 , pp. 2217-2230
    • Cho, Y.1    Seong, J.-K.2    Jeong, Y.3    Shin, S.Y.4
  • 7
    • 84862776712 scopus 로고    scopus 로고
    • Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
    • Chu C., Hsu A.-L., Chou K.-H., Bandettini P., Lin C. Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage 2012, 60(1):59-70.
    • (2012) NeuroImage , vol.60 , Issue.1 , pp. 59-70
    • Chu, C.1    Hsu, A.-L.2    Chou, K.-H.3    Bandettini, P.4    Lin, C.5
  • 8
    • 0007234813 scopus 로고    scopus 로고
    • Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer's disease
    • Convit A., De Asis J., De Leon M., Tarshish C., De Santi S., Rusinek H. Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer's disease. Neurobiol. Aging 2000, 21(1):19-26.
    • (2000) Neurobiol. Aging , vol.21 , Issue.1 , pp. 19-26
    • Convit, A.1    De Asis, J.2    De Leon, M.3    Tarshish, C.4    De Santi, S.5    Rusinek, H.6
  • 9
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
    • Cuingnet R., Gerardin E., Tessieras J., Auzias G., Lehéricy S., Habert M.-O., Chupin M., Benali H., Colliot O. Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage 2011, 56(2):766-781.
    • (2011) NeuroImage , vol.56 , Issue.2 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3    Auzias, G.4    Lehéricy, S.5    Habert, M.-O.6    Chupin, M.7    Benali, H.8    Colliot, O.9
  • 12
    • 67651020812 scopus 로고    scopus 로고
    • Relating one-year cognitive change in mild cognitive impairment to baseline MRI features
    • Duchesne S., Caroli A., Geroldi C., Collins D.L., Frisoni G.B. Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. NeuroImage 2009, 47(4):1363-1370.
    • (2009) NeuroImage , vol.47 , Issue.4 , pp. 1363-1370
    • Duchesne, S.1    Caroli, A.2    Geroldi, C.3    Collins, D.L.4    Frisoni, G.B.5
  • 14
    • 76649123574 scopus 로고    scopus 로고
    • The Alzheimer's Disease Neuroimaging Initiative, 2010. CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer's disease
    • Fjell A.M., Walhovd K.B., Fennema-Notestine C., McEvoy L.K., Hagler D.J., Holland D., Brewer J.B., Dale A.M. The Alzheimer's Disease Neuroimaging Initiative, 2010. CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer's disease. J. Neurosci. 2010, 30(6):2088-2101.
    • (2010) J. Neurosci. , vol.30 , Issue.6 , pp. 2088-2101
    • Fjell, A.M.1    Walhovd, K.B.2    Fennema-Notestine, C.3    McEvoy, L.K.4    Hagler, D.J.5    Holland, D.6    Brewer, J.B.7    Dale, A.M.8
  • 15
    • 0842283229 scopus 로고    scopus 로고
    • Imaging cerebral atrophy: normal ageing to Alzheimer's disease
    • Fox N.C., Schott J.M. Imaging cerebral atrophy: normal ageing to Alzheimer's disease. Lancet 2004, 363(9406):392-394.
    • (2004) Lancet , vol.363 , Issue.9406 , pp. 392-394
    • Fox, N.C.1    Schott, J.M.2
  • 16
    • 77249176542 scopus 로고    scopus 로고
    • Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters
    • Franke K., Ziegler G., Klöppel S., Gaser C. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. NeuroImage 2010, 50(3):883-892.
    • (2010) NeuroImage , vol.50 , Issue.3 , pp. 883-892
    • Franke, K.1    Ziegler, G.2    Klöppel, S.3    Gaser, C.4
  • 17
    • 1842427969 scopus 로고    scopus 로고
    • Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI
    • Greicius M.D., Srivastava G., Reiss A.L., Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U. S. A. 2004, 101(13):4637-4642.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , Issue.13 , pp. 4637-4642
    • Greicius, M.D.1    Srivastava, G.2    Reiss, A.L.3    Menon, V.4
  • 18
    • 70450222689 scopus 로고    scopus 로고
    • Voxel-based assessment of gray and white matter volumes in Alzheimer's disease
    • Guo X., Wang Z., Li K., Li Z., Qi Z., Jin Z., Yao L., Chen K. Voxel-based assessment of gray and white matter volumes in Alzheimer's disease. Neurosci. Lett. 2010, 468(2):146-150.
