메뉴 건너뛰기




Volumn 29, Issue 7, 2018, Pages 2731-2742

Manifold preserving: An intrinsic approach for semisupervised distance metric learning

Author keywords

Classification; distance metric learning; intrinsic algorithm; matrix manifold; semisupervised learning

Indexed keywords

COMPUTATIONAL EFFICIENCY; MATRIX ALGEBRA; NUMERICAL METHODS; STEEPEST DESCENT METHOD;

EID: 85019867612     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2017.2691005     Document Type: Article
Times cited : (62)

References (54)
  • 2
    • 79952755273 scopus 로고    scopus 로고
    • On learning rotations
    • R. Arora, "On learning rotations," in Proc. Adv. NIPS, 2009, pp. 55-63
    • (2009) Proc. Adv. NIPS , pp. 55-63
    • Arora, R.1
  • 3
    • 34548412123 scopus 로고    scopus 로고
    • Geometric means in a novel vector space structure on symmetric positive-definite matrices
    • V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, "Geometric means in a novel vector space structure on symmetric positive-definite matrices," SIAM J. Matrix Anal. Appl., vol. 29, no. 1, pp. 328-347, 2007
    • (2007) SIAM J. Matrix Anal. Appl , vol.29 , Issue.1 , pp. 328-347
    • Arsigny, V.1    Fillard, P.2    Pennec, X.3    Ayache, N.4
  • 4
    • 77949265725 scopus 로고    scopus 로고
    • Semi-supervised metric learning using pairwise constraints
    • M. Baghshah and S. Shouraki, "Semi-supervised metric learning using pairwise constraints," in Proc. 21st IJCAI, 2009, pp. 1217-1222
    • (2009) Proc. 21st IJCAI , pp. 1217-1222
    • Baghshah, M.1    Shouraki, S.2
  • 5
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, 2003
    • (2003) Neural Comput , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 6
    • 14344264451 scopus 로고    scopus 로고
    • Integrating constraints and metric learning in semi-supervised clustering
    • M. Bilenko, S. Basu, and R. Mooney, "Integrating constraints and metric learning in semi-supervised clustering," in Proc. Int. Conf. Mach. Learn., 2004, pp. 81-88
    • (2004) Proc. Int. Conf. Mach. Learn , pp. 81-88
    • Bilenko, M.1    Basu, S.2    Mooney, R.3
  • 7
    • 34047203494 scopus 로고    scopus 로고
    • Offline cursive character challenge: A new benchmark for machine learning and pattern recognition algorithms
    • Aug
    • F. Camastra, M. Spinetti, and A. Vinciarelli, "Offline cursive character challenge: A new benchmark for machine learning and pattern recognition algorithms," in Proc. ICPR, Aug. 2006, pp. 913-916
    • (2006) Proc. ICPR , pp. 913-916
    • Camastra, F.1    Spinetti, M.2    Vinciarelli, A.3
  • 10
    • 84877760772 scopus 로고    scopus 로고
    • Latent coincidence analysis: A hidden variable model for distance metric learning
    • M. Der and L. Saul, "Latent coincidence analysis: A hidden variable model for distance metric learning," in Proc. Adv. NIPS, 2012, pp. 3239-3247
    • (2012) Proc. Adv. NIPS , pp. 3239-3247
    • Der, M.1    Saul, L.2
  • 12
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data
    • D. Donoho and C. Grimes, "Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data," Proc. Nat. Acad. Sci. USA, vol. 100, no. 10, pp. 5591-5596, 2003
    • (2003) Proc. Nat. Acad. Sci. USA , vol.100 , Issue.10 , pp. 5591-5596
    • Donoho, D.1    Grimes, C.2
  • 13
    • 84945395526 scopus 로고    scopus 로고
    • Building dynamic population graph for accurate correspondence detection
    • S. Du, Y. Guo, G. Sanroma, D. Ni, G. Wu, and D. Shen, "Building dynamic population graph for accurate correspondence detection," Med. Image Anal., vol. 26, no. 1, pp. 256-267, 2015
    • (2015) Med. Image Anal , vol.26 , Issue.1 , pp. 256-267
    • Du, S.1    Guo, Y.2    Sanroma, G.3    Ni, D.4    Wu, G.5    Shen, D.6
  • 14
    • 43049168302 scopus 로고    scopus 로고
    • Locally adaptive subspace and similarity metric learning for visual data clustering and retrieval
