메뉴 건너뛰기




Volumn 33, Issue 14, 2017, Pages i341-i349

Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER;

EID: 85024475643     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btx245     Document Type: Conference Paper
Times cited : (32)

References (42)
  • 1
    • 84931048463 scopus 로고    scopus 로고
    • FERAL: Network-based classifier with application to breast cancer outcome prediction
    • Allahyar, A., and de Ridder, J. (2015) FERAL: network-based classifier with application to breast cancer outcome prediction. Bioinformatics, 31, i311-i319.
    • (2015) Bioinformatics , vol.31 , pp. i311-i319
    • Allahyar, A.1    De Ridder, J.2
  • 3
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck, A., and Teboulle, M. (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. Siam J Imaging Sci, 2, 183-202.
    • (2009) Siam J Imaging Sci , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 4
    • 84983268556 scopus 로고    scopus 로고
    • Sparse group factor analysis for biclustering of multiple data sources
    • Bunte, K. et al. (2016) Sparse group factor analysis for biclustering of multiple data sources. Bioinformatics, 32, 2457-2463.
    • (2016) Bioinformatics , vol.32 , pp. 2457-2463
    • Bunte, K.1
  • 5
    • 84954221126 scopus 로고    scopus 로고
    • Structured sparse canonical correlation analysis
    • Chen, X. et al. (2012) Structured sparse canonical correlation analysis. AISTATS. pp. 199-207.
    • (2012) AISTATS. , pp. 199-207
    • Chen, X.1
  • 6
    • 77951173993 scopus 로고    scopus 로고
    • Accelerated gradient method for multi-task sparse learning problem
    • Chen, X. et al. (2009) Accelerated gradient method for multi-task sparse learning problem, IEEE Data Mining, 746-751.
    • (2009) IEEE Data Mining , pp. 746-751
    • Chen, X.1
  • 7
    • 84881658213 scopus 로고    scopus 로고
    • Imaging genetics via sparse canonical correlation analysis
    • Chi, E.C. et al. (2013) Imaging genetics via sparse canonical correlation analysis. Proc IEEE Int Symp Biomed Imaging, 2013, 740-743.
    • (2013) Proc IEEE Int Symp Biomed Imaging , vol.2013 , pp. 740-743
    • Chi, E.C.1
  • 8
    • 84966534224 scopus 로고    scopus 로고
    • How the human brain represents perceived dan-gerousness or "predacity" of animals
    • Connolly, A.C. et al. (2016) How the human brain represents perceived dan-gerousness or "predacity" of animals. J. Neurosci., 36, 5373-5384.
    • (2016) J. Neurosci. , vol.36 , pp. 5373-5384
    • Connolly, A.C.1
  • 9
    • 67650088150 scopus 로고    scopus 로고
    • Longitudinal pattern of regional brain volume change differentiates normal aging from MCI
    • Driscoll, I. et al. (2009) Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology, 72, 1906-1913.
    • (2009) Neurology , vol.72 , pp. 1906-1913
    • Driscoll, I.1
  • 10
    • 84897505354 scopus 로고    scopus 로고
    • Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer's disease
    • Fagan, A.M. et al. (2014) Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer's disease. Sci. Transl. Med., 6, 226ra230.
    • (2014) Sci. Transl. Med. , vol.6 , pp. 226ra230
    • Fagan, A.M.1
  • 11
    • 85024486523 scopus 로고    scopus 로고
    • Joint sparse canonical correlation analysis for detecting differential imaging genetics modules
    • Fang, J. et al. (2016) Joint sparse canonical correlation analysis for detecting differential imaging genetics modules. Bioinformatics, 32, 3480-3488.
    • (2016) Bioinformatics , vol.32 , pp. 3480-3488
    • Fang, J.1
  • 12
    • 34249802062 scopus 로고    scopus 로고
    • Neuroimaging endophenotypes: Strategies for finding genes influencing brain structure and function
    • Glahn, D.C. et al. (2007) Neuroimaging endophenotypes: Strategies for finding genes influencing brain structure and function. Hum. Brain Mapp., 28, 488-501.
    • (2007) Hum. Brain Mapp. , vol.28 , pp. 488-501
    • Glahn, D.C.1
  • 13
    • 0038823525 scopus 로고    scopus 로고
    • The endophenotype concept in psychiatry: Etymology and strategic intentions
    • Gottesman, I.I., and Gould, T.D. (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry, 160, 636-645.
