-
1
-
-
84896495719
-
Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future
-
Kahn, S.E., Cooper, M.E., Del Prato, S., Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383 (2014), 1068–1083.
-
(2014)
Lancet
, vol.383
, pp. 1068-1083
-
-
Kahn, S.E.1
Cooper, M.E.2
Del Prato, S.3
-
2
-
-
84956615313
-
Genetics of Type 2 diabetes
-
Stančáková, A., Laakso, M., Genetics of Type 2 diabetes. Endocr Dev 31 (2016), 203–220.
-
(2016)
Endocr Dev
, vol.31
, pp. 203-220
-
-
Stančáková, A.1
Laakso, M.2
-
3
-
-
84904745172
-
Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond
-
Grarup, N., Sandholt, C.H., Hansen, T., Pedersen, O., Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond. Diabetologia 57 (2014), 1528–1541.
-
(2014)
Diabetologia
, vol.57
, pp. 1528-1541
-
-
Grarup, N.1
Sandholt, C.H.2
Hansen, T.3
Pedersen, O.4
-
4
-
-
85010880201
-
Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus
-
Hashimoto, N., Tanaka, T., Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus. J Hum Genet 62 (2017), 141–150.
-
(2017)
J Hum Genet
, vol.62
, pp. 141-150
-
-
Hashimoto, N.1
Tanaka, T.2
-
5
-
-
84978658427
-
Recent progress in genetic and epigenetic research on type 2 diabetes
-
Kwak, S.H., Park, K.S., Recent progress in genetic and epigenetic research on type 2 diabetes. Exp Mol Med, 48, 2016, e220.
-
(2016)
Exp Mol Med
, vol.48
, pp. e220
-
-
Kwak, S.H.1
Park, K.S.2
-
6
-
-
84903847639
-
Sirtuins, metabolism, and DNA repair
-
Choi, J.E., Mostoslavsky, R., Sirtuins, metabolism, and DNA repair. Curr Opin Genet Dev 26 (2014), 24–32.
-
(2014)
Curr Opin Genet Dev
, vol.26
, pp. 24-32
-
-
Choi, J.E.1
Mostoslavsky, R.2
-
7
-
-
84858797950
-
Sirtuins as regulators of metabolism and healthspan
-
Houtkooper, R.H., Pirinen, E., Auwerx, J., Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13 (2012), 225–238.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 225-238
-
-
Houtkooper, R.H.1
Pirinen, E.2
Auwerx, J.3
-
8
-
-
84874594425
-
The sirtuin family's role in aging and age-associated pathologies
-
Hall, J.A., Dominy, J.E., Lee, Y., Puigserver, P., The sirtuin family's role in aging and age-associated pathologies. J Clin Invest 123 (2013), 973–979.
-
(2013)
J Clin Invest
, vol.123
, pp. 973-979
-
-
Hall, J.A.1
Dominy, J.E.2
Lee, Y.3
Puigserver, P.4
-
9
-
-
0037405043
-
Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle
-
Dryden, S.C., Nahhas, F.A., Nowak, J.E., Goustin, A.S., Tainsky, M.A., Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 23 (2003), 3173–3185.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 3173-3185
-
-
Dryden, S.C.1
Nahhas, F.A.2
Nowak, J.E.3
Goustin, A.S.4
Tainsky, M.A.5
-
10
-
-
84946227815
-
Emerging role of Sirtuin 2 in the regulation of mammalian metabolism
-
Gomes, P., Outeiro, T.F., Cavadas, C., Emerging role of Sirtuin 2 in the regulation of mammalian metabolism. Trends Pharmacol Sci 36 (2015), 756–768.
-
(2015)
Trends Pharmacol Sci
, vol.36
, pp. 756-768
-
-
Gomes, P.1
Outeiro, T.F.2
Cavadas, C.3
-
11
-
-
34248151365
-
The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation
-
Inoue, T., Hiratsuka, M., Osaki, M., Oshimura, M., The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle 6 (2007), 1011–1018.