    • Y. Fu, Z. Li, T. Huang, and A. Katsaggelos, "Locally adaptive subspace and similarity metric learning for visual data clustering and retrieval," Comput. Vis. Image Understand., vol. 110, no. 3, pp. 390-402, 2008
    • (2008) Comput. Vis. Image Understand , vol.110 , Issue.3 , pp. 390-402
    • Fu, Y.1    Li, Z.2    Huang, T.3    Katsaggelos, A.4
  • 15
    • 84871666061 scopus 로고    scopus 로고
    • Visual-textual joint relevance learning for tag-based social image search
    • Jan
    • Y. Gao, M. Wang, Z. J. Zha, J. Shen, X. Li, and X. Wu, "Visual-textual joint relevance learning for tag-based social image search," IEEE Trans. Image Process., vol. 22, no. 1, pp. 363-376, Jan. 2013
    • (2013) IEEE Trans. Image Process , vol.22 , Issue.1 , pp. 363-376
    • Gao, Y.1    Wang, M.2    Zha, Z.J.3    Shen, J.4    Li, X.5    Wu, X.6
  • 16
    • 84901402355 scopus 로고    scopus 로고
    • Hyperspectral image classification through bilayer graph based learning
    • Jul
    • Y. Gao, R. Ji, P. Cui, Q. Dai, and G. Hua, "Hyperspectral image classification through bilayer graph based learning," IEEE Trans. Image Process., vol. 23, no. 7, pp. 2769-2778, Jul. 2014
    • (2014) IEEE Trans. Image Process , vol.23 , Issue.7 , pp. 2769-2778
    • Gao, Y.1    Ji, R.2    Cui, P.3    Dai, Q.4    Hua, G.5
  • 18
    • 84874579252 scopus 로고    scopus 로고
    • Discriminative metric: Schatten norm vs. Vector norm
    • Z. Gu, M. Shao, L. Li, and Y. Fu, "Discriminative metric: Schatten norm vs. Vector norm," in Proc. ICPR, 2012, pp. 1213-1216
    • (2012) Proc. ICPR , pp. 1213-1216
    • Gu, Z.1    Shao, M.2    Li, L.3    Fu, Y.4
  • 19
    • 77956374577 scopus 로고    scopus 로고
    • Semi-supervised distance metric learning for collaborative image retrieval and clustering
    • S. Hoi, W. Liu, and S. Chang, "Semi-supervised distance metric learning for collaborative image retrieval and clustering," ACM Trans. Multimedia Comput., vol. 6, no. 3, 2010, Art. no. 18
    • (2010) ACM Trans. Multimedia Comput , vol.6 , Issue.3
    • Hoi, S.1    Liu, W.2    Chang, S.3
  • 20
    • 56549092400 scopus 로고    scopus 로고
    • Correlation metric for generalized feature extraction
    • Dec
    • Y. Fu, S. Yan, and T. S. Huang, "Correlation metric for generalized feature extraction," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 12, pp. 2229-2235, Dec. 2008
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell , vol.30 , Issue.12 , pp. 2229-2235
    • Fu, Y.1    Yan, S.2    Huang, T.S.3
  • 21
    • 84887890691 scopus 로고    scopus 로고
    • Metric learning: A survey
    • B. Kulis, "Metric learning: A survey," Found. Trends Mach. Learn., vol. 5, no. 4, pp. 287-364, 2013
    • (2013) Found. Trends Mach. Learn , vol.5 , Issue.4 , pp. 287-364
    • Kulis, B.1
  • 22
    • 84866867133 scopus 로고    scopus 로고
    • Mirror descent for metric learning: A unified approach
    • G. Kunapuli and J. Shavlik, "Mirror descent for metric learning: A unified approach," in Proc. Eur. Conf. Mach. Learn., 2012, pp. 859-874
    • (2012) Proc. Eur. Conf. Mach. Learn , pp. 859-874
    • Kunapuli, G.1    Shavlik, J.2
  • 23
    • 33746476985 scopus 로고    scopus 로고
    • Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and dataset parameterization
    • Sep
    • S. Lafon and A. Lee, "Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and dataset parameterization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 9, pp. 1393-1403, Sep. 2006
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell , vol.28 , Issue.9 , pp. 1393-1403
    • Lafon, S.1    Lee, A.2
  • 24
    • 18144420071 scopus 로고    scopus 로고
    • Acquiring linear subspaces for face recognition under variable lighting
    • May