    • (2003) Am. J. Psychiatry , vol.160 , pp. 636-645
    • Gottesman, I.I.1    Gould, T.D.2
  • 14
    • 84920870218 scopus 로고    scopus 로고
    • Comparison of variants of canonical correlation analysis and partial least squares for combined analysis of MRI and genetic data
    • Grellmann, C. et al. (2015) Comparison of variants of canonical correlation analysis and partial least squares for combined analysis of MRI and genetic data. Neuroimage, 107, 289-310.
    • (2015) Neuroimage , vol.107 , pp. 289-310
    • Grellmann, C.1
  • 15
    • 84973659671 scopus 로고    scopus 로고
    • Identifying multimodal intermediate phenotypes between genetic risk factors and disease status in Alzheimer's disease
    • Hao, X.K. et al. (2016) Identifying multimodal intermediate phenotypes between genetic risk factors and disease status in Alzheimer's disease. Neuroinformatics, 14, 439-452.
    • (2016) Neuroinformatics , vol.14 , pp. 439-452
    • Hao, X.K.1
  • 16
    • 33646482854 scopus 로고    scopus 로고
    • Imaging genetics: Perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing
    • Hariri, A.R. et al. (2006) Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biol. Psychiatry, 59, 888-897.
    • (2006) Biol. Psychiatry , vol.59 , pp. 888-897
    • Hariri, A.R.1
  • 17
    • 84855728733 scopus 로고    scopus 로고
    • Multilocus genetic analysis of brain images
    • Hibar, D.P. et al. (2011) Multilocus genetic analysis of brain images. Front. Genet., 2, 73.
    • (2011) Front. Genet. , vol.2 , pp. 73
    • Hibar, D.P.1
  • 18
    • 0001523230 scopus 로고
    • The most predictable criterion
    • Hotelling, H. (1935) The most predictable criterion. J. Educ. Psychol., 26, 139.
    • (1935) J. Educ. Psychol. , vol.26 , pp. 139
    • Hotelling, H.1
  • 19
    • 82855161410 scopus 로고    scopus 로고
    • Parietal cortex matters in Alzheimer's disease: An overview of structural, functional and metabolic findings
    • Jacobs, H.I.L. et al. (2012) Parietal cortex matters in Alzheimer's disease: an overview of structural, functional and metabolic findings. Neurosci. Biobehav. R, 36, 297-309.
    • (2012) Neurosci. Biobehav. R , vol.36 , pp. 297-309
    • Jacobs, H.I.L.1
  • 20
    • 85008600022 scopus 로고    scopus 로고
    • Temporally-constrained group sparse learning for longitudinal data analysis in Alzheimer's disease
    • Jie, B. et al. (2016) Temporally-constrained group sparse learning for longitudinal data analysis in Alzheimer's disease, IEEE Trans. Biomed. Eng., 64, 238-249.
    • (2016) IEEE Trans. Biomed. Eng. , vol.64 , pp. 238-249
    • Jie, B.1
  • 21
    • 80055032491 scopus 로고    scopus 로고
    • Boosting power to detect genetic associations in imaging using multi-locus, genome-wide scans and ridge regression
    • Kohannim, O. et al. (2011) Boosting power to detect genetic associations in imaging using multi-locus, genome-wide scans and ridge regression. I S Biomed. Imag., 48, 1855-1859.
    • (2011) I S Biomed. Imag. , vol.48 , pp. 1855-1859
    • Kohannim, O.1
  • 22
    • 84866491087 scopus 로고    scopus 로고
    • Discovery and replication of gene influences on brain structure using LASSO regression
    • Kohannim, O. et al. (2012) Discovery and replication of gene influences on brain structure using LASSO regression. Front. Neurosci. Switz., 6, 115.
    • (2012) Front. Neurosci. Switz. , vol.6 , pp. 115
    • Kohannim, O.1
  • 23
    • 84901693307 scopus 로고    scopus 로고
    • Correspondence between fMRI and SNP data by group sparse canonical correlation analysis
    • Lin, D. et al. (2014) Correspondence between fMRI and SNP data by group sparse canonical correlation analysis. Med. Image Anal., 18, 891-902.
    • (2014) Med. Image Anal. , vol.18 , pp. 891-902
    • Lin, D.1
  • 24
    • 84964933139 scopus 로고    scopus 로고
    • Association of common variants in TOMM40/APOE/APOC1 region with human longevity in a Chinese population
    • Lin, R. et al. (2016) Association of common variants in TOMM40/APOE/APOC1 region with human longevity in a Chinese population. J. Hum. Genet., 61, 323-328.