-
(2007)
Cell Cycle
, vol.6
, pp. 1011-1018
-
-
Inoue, T.1
Hiratsuka, M.2
Osaki, M.3
Oshimura, M.4
-
12
-
-
34547397081
-
SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation
-
Jing, E., Gesta, S., Kahn, C.R., SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab 6 (2007), 105–114.
-
(2007)
Cell Metab
, vol.6
, pp. 105-114
-
-
Jing, E.1
Gesta, S.2
Kahn, C.R.3
-
13
-
-
80054769188
-
SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity
-
Kim, H.S., Vassilopoulos, A., Wang, R.H., Lahusen, T., Xiao, Z., Xu, X., et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 20 (2011), 487–499.
-
(2011)
Cancer Cell
, vol.20
, pp. 487-499
-
-
Kim, H.S.1
Vassilopoulos, A.2
Wang, R.H.3
Lahusen, T.4
Xiao, Z.5
Xu, X.6
-
14
-
-
0037291214
-
The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
-
North, B.J., Marshall, B.L., Borra, M.T., Denu, J.M., Verdin, E., The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11 (2003), 437–444.
-
(2003)
Mol Cell
, vol.11
, pp. 437-444
-
-
North, B.J.1
Marshall, B.L.2
Borra, M.T.3
Denu, J.M.4
Verdin, E.5
-
15
-
-
33646550204
-
SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
-
Vaquero, A., Scher, M.B., Lee, D.H., Sutton, A., Cheng, H.L., Alt, F.W., et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20 (2006), 1256–1261.
-
(2006)
Genes Dev
, vol.20
, pp. 1256-1261
-
-
Vaquero, A.1
Scher, M.B.2
Lee, D.H.3
Sutton, A.4
Cheng, H.L.5
Alt, F.W.6
-
16
-
-
64049089450
-
SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma
-
Wang, F., Tong, Q., SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma. Mol Biol Cell 20 (2009), 801–808.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 801-808
-
-
Wang, F.1
Tong, Q.2
-
17
-
-
84874709843
-
SIRT1 and SIRT2: emerging targets in neurodegeneration
-
Donmez, G., Outeiro, T.F., SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 5 (2013), 344–352.
-
(2013)
EMBO Mol Med
, vol.5
, pp. 344-352
-
-
Donmez, G.1
Outeiro, T.F.2
-
19
-
-
84937397484
-
Sirtuins and the metabolic hurdles in cancer
-
German, N.J., Haigis, M.C., Sirtuins and the metabolic hurdles in cancer. Curr Biol 25 (2015), R569–R583.
-
(2015)
Curr Biol
, vol.25
, pp. R569-R583
-
-
German, N.J.1
Haigis, M.C.2
-
20
-
-
84856628731
-
Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system
-
Krishnan, J., Danzer, C., Simka, T., Ukropec, J., Walter, K.M., Kumpf, S., et al. Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev 26 (2012), 259–270.
-
(2012)
Genes Dev
, vol.26
, pp. 259-270
-
-
Krishnan, J.1
Danzer, C.2
Simka, T.3
Ukropec, J.4
Walter, K.M.5
Kumpf, S.6
-
21
-
-
84903463140
-
SIRT2 negatively regulates insulin resistance in C2C12 skeletal muscle cells
-
Arora, A., Dey, C.S., SIRT2 negatively regulates insulin resistance in C2C12 skeletal muscle cells. Biochim Biophys Acta 1842 (2014), 1372–1378.
-
(2014)
Biochim Biophys Acta
, vol.1842
, pp. 1372-1378
-
-
Arora, A.1
Dey, C.S.2
-
22
-
-
84966473555
-
SIRT2 regulates insulin sensitivity in insulin resistant neuronal cells
-
Arora, A., Dey, C.S., SIRT2 regulates insulin sensitivity in insulin resistant neuronal cells. Biochem Biophys Res Commun 474 (2016), 747–752.
-
(2016)
Biochem Biophys Res Commun
, vol.474
, pp. 747-752
-
-
Arora, A.1
Dey, C.S.2
-
23
-
-
84879081348
-
SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-3β/β-catenin signaling
-
Chen, J., Chan, A.W., To, K.F., Chen, W., Zhang, Z., Ren, J., et al. SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-3β/β-catenin signaling. Hepatology 57 (2013), 2287–2298.
