-
1
-
-
84873278481
-
On similarity preserving feature selection
-
Mar.
-
Z. Zhao, L. Wang, H. Liu, J. Ye, "On similarity preserving feature selection, " IEEE Trans. Knowl. Data Eng., vol. 25, no. 3, pp. 619-632, Mar. 2013.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.3
, pp. 619-632
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
Ye, J.4
-
2
-
-
84979702281
-
Graph self-representation method for unsupervised feature selection
-
R. Hu, et al., "Graph self-representation method for unsupervised feature selection, " Neurocomput., vol. 220, pp. 130-137, 2017.
-
(2017)
Neurocomput.
, vol.220
, pp. 130-137
-
-
Hu, R.1
-
3
-
-
78649402552
-
Missing value estimation for mixed-attribute data sets
-
Jan.
-
X. Zhu, S. Zhang, Z. Jin, Z. Zhang, Z. Xu, "Missing value estimation for mixed-attribute data sets, " IEEE Trans. Knowl. Data Eng., vol. 23, no. 1, pp. 110-121, Jan. 2011.
-
(2011)
IEEE Trans. Knowl. Data Eng.
, vol.23
, Issue.1
, pp. 110-121
-
-
Zhu, X.1
Zhang, S.2
Jin, Z.3
Zhang, Z.4
Xu, Z.5
-
4
-
-
85027586945
-
Sparse Bayesian classification of EEG for brain-computer interface
-
Nov.
-
Y. Zhang, G. Zhou, J. Jin, Q. Zhao, X. Wang, A. Cichocki, "Sparse Bayesian classification of EEG for brain-computer interface, " IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 11, pp. 2256-2267, Nov. 2016.
-
(2016)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.27
, Issue.11
, pp. 2256-2267
-
-
Zhang, Y.1
Zhou, G.2
Jin, J.3
Zhao, Q.4
Wang, X.5
Cichocki, A.6
-
5
-
-
85018487453
-
Efficient kNN classification with different numbers of nearest neighbors
-
to be published
-
S. Zhang, X. Li, M. Zong, X. Zhu, R. Wang, "Efficient kNN classification with different numbers of nearest neighbors, " IEEE Trans. Neural Netw. Learn. Syst., to be published, doi: 10.1109/TNNLS.2017.2673241.
-
IEEE Trans. Neural Netw. Learn. Syst.
-
-
Zhang, S.1
Li, X.2
Zong, M.3
Zhu, X.4
Wang, R.5
-
6
-
-
84923658744
-
Block-row sparse multiview multilabel learning for image classification
-
Feb.
-
X. Zhu, X. Li, S. Zhang, "Block-row sparse multiview multilabel learning for image classification, " IEEE Trans. Cybern., vol. 46, no. 2, pp. 450-461, Feb. 2016.
-
(2016)
IEEE Trans. Cybern.
, vol.46
, Issue.2
, pp. 450-461
-
-
Zhu, X.1
Li, X.2
Zhang, S.3
-
8
-
-
85027955224
-
Unsupervised feature selection by regularized self-representation
-
P. Zhu, W. Zuo, L. Zhang, Q. Hu, S. C. K. Shiu, "Unsupervised feature selection by regularized self-representation, " Pattern Recognit., vol. 48, no. 2, pp. 438-446, 2015.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.2
, pp. 438-446
-
-
Zhu, P.1
Zuo, W.2
Zhang, L.3
Hu, Q.4
Shiu, S.C.K.5
-
9
-
-
84979030158
-
Sparse Bayesian learning for obtaining sparsity of eeg frequency bands based feature vectors in motor imagery classification
-
Y. Zhang, Y. Wang, J. Jin, X. Wang, "Sparse Bayesian learning for obtaining sparsity of eeg frequency bands based feature vectors in motor imagery classification, " Int. J. Neural Syst., vol. 27, no. 02, 2017, Art. no. 1650032.
-
(2017)
Int. J. Neural Syst.
, vol.27
, Issue.2
-
-
Zhang, Y.1
Wang, Y.2
Jin, J.3
Wang, X.4
-
10
-
-
84866033003
-
Selftaught dimensionality reduction on the high-dimensional smallsized data
-
X. Zhu, Z. Huang, Y. Yang, H. T. Shen, C. Xu, J. Luo, "Selftaught dimensionality reduction on the high-dimensional smallsized data, " Pattern Recognit., vol. 46, no. 1, pp. 215-229, 2013.
-
(2013)
Pattern Recognit.