    • (2010) Neurosci. Lett. , vol.468 , Issue.2 , pp. 146-150
    • Guo, X.1    Wang, Z.2    Li, K.3    Li, Z.4    Qi, Z.5    Jin, Z.6    Yao, L.7    Chen, K.8
  • 19
    • 32544435900 scopus 로고    scopus 로고
    • Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study
    • Hansson O., Zetterberg H., Buchhave P., Londos E., Blennow K., Minthon L. Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 2006, 5(3):228-234.
    • (2006) Lancet Neurol. , vol.5 , Issue.3 , pp. 228-234
    • Hansson, O.1    Zetterberg, H.2    Buchhave, P.3    Londos, E.4    Blennow, K.5    Minthon, L.6
  • 20
    • 84864039505 scopus 로고    scopus 로고
    • Laplacian score for feature selection
    • He X., Cai D., Niyogi P. Laplacian score for feature selection. NIPS 2005, 1-8.
    • (2005) NIPS , pp. 1-8
    • He, X.1    Cai, D.2    Niyogi, P.3
  • 21
    • 77952419496 scopus 로고    scopus 로고
    • ABSORB: atlas building by self-organized registration and bundling
    • Jia H., Wu G., Wang Q., Shen D. ABSORB: atlas building by self-organized registration and bundling. NeuroImage 2010, 51(3):1057-1070.
    • (2010) NeuroImage , vol.51 , Issue.3 , pp. 1057-1070
    • Jia, H.1    Wu, G.2    Wang, Q.3    Shen, D.4
  • 22
    • 84894622323 scopus 로고    scopus 로고
    • Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease
    • Jie B., Zhang D., Cheng B., Shen D. Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease. MICCAI 2013, 9-16.
    • (2013) MICCAI , pp. 9-16
    • Jie, B.1    Zhang, D.2    Cheng, B.3    Shen, D.4
  • 23
    • 0342723538 scopus 로고    scopus 로고
    • 3D anatomical atlas of the human brain
    • Kabani N.J. 3D anatomical atlas of the human brain. NeuroImage 1998, 7:700-717.
    • (1998) NeuroImage , vol.7 , pp. 700-717
    • Kabani, N.J.1
  • 24
    • 78249265968 scopus 로고    scopus 로고
    • Data fusion and feature selection for Alzheimer's diagnosis
    • Lemoine B., Rayburn S., Benton R. Data fusion and feature selection for Alzheimer's diagnosis. Brain Informatics 2010, 320-327.
    • (2010) Brain Informatics , pp. 320-327
    • Lemoine, B.1    Rayburn, S.2    Benton, R.3
  • 25
    • 82755161873 scopus 로고    scopus 로고
    • Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features
    • 427.e15-427.e30
    • Li Y., Wang Y., Wu G., Shi F., Zhou L., Lin W., Shen D. Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features. Neurobiol. Aging 2012, 33(2):427.e15-427.e30.
    • (2012) Neurobiol. Aging , vol.33 , Issue.2
    • Li, Y.1    Wang, Y.2    Wu, G.3    Shi, F.4    Zhou, L.5    Lin, W.6    Shen, D.7
  • 26
    • 84862778147 scopus 로고    scopus 로고
    • Ensemble sparse classification of Alzheimer's disease
    • Liu M., Zhang D., Shen D. Ensemble sparse classification of Alzheimer's disease. NeuroImage 2012, 60(2):1106-1116.
    • (2012) NeuroImage , vol.60 , Issue.2 , pp. 1106-1116
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 27
    • 84897573822 scopus 로고    scopus 로고
    • High-order graph matching based feature selection for Alzheimer's disease identification
    • Liu F., Suk H.-I., Wee C.-Y., Chen H., Shen D. High-order graph matching based feature selection for Alzheimer's disease identification. MICCAI 2013, 311-318.
    • (2013) MICCAI , pp. 311-318
    • Liu, F.1    Suk, H.-I.2    Wee, C.-Y.3    Chen, H.4    Shen, D.5
  • 29
    • 64949166661 scopus 로고    scopus 로고
    • Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment
    • McEvoy L.K., Fennema-Notestine C., Roddey J.C., Hagler D.J., Holland D., Karow D.S., Pung C.J., Brewer J.B., Dale A.M. Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology 2009, 251(5):195-205.
    • (2009) Radiology , vol.251 , Issue.5 , pp. 195-205
    • McEvoy, L.K.1    Fennema-Notestine, C.2    Roddey, J.C.3    Hagler, D.J.4    Holland, D.5    Karow, D.S.6    Pung, C.J.7    Brewer, J.B.8    Dale, A.M.9
  • 30
    • 58149386194 scopus 로고    scopus 로고
    • Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI
    • Misra C., Fan Y., Davatzikos C. Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. NeuroImage 2009, 44(4):1415-1422.