    • K.-C. Lee, J. Ho, and D. Kriegman, "Acquiring linear subspaces for face recognition under variable lighting," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 5, pp. 684-698, May 2005
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell , vol.27 , Issue.5 , pp. 684-698
    • Lee, K.-C.1    Ho, J.2    Kriegman, D.3
  • 25
    • 85028219408 scopus 로고    scopus 로고
    • Ordinal distance metric learning for image ranking
    • Jul
    • C. Li, Q. Liu, J. Liu, and H. Lu, "Ordinal distance metric learning for image ranking," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 7, pp. 1551-1559, Jul. 2015
    • (2015) IEEE Trans. Neural Netw. Learn. Syst , vol.26 , Issue.7 , pp. 1551-1559
    • Li, C.1    Liu, Q.2    Liu, J.3    Lu, H.4
  • 26
    • 33144458972 scopus 로고    scopus 로고
    • Efficient and robust feature extraction by maximum margin criterion
    • Feb
    • H. R. Li, T. Jiang, and K. Zhang, "Efficient and robust feature extraction by maximum margin criterion," IEEE Trans. Neural Netw., vol. 17, no. 1, pp. 157-165, Feb. 2006
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.1 , pp. 157-165
    • Li, H.R.1    Jiang, T.2    Zhang, K.3
  • 27
    • 84940039372 scopus 로고    scopus 로고
    • A distributed approach toward discriminative distance metric learning
    • Sep
    • J. Li, X. Lin, X. Rui, Y. Rui, and D. Tao, "A distributed approach toward discriminative distance metric learning," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 9, pp. 2111-2122, Sep. 2015
    • (2015) IEEE Trans. Neural Netw. Learn. Syst , vol.26 , Issue.9 , pp. 2111-2122
    • Li, J.1    Lin, X.2    Rui, X.3    Rui, Y.4    Tao, D.5
  • 28
    • 84896061548 scopus 로고    scopus 로고
    • Low-rank coding with B-matching constraint for semisupervised classification
    • S. Li and Y. Fu, "Low-rank coding with B-matching constraint for semisupervised classification," in Proc. IJCAI, 2013, pp. 1472-1478
    • (2013) Proc. IJCAI , pp. 1472-1478
    • Li, S.1    Fu, Y.2
  • 29
    • 84926652192 scopus 로고    scopus 로고
    • Learning balanced and unbalanced graphs via low-rank coding
    • May
    • S. Li and Y. Fu, "Learning balanced and unbalanced graphs via low-rank coding," IEEE Trans. Knowl. Data Eng., vol. 27, no. 5, pp. 1274-1287, May 2015
    • (2015) IEEE Trans. Knowl. Data Eng , vol.27 , Issue.5 , pp. 1274-1287
    • Li, S.1    Fu, Y.2
  • 30
    • 36348944726 scopus 로고    scopus 로고
    • Comments on 'efficient and robust feature extraction by maximum margin Criterion
    • Nov
    • J. Liu, S. Chen, X. Tan, and D. Zhang, "Comments on 'efficient and robust feature extraction by maximum margin Criterion'," IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1862-1864, Nov. 2007
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.6 , pp. 1862-1864
    • Liu, J.1    Chen, S.2    Tan, X.3    Zhang, D.4
  • 31
    • 77956207894 scopus 로고    scopus 로고
    • Semi-supervised sparse metric learning using alternating linearization optimization
    • W. Liu, S. Ma, D. Tao, J. Liu, and P. Liu, "Semi-supervised sparse metric learning using alternating linearization optimization," in Proc. ACM SIGKDD, 2010, pp. 1139-1148
    • (2010) Proc. ACM SIGKDD , pp. 1139-1148
    • Liu, W.1    Ma, S.2    Tao, D.3    Liu, J.4    Liu, P.5
  • 32
    • 84908108461 scopus 로고    scopus 로고
    • Logdet divergence-based metric learning with triplet constraints and its applications
    • Nov
    • J. Mei, M. Liu, H. Karimi, and H. Gao, "Logdet divergence-based metric learning with triplet constraints and its applications," IEEE Trans. Image Process., vol. 23, no. 11, pp. 4920-4931, Nov. 2014
    • (2014) IEEE Trans. Image Process , vol.23 , Issue.11 , pp. 4920-4931
    • Mei, J.1    Liu, M.2    Karimi, H.3    Gao, H.4
  • 33
    • 22944439423 scopus 로고    scopus 로고
    • A differential geometric approach to the geometric mean of symmetric positive-definite