, vol.46
, Issue.1
, pp. 215-229
-
-
Zhu, X.1
Huang, Z.2
Yang, Y.3
Shen, H.T.4
Xu, C.5
Luo, J.6
-
11
-
-
85011392056
-
Learning k for kNN classification
-
S. Zhang, X. Li, M. Zong, X. Zhu, D. Cheng, "Learning k for kNN classification, " ACM Trans. Intell. Syst. Technol., vol. 8, no. 3, 2017, Art. no. 43.
-
(2017)
ACM Trans. Intell. Syst. Technol.
, vol.8
, Issue.3
-
-
Zhang, S.1
Li, X.2
Zong, M.3
Zhu, X.4
Cheng, D.5
-
13
-
-
84905046755
-
A sparse embedding and least variance encoding approach to hashing
-
Sep.
-
X. Zhu, L. Zhang, Z. Huang, "A sparse embedding and least variance encoding approach to hashing, " IEEE Trans. Image Process., vol. 23, no. 9, pp. 3737-3750, Sep. 2014.
-
(2014)
IEEE Trans. Image Process.
, vol.23
, Issue.9
, pp. 3737-3750
-
-
Zhu, X.1
Zhang, L.2
Huang, Z.3
-
14
-
-
84897999975
-
Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis
-
Y. Zhang, G. Zhou, J. Jin, X. Wang, A. Cichocki, "Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis, " Int. J. Neural Syst., vol. 24, no. 04, 2014, Art. no. 1450013.
-
(2014)
Int. J. Neural Syst.
, vol.24
, Issue.4
-
-
Zhang, Y.1
Zhou, G.2
Jin, J.3
Wang, X.4
Cichocki, A.5
-
15
-
-
84998849867
-
Joint hypergraph learning and sparse regression for feature selection
-
Z. Zhang, L. Bai, Y. Liang, E. Hancock, "Joint hypergraph learning and sparse regression for feature selection, " Pattern Recognit., vol. 63, pp. 291-309, 2017.
-
(2017)
Pattern Recognit.
, vol.63
, pp. 291-309
-
-
Zhang, Z.1
Bai, L.2
Liang, Y.3
Hancock, E.4
-
16
-
-
77956216411
-
Unsupervised feature selection for multi-cluster data
-
D. Cai, C. Zhang, X. He, "Unsupervised feature selection for multi-cluster data, " in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2010, pp. 333-342.
-
(2010)
Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 333-342
-
-
Cai, D.1
Zhang, C.2
He, X.3
-
17
-
-
84936931917
-
Robust spectral learning for unsupervised feature selection
-
L. Shi, L. Du, Y.-D. Shen, "Robust spectral learning for unsupervised feature selection, " in Proc. IEEE Int. Conf. Data Mining, 2014, pp. 977-982.
-
(2014)
Proc. IEEE Int. Conf. Data Mining
, pp. 977-982
-
-
Shi, L.1
Du, L.2
Shen, Y.-D.3
-
18
-
-
84901250680
-
Joint embedding learning and sparse regression: A framework for unsupervised feature selection
-
Jun.
-
C. Hou, F. Nie, X. Li, D. Yi, "Joint embedding learning and sparse regression: A framework for unsupervised feature selection, " IEEE Trans. Cybern., vol. 44, no. 6, pp. 793-804, Jun. 2014.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.6
, pp. 793-804
-
-
Hou, C.1
Nie, F.2
Li, X.3
Yi, D.4
-
19
-
-
2342517502
-
Think globally, fit locally: Unsupervised learning of low dimensional manifolds
-
L. K. Saul and S. T. Roweis, "Think globally, fit locally: Unsupervised learning of low dimensional manifolds, " J. Mach. Learn. Res., vol. 4, pp. 119-155, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 119-155
-
-
Saul, L.K.1
Roweis, S.T.2
-
20
-
-
85029493463
-
Graph PCA hashing for similarity search
-
Sep.
-
X. Zhu, X. Li, S. Zhang, Z. Xu, L. Yu, C. Wang, "Graph PCA hashing for similarity search, " IEEE Trans. Multimedia, vol. 19, no. 9, pp. 2033-2044, Sep. 2017.
-
(2017)
IEEE Trans. Multimedia
, vol.19
, Issue.9
, pp. 2033-2044
-
-
Zhu, X.1
Li, X.2
Zhang, S.3
Xu, Z.4
Yu, L.5
Wang, C.6
-
21
-
-
84949058046
-
A novel relational regularization feature selection method for joint regression and classification in AD diagnosis
-
X. Zhu, H. Suk, L. Wang, S. Lee, D. Shen, "A novel relational regularization feature selection method for joint regression and classification in AD diagnosis, " Med. Image Anal., vol. 38, pp. 205-214, 2017.