    • (2009) NeuroImage , vol.44 , Issue.4 , pp. 1415-1422
    • Misra, C.1    Fan, Y.2    Davatzikos, C.3
  • 31
    • 0035099984 scopus 로고    scopus 로고
    • Mild cognitive impairment represents early-stage Alzheimer disease
    • Morris J., Storandt M., Miller J., et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch. Neurol. 2001, 58(3):397-405.
    • (2001) Arch. Neurol. , vol.58 , Issue.3 , pp. 397-405
    • Morris, J.1    Storandt, M.2    Miller, J.3
  • 32
    • 62649107264 scopus 로고    scopus 로고
    • Embryonic stem cell grafting in normal and infarcted myocardium: serial assessment with MR imaging and PET dual detection1
    • Qiao H., Zhang H., Zheng Y., Ponde D.E., Shen D., Gao F., Bakken A.B., Schmitz A., Kung H.F., Ferrari V.A., et al. Embryonic stem cell grafting in normal and infarcted myocardium: serial assessment with MR imaging and PET dual detection1. Radiology 2009, 250(3):821-829.
    • (2009) Radiology , vol.250 , Issue.3 , pp. 821-829
    • Qiao, H.1    Zhang, H.2    Zheng, Y.3    Ponde, D.E.4    Shen, D.5    Gao, F.6    Bakken, A.B.7    Schmitz, A.8    Kung, H.F.9    Ferrari, V.A.10
  • 33
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 37
    • 0036880516 scopus 로고    scopus 로고
    • HAMMER: hierarchical attribute matching mechanism for elastic registration
    • Shen D., Davatzikos C. HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 2002, 21(11):1421-1439.
    • (2002) IEEE Trans. Med. Imaging , vol.21 , Issue.11 , pp. 1421-1439
    • Shen, D.1    Davatzikos, C.2
  • 38
    • 1842452878 scopus 로고    scopus 로고
    • Measuring temporal morphological changes robustly in brain mr images via 4-dimensional template warping
    • Shen D., Davatzikos C. Measuring temporal morphological changes robustly in brain mr images via 4-dimensional template warping. NeuroImage 2004, 21(4):1508-1517.
    • (2004) NeuroImage , vol.21 , Issue.4 , pp. 1508-1517
    • Shen, D.1    Davatzikos, C.2
  • 39
    • 0033132544 scopus 로고    scopus 로고
    • Affine-invariant image retrieval by correspondence matching of shapes
    • Shen D., Wong W.-h., Ip H.H. Affine-invariant image retrieval by correspondence matching of shapes. Image Vis. Comput. 1999, 17(7):489-499.
    • (1999) Image Vis. Comput. , vol.17 , Issue.7 , pp. 489-499
    • Shen, D.1    Wong, W.-H.2    Ip, H.H.3
  • 40
    • 0031987382 scopus 로고    scopus 로고
    • A nonparametric method for automatic correction of intensity nonuniformity in MRI data
    • Sled J.G., Zijdenbos A.P., Evans A.C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 1998, 17(1):87-97.
    • (1998) IEEE Trans. Med. Imaging , vol.17 , Issue.1 , pp. 87-97
    • Sled, J.G.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 41
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A.J., Schölkopf B. A tutorial on support vector regression. Stat. Comput. 2004, 14(3):199-222.
    • (2004) Stat. Comput. , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 43
    • 84871786784 scopus 로고    scopus 로고
    • A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces
    • Suk H.-I., Lee S.-W. A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35(2):286-299.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.2 , pp. 286-299
    • Suk, H.-I.1    Lee, S.-W.2
  • 44
    • 84885898432 scopus 로고    scopus 로고
    • Deep learning-based feature representation for AD/MCI classification
    • Suk H.-I., Shen D. Deep learning-based feature representation for AD/MCI classification. MICCAI 2013, 583-590.
    • (2013) MICCAI , pp. 583-590
    • Suk, H.-I.1    Shen, D.2
  • 45
    • 84886742336 scopus 로고    scopus 로고
    • Discriminative group sparse representation for mild cognitive impairment classification
    • Suk H.-I., Wee C.-Y., Shen D. Discriminative group sparse representation for mild cognitive impairment classification. MLMI 2013, 131-138.
    • (2013) MLMI , pp. 131-138
    • Suk, H.-I.1    Wee, C.-Y.2    Shen, D.3
  • 47
    • 77950588524 scopus 로고    scopus 로고
    • High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables
    • Wang Y., Fan Y., Bhatt P., Davatzikos C. High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables. NeuroImage 2010, 50(4):1519-1535.