    • M. Moakher, "A differential geometric approach to the geometric mean of symmetric positive-definite," SIAM J. Matrix Anal. Appl., vol. 26, no. 3, pp. 735-747, 2005
    • (2005) SIAM J. Matrix Anal. Appl , vol.26 , Issue.3 , pp. 735-747
    • Moakher, M.1
  • 34
    • 84929254850 scopus 로고    scopus 로고
    • Information-theoretic semi-supervised metric learning via entropy regularization
    • G. Niu, B. Dai, M. Yamada, and M. Sugiyama, "Information-theoretic semi-supervised metric learning via entropy regularization," Neural Comput., vol. 26, no. 8, pp. 1717-1762, 2014
    • (2014) Neural Comput , vol.26 , Issue.8 , pp. 1717-1762
    • Niu, G.1    Dai, B.2    Yamada, M.3    Sugiyama, M.4
  • 35
    • 77952581490 scopus 로고    scopus 로고
    • Learning an intrinsicvariable preserving manifold for dynamic visual tracking
    • Jun
    • H. Qiao, P. Zhang, B. Zhang, and S. Zheng, "Learning an intrinsicvariable preserving manifold for dynamic visual tracking," IEEE Trans. Syst., Man, B, Cybern., vol. 40, no. 3, pp. 868-880, Jun. 2010
    • (2010) IEEE Trans. Syst., Man, B, Cybern , vol.40 , Issue.3 , pp. 868-880
    • Qiao, H.1    Zhang, P.2    Zhang, B.3    Zheng, S.4
  • 36
    • 84875909789 scopus 로고    scopus 로고
    • An explicit nonlinear mapping for manifold learning
    • Feb
    • H. Qiao, P. Zhang, D. Wang, and B. Zhang, "An explicit nonlinear mapping for manifold learning," IEEE Trans. Cybern., vol. 43, no. 1, pp. 51-63, Feb. 2013
    • (2013) IEEE Trans. Cybern , vol.43 , Issue.1 , pp. 51-63
    • Qiao, H.1    Zhang, P.2    Wang, D.3    Zhang, B.4
  • 37
    • 84941891886 scopus 로고    scopus 로고
    • Biologically inspired model for visual cognition achieving unsupervised episodic and semantic feature learning
    • Oct
    • H. Qiao, Y. Li, F. Li, X. Xi, and W. Wu, "Biologically inspired model for visual cognition achieving unsupervised episodic and semantic feature learning," IEEE Trans. Cyber., vol. 46, no. 10, pp. 2335-2347, Oct. 2016
    • (2016) IEEE Trans. Cyber , vol.46 , Issue.10 , pp. 2335-2347
    • Qiao, H.1    Li, Y.2    Li, F.3    Xi, X.4    Wu, W.5
  • 38
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by local linear embedding
    • S. Roweis and L. Sau, "Nonlinear dimensionality reduction by local linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Sau, L.2
  • 39
    • 9444220002 scopus 로고    scopus 로고
    • Learning a distance metric from relative comparisons
    • S. Schultz and T. Joachims, "Learning a distance metric from relative comparisons," in Proc. Adv. NIPS, 2003, pp. 513-520
    • (2003) Proc. Adv. NIPS , pp. 513-520
    • Schultz, S.1    Joachims, T.2
  • 41
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Dec
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, Dec. 2000
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 42
    • 51949119257 scopus 로고    scopus 로고
    • Small codes and large image databases for recognition
    • Jun
    • A. Torralba, R. Fergus, and Y. Weiss, "Small codes and large image databases for recognition," in Proc. CVPR, Jun. 2008, pp. 1-8
    • (2008) Proc. CVPR , pp. 1-8
    • Torralba, A.1    Fergus, R.2    Weiss, Y.3
  • 44
    • 84876733408 scopus 로고    scopus 로고
    • Semi-supervised metric learning via topology preserving multiple semi-supervised assumptions
    • Q. Wang, P. Yuen, and G. Feng, "Semi-supervised metric learning via topology preserving multiple semi-supervised assumptions," Pattern Recog., vol. 46, no. 9, pp. 2576-2587, 2013
    • (2013) Pattern Recog , vol.46 , Issue.9 , pp. 2576-2587
    • Wang, Q.1    Yuen, P.2    Feng, G.3
  • 45
    • 82455167975 scopus 로고    scopus 로고
    • A new algorithm for robust pedestrian tracking based on manifold learning and feature selection
    • Dec