-
(2017)
Med. Image Anal.
, vol.38
, pp. 205-214
-
-
Zhu, X.1
Suk, H.2
Wang, L.3
Lee, S.4
Shen, D.5
-
22
-
-
85007271155
-
Unsupervised feature selection with structured graph optimization
-
F. Nie, W. Zhu, X. Li, "Unsupervised feature selection with structured graph optimization, " in Proc. AAAI Conf. Artif. Intell., 2016, pp. 1302-1308.
-
(2016)
Proc. AAAI Conf. Artif. Intell.
, pp. 1302-1308
-
-
Nie, F.1
Zhu, W.2
Li, X.3
-
23
-
-
84907015633
-
Unsupervised feature selection via unified trace ratio formulation and K-means clustering (TRACK)
-
D. Wang, F. Nie, H. Huang, "Unsupervised feature selection via unified trace ratio formulation and K-means clustering (TRACK), " in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases, 2014, pp. 306-321.
-
(2014)
Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases
, pp. 306-321
-
-
Wang, D.1
Nie, F.2
Huang, H.3
-
24
-
-
84962091523
-
Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification
-
Mar.
-
X. Zhu, H.-I. Suk, S.-W. Lee, D. Shen, "Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification, " IEEE Trans. Biomed. Eng., vol. 63, no. 3, pp. 607-618, Mar. 2016.
-
(2016)
IEEE Trans. Biomed. Eng.
, vol.63
, Issue.3
, pp. 607-618
-
-
Zhu, X.1
Suk, H.-I.2
Lee, S.-W.3
Shen, D.4
-
25
-
-
85017230141
-
Quantization-based hashing: A general framework for scalable image and video retrieval
-
[Online]
-
J. Song, L. Gao, L. Liu, X. Zhu, N. Sebe, "Quantization-based hashing: A general framework for scalable image and video retrieval, " Pattern Recognit., 2017. [Online]. Available: Https://doi. org/10.1016/j.patcog.2017.03.021
-
(2017)
Pattern Recognit.
-
-
Song, J.1
Gao, L.2
Liu, L.3
Zhu, X.4
Sebe, N.5
-
26
-
-
85037976122
-
Low-rank graphregularized structured sparse regression for identifying genetic biomarkers
-
Oct.-Dec.
-
X. Zhu, H.-I. Suk, H. Huang, D. Shen, "Low-rank graphregularized structured sparse regression for identifying genetic biomarkers, " IEEE Trans. Big Data, vol. 3, no. 4, pp. 405-414, Oct.-Dec. 2017.
-
(2017)
IEEE Trans. Big Data
, vol.3
, Issue.4
, pp. 405-414
-
-
Zhu, X.1
Suk, H.-I.2
Huang, H.3
Shen, D.4
-
27
-
-
84960157230
-
Robust joint graph sparse coding for unsupervised spectral feature selection
-
Jun.
-
X. Zhu, X. Li, S. Zhang, C. Ju, X. Wu, "Robust joint graph sparse coding for unsupervised spectral feature selection, " IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 6, pp. 1263-1275, Jun. 2017.
-
(2017)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.28
, Issue.6
, pp. 1263-1275
-
-
Zhu, X.1
Li, X.2
Zhang, S.3
Ju, C.4
Wu, X.5
-
29
-
-
0033337021
-
Fisher discriminant analysis with kernels
-
B. Scholkopft and K.-R. Mullert, "Fisher discriminant analysis with kernels, " Neural Netw. Signal Process. IX, vol. 1, no. 1, 1999, Art. no. 1.
-
(1999)
Neural Netw. Signal Process. IX
, vol.1
, Issue.1
-
-
Scholkopft, B.1
Mullert, K.-R.2
-
30
-
-
84862798157
-
Dimensionality reduction by mixed kernel canonical correlation analysis
-
X. Zhu, Z. Huang, H. T. Shen, J. Cheng, C. Xu, "Dimensionality reduction by mixed kernel canonical correlation analysis, " Pattern Recognit., vol. 45, no. 8, pp. 3003-3016, 2012.
-
(2012)
Pattern Recognit.