    • (2010) NeuroImage , vol.50 , Issue.4 , pp. 1519-1535
    • Wang, Y.1    Fan, Y.2    Bhatt, P.3    Davatzikos, C.4
  • 48
    • 82255164574 scopus 로고    scopus 로고
    • Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression
    • Wang H., Nie F., Huang H., Risacher S., Saykin A.J., Shen L. Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression. MICCAI 2011, 115-123.
    • (2011) MICCAI , pp. 115-123
    • Wang, H.1    Nie, F.2    Huang, H.3    Risacher, S.4    Saykin, A.J.5    Shen, L.6
  • 51
    • 24144437271 scopus 로고    scopus 로고
    • Learning a kernel matrix for nonlinear dimensionality reduction
    • Weinberger K.Q., Sha F., Saul L.K. Learning a kernel matrix for nonlinear dimensionality reduction. ICML 2004, 17-24.
    • (2004) ICML , pp. 17-24
    • Weinberger, K.Q.1    Sha, F.2    Saul, L.K.3
  • 53
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M., Lin Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 2006, 68(1):49-67.
    • (2006) J. R. Stat. Soc. Ser. B , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 54
    • 43449092116 scopus 로고    scopus 로고
    • ORBIT: a multiresolution framework for deformable registration of brain tumor images
    • Zacharaki E.I., Shen D., koo Lee S., Davatzikos C. ORBIT: a multiresolution framework for deformable registration of brain tumor images. IEEE Trans. Med. Imaging 2008, 27(8):1003-1017.
    • (2008) IEEE Trans. Med. Imaging , vol.27 , Issue.8 , pp. 1003-1017
    • Zacharaki, E.I.1    Shen, D.2    koo Lee, S.3    Davatzikos, C.4
  • 55
    • 83055184373 scopus 로고    scopus 로고
    • Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
    • Zhang D., Shen D. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage 2012, 59(2):895-907.
    • (2012) NeuroImage , vol.59 , Issue.2 , pp. 895-907
    • Zhang, D.1    Shen, D.2
  • 56
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Zhang Y., Brady M., Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 2001, 20(1):45-57.
    • (2001) IEEE Trans. Med. Imaging , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 57
    • 84863351725 scopus 로고    scopus 로고
    • Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
    • Zhang D., Shen D., et al. Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS One 2012, 7(3):e33182.
    • (2012) PLoS One , vol.7 , Issue.3
    • Zhang, D.1    Shen, D.2
  • 58
    • 79960471063 scopus 로고    scopus 로고
    • Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures
    • Zhou L., Wang Y., Li Y., Yap P.-T., Shen D., et al. Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures. PLoS One 2011, 6(7):e21935.
    • (2011) PLoS One , vol.6 , Issue.7
    • Zhou, L.1    Wang, Y.2    Li, Y.3    Yap, P.-T.4    Shen, D.5
  • 59
    • 84862798157 scopus 로고    scopus 로고
    • Dimensionality reduction by mixed kernel canonical correlation analysis
    • Zhu X., Huang Z., Shen H.T., Cheng J., Xu C. Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recogn. 2012, 45(8):3003-3016.
    • (2012) Pattern Recogn. , vol.45 , Issue.8 , pp. 3003-3016
    • Zhu, X.1    Huang, Z.2    Shen, H.T.3    Cheng, J.4    Xu, C.5
  • 60
    • 84897584700 scopus 로고    scopus 로고
    • Video-to-shot tag propagation by graph sparse group lasso
    • Zhu X., Huang Z., Cui J., Shen T. Video-to-shot tag propagation by graph sparse group lasso. IEEE Trans. Multimedia 2013, 13(3):633-646.
    • (2013) IEEE Trans. Multimedia , vol.13 , Issue.3 , pp. 633-646
    • Zhu, X.1    Huang, Z.2    Cui, J.3    Shen, T.4
  • 61
    • 84866033003 scopus 로고    scopus 로고
    • Self-taught dimensionality reduction on the high-dimensional small-sized data
    • Zhu X., Huang Z., Yang Y., Shen H.T., Xu C., Luo J. Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recogn. 2013, 46(1):215-229.
    • (2013) Pattern Recogn. , vol.46 , Issue.1 , pp. 215-229
    • Zhu, X.1    Huang, Z.2    Yang, Y.3    Shen, H.T.4    Xu, C.5    Luo, J.6
  • 62
    • 84903907116 scopus 로고    scopus 로고
    • Feature selection by joint graph sparse coding
    • Zhu X., Wu X., Ding W., Zhang S. Feature selection by joint graph sparse coding. SDM 2013, 803-811.
    • (2013) SDM , pp. 803-811
    • Zhu, X.1    Wu, X.2    Ding, W.3    Zhang, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.