    • (2016) J. Hum. Genet. , vol.61 , pp. 323-328
    • Lin, R.1
  • 27
    • 31544443575 scopus 로고    scopus 로고
    • The Alzheimer's disease neuroimaging initiative
    • Mueller, S.G. et al. (2005) The Alzheimer's disease neuroimaging initiative. Neuroimag. Clin. N. Am., 15, 869-877.
    • (2005) Neuroimag. Clin. N. Am. , vol.15 , pp. 869-877
    • Mueller, S.G.1
  • 29
    • 84958554565 scopus 로고    scopus 로고
    • Gene regulatory network inference using fused LASSO on multiple data sets
    • Omranian, N. et al. (2016) Gene regulatory network inference using fused LASSO on multiple data sets. Sci. Rep. UK, 6, 20533
    • (2016) Sci. Rep. UK , vol.6 , pp. 20533
    • Omranian, N.1
  • 30
    • 77954034488 scopus 로고    scopus 로고
    • Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort
    • Shen, L. et al. (2010) Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort. Neuroimage, 53, 1051-1063.
    • (2010) Neuroimage , vol.53 , pp. 1051-1063
    • Shen, L.1
  • 31
    • 77954918835 scopus 로고    scopus 로고
    • Voxelwise genome-wide association study (vGWAS)
    • Stein, J.L. et al. (2010) Voxelwise genome-wide association study (vGWAS). Neuroimage, 53, 1160-1174.
    • (2010) Neuroimage , vol.53 , pp. 1160-1174
    • Stein, J.L.1
  • 32
    • 79955040218 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso: A retrospective
    • Tibshirani, R. (2011) Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. B, 73, 273-282.
    • (2011) J. R. Stat. Soc. B , vol.73 , pp. 273-282
    • Tibshirani, R.1
  • 33
    • 0036322886 scopus 로고    scopus 로고
    • Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
    • Tzourio-Mazoyer, N. et al. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15, 273-289.
    • (2002) Neuroimage , vol.15 , pp. 273-289
    • Tzourio-Mazoyer, N.1
  • 34
    • 77956215911 scopus 로고    scopus 로고
    • Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach
    • Vounou, M. et al. (2010) Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach. Neuroimage, 53, 1147-1159.
    • (2010) Neuroimage , vol.53 , pp. 1147-1159
    • Vounou, M.1
  • 35
    • 84856108049 scopus 로고    scopus 로고
    • Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease
    • Vounou, M. et al. (2012) Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease. Neuroimage, 60, 700-716.
    • (2012) Neuroimage , vol.60 , pp. 700-716
    • Vounou, M.1
  • 36
    • 84866458870 scopus 로고    scopus 로고
    • From phenotype to genotype: An association study of longitudinal phenotypic markers to Alzheimer's disease relevant SNPs
    • Wang, H. et al. (2012a) From phenotype to genotype: an association study of longitudinal phenotypic markers to Alzheimer's disease relevant SNPs. Bioinformatics, 28, i619-i625.
    • (2012) Bioinformatics , vol.28 , pp. i619-i625
    • Wang, H.1
  • 37
    • 84862970066 scopus 로고    scopus 로고
    • Identifying quantitative trait loci via group-sparse multitask regression and feature selection: An imaging genetics study of the ADNI cohort
    • Wang, H. et al. (2012b) Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics, 28, 229-237.
    • (2012) Bioinformatics , vol.28 , pp. 229-237
    • Wang, H.1
  • 39
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten, D.M. et al. (2009) A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics, 10, 515-534.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1
  • 40
    • 68249115586 scopus 로고    scopus 로고
    • Extensions of sparse canonical correlation analysis with applications to genomic data
    • Witten, D.M., and Tibshirani, R.J. (2009) Extensions of sparse canonical correlation analysis with applications to genomic data. Stat. Appl. Genet. Mol., 8, 1-27.
    • (2009) Stat. Appl. Genet. Mol. , vol.8 , pp. 1-27
    • Witten, D.M.1    Tibshirani, R.J.2
  • 41
    • 84907030081 scopus 로고    scopus 로고
    • Transcriptome-guided amyloid imaging genetic analysis via a novel structured sparse learning algorithm
    • Yan, J. et al. (2014) Transcriptome-guided amyloid imaging genetic analysis via a novel structured sparse learning algorithm. Bioinformatics, 30, i564-i571.
    • (2014) Bioinformatics , vol.30 , pp. i564-i571
    • Yan, J.1
  • 42
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M., and Lin, Y. (2006) Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. B, 68, 49-67.
    • (2006) J. R. Stat. Soc. B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.