, vol.45
, Issue.8
, pp. 3003-3016
-
-
Zhu, X.1
Huang, Z.2
Shen, H.T.3
Cheng, J.4
Xu, C.5
-
31
-
-
84956689194
-
Kernel principal component analysis
-
B. Scholkopf, A. Smola, K.-R. Muller, "Kernel principal component analysis, " in Proc. Int. Conf. Artif. Neural Netw., 1997, pp. 583-588.
-
(1997)
Proc. Int. Conf. Artif. Neural Netw.
, pp. 583-588
-
-
Scholkopf, B.1
Smola, A.2
Muller, K.-R.3
-
32
-
-
14544297033
-
KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition
-
Feb.
-
J. Yang, A. F. Frangi, J.-Y. Yang, D. Zhang, Z. Jin, "KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 2, pp. 230-244, Feb. 2005.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.2
, pp. 230-244
-
-
Yang, J.1
Frangi, A.F.2
Yang, J.-Y.3
Zhang, D.4
Jin, Z.5
-
33
-
-
85028835252
-
Video captioning with attention-based LSTM and semantic consistency
-
Sep.
-
L. Gao, Z. Guo, H. Zhang, X. Xu, H. T. Shen, "Video captioning with attention-based LSTM and semantic consistency, " IEEE Trans. Multimedia, vol. 19, no. 9, pp. 2045-2055, Sep. 2017.
-
(2017)
IEEE Trans. Multimedia
, vol.19
, Issue.9
, pp. 2045-2055
-
-
Gao, L.1
Guo, Z.2
Zhang, H.3
Xu, X.4
Shen, H.T.5
-
34
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff, "An introduction to variable and feature selection, " J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
35
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. H. John, "Wrappers for feature subset selection, " Artif. Intell., vol. 97, no. 1, pp. 273-324, 1997.
-
(1997)
Artif. Intell.
, vol.97
, Issue.1
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
36
-
-
84868284545
-
Unsupervised feature selection using nonnegative spectral analysis
-
Z. Li, Y. Yang, J. Liu, X. Zhou, H. Lu, "Unsupervised feature selection using nonnegative spectral analysis, " in Proc. AAAI Conf. Artif. Intell., 2012, pp. 1026-1032.
-
(2012)
Proc. AAAI Conf. Artif. Intell.
, pp. 1026-1032
-
-
Li, Z.1
Yang, Y.2
Liu, J.3
Zhou, X.4
Lu, H.5
-
37
-
-
84901250680
-
Joint embedding learning and sparse regression: A framework for unsupervised feature selection
-
Jun.
-
C. Hou, F. Nie, X. Li, D. Yi, Y. Wu, "Joint embedding learning and sparse regression: A framework for unsupervised feature selection, " IEEE Trans. Cybern., vol. 44, no. 6, pp. 793-804, Jun. 2014.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.6
, pp. 793-804
-
-
Hou, C.1
Nie, F.2
Li, X.3
Yi, D.4
Wu, Y.5
-
38
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
Apr.
-
H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering, " IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 491-502, Apr. 2005.
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.4
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
39
-
-
77949539217
-
Pitfalls of supervised feature selection
-
P. Smialowski, D. Frishman, S. Kramer, "Pitfalls of supervised feature selection, " Bioinf., vol. 26, no. 3, pp. 440-443, 2010.
-
(2010)
Bioinf.
, vol.26
, Issue.3
, pp. 440-443
-
-
Smialowski, P.1
Frishman, D.2
Kramer, S.3
-
40
-
-
84901006505
-
Efficient semi-supervised feature selection: Constraint, relevance, redundancy
-
May
-
K. Benabdeslem and M. Hindawi, "Efficient semi-supervised feature selection: Constraint, relevance, redundancy, " IEEE Trans. Knowl. Data Eng., vol. 26, no. 5, pp. 1131-1143, May 2014.
-
(2014)
IEEE Trans. Knowl. Data Eng.
, vol.26
, Issue.5
, pp. 1131-1143
-
-
Benabdeslem, K.1
Hindawi, M.2
-
42
-
-
77954565155
-
Discriminative semisupervised feature selection via manifold regularization
-
Jul.
-
Z. Xu, I. King, M. R.-T. Lyu, R. Jin, "Discriminative semisupervised feature selection via manifold regularization, " IEEE Trans. Neural Netw., vol. 21, no. 7, pp. 1033-1047, Jul. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.7
, pp. 1033-1047
-
-
Xu, Z.1
King, I.2
Lyu, M.R.-T.3
Jin, R.4
-
43
-
-
85007404250
-
A survey on semi-supervised feature selection methods
-
R. Sheikhpour, M. A. Sarram, S. Gharaghani, M. A. Z. Chahooki, "A survey on semi-supervised feature selection methods, " Pattern Recognit., vol. 64, pp. 141-158, 2017.