    • M.Wang, H. Qiao, and B. Zhang, "A new algorithm for robust pedestrian tracking based on manifold learning and feature selection," IEEE Trans. Intell. Transp. Syst., vol. 12, no. 4, pp. 1195-1208, Dec. 2011
    • (2011) IEEE Trans. Intell. Transp. Syst , vol.12 , Issue.4 , pp. 1195-1208
    • Wang, M.1    Qiao, H.2    Zhang, B.3
  • 46
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Feb
    • K. Q. Weinberger and L. K. Saul, "Distance metric learning for large margin nearest neighbor classification," J. Mach. Learn. Res., vol. 10, pp. 207-244, Feb. 2009
    • (2009) J. Mach. Learn. Res , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 47
    • 34547972419 scopus 로고    scopus 로고
    • Graph Laplacian regularization for large-scale semidefinite programming
    • K. Weinberger, F. Sha, Q. Zhu, and L. Saul, "Graph Laplacian regularization for large-scale semidefinite programming," in Proc. Adv. NIPS, 2007, pp. 1489-1496
    • (2007) Proc. Adv. NIPS , pp. 1489-1496
    • Weinberger, K.1    Sha, F.2    Zhu, Q.3    Saul, L.4
  • 48
    • 85133386144 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E. Xing, A. Ng, M. Jordan, and S. Russell, "Distance metric learning with application to clustering with side-information," in Proc. Adv. NIPS, 2002, pp. 505-512
    • (2002) Proc. Adv. NIPS , pp. 505-512
    • Xing, E.1    Ng, A.2    Jordan, M.3    Russell, S.4
  • 49
    • 84958117229 scopus 로고    scopus 로고
    • Distance metric learning using privileged information for face verification and person re-identification
    • Dec
    • X. Xu, W. Li, and D. Xu, "Distance metric learning using privileged information for face verification and person re-identification," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 12, pp. 3150-3162, Dec. 2015
    • (2015) IEEE Trans. Neural Netw. Learn. Syst , vol.26 , Issue.12 , pp. 3150-3162
    • Xu, X.1    Li, W.2    Xu, D.3
  • 50
    • 84992520717 scopus 로고    scopus 로고
    • Compute Karcher means on SO(n) by the geometric conjugate gradient method
    • Nov
    • S. Ying, H. Qin, Y. Peng, and Z. Wen, "Compute Karcher means on SO(n) by the geometric conjugate gradient method," Neurocomputing, vol. 215, pp. 169-174, Nov. 2016
    • (2016) Neurocomputing , vol.215 , pp. 169-174
    • Ying, S.1    Qin, H.2    Peng, Y.3    Wen, Z.4
  • 51
    • 75749153570 scopus 로고    scopus 로고
    • A general kernelization framework for learning algorithms based on kernel PCA
    • C. Zhang, F. Nie, and S. Xiang, "A general kernelization framework for learning algorithms based on kernel PCA," Neurocomputing, vol. 73, nos. 4-6, pp. 959-967, 2010
    • (2010) Neurocomputing , vol.73 , Issue.4-6 , pp. 959-967
    • Zhang, C.1    Nie, F.2    Xiang, S.3
  • 52
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimension reduction via local tangent space alignment
    • Z. Zhang and H. Zha, "Principal manifolds and nonlinear dimension reduction via local tangent space alignment," SIAM J. Sci. Comput., vol. 26, no. 1, pp. 313-338, 2002
    • (2002) SIAM J. Sci. Comput , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.1    Zha, H.2
  • 53
    • 84871386013 scopus 로고    scopus 로고
    • Optimal semi-supervised metric learning for image retrieval
    • K. Zhao, W. Liu, and J. Liu, "Optimal semi-supervised metric learning for image retrieval," in Proc. ACM Int. Conf. Multimedia, 2012, pp. 893-896
    • (2012) Proc. ACM Int. Conf. Multimedia , pp. 893-896
    • Zhao, K.1    Liu, W.2    Liu, J.3
  • 54
    • 84863182003 scopus 로고    scopus 로고
    • Low rank metric learning with manifold regularization
    • G. Zhong, K. Huang, and C. Liu, "Low rank metric learning with manifold regularization," in Proc. Proc. ICDM, 2011, pp. 1266-1271
    • (2011) Proc. Proc. ICDM , pp. 1266-1271
    • Zhong, G.1    Huang, K.2    Liu, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.