-
(2017)
Pattern Recognit.
, vol.64
, pp. 141-158
-
-
Sheikhpour, R.1
Sarram, M.A.2
Gharaghani, S.3
Chahooki, M.A.Z.4
-
44
-
-
84870535269
-
Joint feature selection and subspace learning
-
Q. Gu, Z. Li, J. Han, "Joint feature selection and subspace learning, " in Proc. Int. Joint Conf. Artif. Intell., vol. 22, no. 1, 2011, Art. no. 1294.
-
(2011)
Proc. Int. Joint Conf. Artif. Intell.
, vol.22
, Issue.1
-
-
Gu, Q.1
Li, Z.2
Han, J.3
-
45
-
-
84873278481
-
On similarity preserving feature selection
-
Mar.
-
Z. Zhao, L. Wang, H. Liu, J. Ye, "On similarity preserving feature selection, " IEEE Trans. Knowl. Data Eng., vol. 25, no. 3, pp. 619-632, Mar. 2013.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.3
, pp. 619-632
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
Ye, J.4
-
46
-
-
84870197517
-
Robust recovery of subspace structures by low-rank representation
-
Jan.
-
G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, Y. Ma, "Robust recovery of subspace structures by low-rank representation, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 171-184, Jan. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.1
, pp. 171-184
-
-
Liu, G.1
Lin, Z.2
Yan, S.3
Sun, J.4
Yu, Y.5
Ma, Y.6
-
47
-
-
84871942172
-
Sparse reduced-rank regression for simultaneous dimension reduction and variable selection
-
L. Chen and J. Z. Huang, "Sparse reduced-rank regression for simultaneous dimension reduction and variable selection, " J. Amer. Statistical Assoc., vol. 107, no. 500, pp. 1533-1545, 2012.
-
(2012)
J. Amer. Statistical Assoc.
, vol.107
, Issue.500
, pp. 1533-1545
-
-
Chen, L.1
Huang, J.Z.2
-
48
-
-
77956909553
-
Matrix completion from noisy entries
-
R. H. Keshavan, A. Montanari, S. Oh, "Matrix completion from noisy entries, " J. Mach. Learn. Res., vol. 11, pp. 2057-2078, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2057-2078
-
-
Keshavan, R.H.1
Montanari, A.2
Oh, S.3
-
50
-
-
84908151956
-
Globally and locally consistent unsupervised projection
-
H. Wang, F. Nie, H. Huang, "Globally and locally consistent unsupervised projection, " in Proc. AAAI Conf. Artif. Intell., 2014, pp. 1328-1333.
-
(2014)
Proc. AAAI Conf. Artif. Intell.
, pp. 1328-1333
-
-
Wang, H.1
Nie, F.2
Huang, H.3
-
51
-
-
33947492041
-
Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics
-
Apr.
-
J. Yang, D. Zhang, J.-Y. Yang, B. Niu, "Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 4, pp. 650-664, Apr. 2007.
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.29
, Issue.4
, pp. 650-664
-
-
Yang, J.1
Zhang, D.2
Yang, J.-Y.3
Niu, B.4
-
52
-
-
77949704355
-
Iteratively reweighted least squares minimization for sparse recovery
-
I. Daubechies, R. DeVore, M. Fornasier, C. S. Gunturk, "Iteratively reweighted least squares minimization for sparse recovery, " Commun. Pure Appl. Math., vol. 63, no. 1, pp. 1-38, 2010.
-
(2010)
Commun. Pure Appl. Math.
, vol.63
, Issue.1
, pp. 1-38
-
-
Daubechies, I.1
DeVore, R.2
Fornasier, M.3
Gunturk, C.S.4
-
53
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
R. A. Fisher, "The use of multiple measurements in taxonomic problems, " Ann. Eugenics, vol. 7, no. 2, pp. 179-188, 1936.
-
(1936)
Ann. Eugenics
, vol.7
, Issue.2
, pp. 179-188
-
-
Fisher, R.A.1
-
55
-
-
19044391072
-
Gene expression correlates of clinical prostate cancer behavior
-
D. Singh, et al., "Gene expression correlates of clinical prostate cancer behavior, " Cancer Cell, vol. 1, no. 2, pp. 203-209, 2002.
-
(2002)
Cancer Cell
, vol.1
, Issue.2
, pp. 203-209
-
-
Singh, D.1
|