-
(2013)
Hepatology
, vol.57
, pp. 2287-2298
-
-
Chen, J.1
Chan, A.W.2
To, K.F.3
Chen, W.4
Zhang, Z.5
Ren, J.6
-
24
-
-
84896901019
-
Sirt2 deacetylase is a novel AKT binding partner critical for AKT activation by insulin
-
Ramakrishnan, G., Davaakhuu, G., Kaplun, L., Chung, W.C., Rana, A., Atfi, A., et al. Sirt2 deacetylase is a novel AKT binding partner critical for AKT activation by insulin. J Biol Chem 289 (2014), 6054–6066.
-
(2014)
J Biol Chem
, vol.289
, pp. 6054-6066
-
-
Ramakrishnan, G.1
Davaakhuu, G.2
Kaplun, L.3
Chung, W.C.4
Rana, A.5
Atfi, A.6
-
25
-
-
84922804565
-
Acetylation of TUG protein promotes the accumulation of GLUT4 glucose transporters in an insulin-responsive intracellular compartment
-
Belman, J.P., Bian, R.R., Habtemichael, E.N., Li, D.T., Jurczak, M.J., Alcázar-Román, A., et al. Acetylation of TUG protein promotes the accumulation of GLUT4 glucose transporters in an insulin-responsive intracellular compartment. J Biol Chem 290 (2015), 4447–4463.
-
(2015)
J Biol Chem
, vol.290
, pp. 4447-4463
-
-
Belman, J.P.1
Bian, R.R.2
Habtemichael, E.N.3
Li, D.T.4
Jurczak, M.J.5
Alcázar-Román, A.6
-
26
-
-
79959906869
-
Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase
-
Jiang, W., Wang, S., Xiao, M., Lin, Y., Zhou, L., Lei, Q., et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell 43 (2011), 33–44.
-
(2011)
Mol Cell
, vol.43
, pp. 33-44
-
-
Jiang, W.1
Wang, S.2
Xiao, M.3
Lin, Y.4
Zhou, L.5
Lei, Q.6
-
27
-
-
78649738291
-
SIRT2 regulates NF-κB dependent gene expression through deacetylation of p65 Lys310
-
Rothgiesser, K.M., Erener, S., Waibel, S., Lüscher, B., Hottiger, M.O., SIRT2 regulates NF-κB dependent gene expression through deacetylation of p65 Lys310. J Cell Sci 123 (2010), 4251–4258.
-
(2010)
J Cell Sci
, vol.123
, pp. 4251-4258
-
-
Rothgiesser, K.M.1
Erener, S.2
Waibel, S.3
Lüscher, B.4
Hottiger, M.O.5
-
28
-
-
84986252287
-
SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation
-
Xu, S.N., Wang, T.S., Li, X., Wang, Y.P., SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation. Sci Rep, 6, 2016, 32734.
-
(2016)
Sci Rep
, vol.6
, pp. 32734
-
-
Xu, S.N.1
Wang, T.S.2
Li, X.3
Wang, Y.P.4
-
29
-
-
84904052542
-
Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase
-
Xu, Y., Li, F., Lv, L., Li, T., Zhou, X., Deng, C.X., et al. Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase. Cancer Res 74 (2014), 3630–3642.
-
(2014)
Cancer Res
, vol.74
, pp. 3630-3642
-
-
Xu, Y.1
Li, F.2
Lv, L.3
Li, T.4
Zhou, X.5
Deng, C.X.6
-
30
-
-
84903317314
-
Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress
-
Wang, Y.P., Zhou, L.S., Zhao, Y.Z., Wang, S.W., Chen, L.L., Liu, L.X., et al. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J 33 (2014), 1304–1320.
-
(2014)
EMBO J
, vol.33
, pp. 1304-1320
-
-
Wang, Y.P.1
Zhou, L.S.2
Zhao, Y.Z.3
Wang, S.W.4
Chen, L.L.5
Liu, L.X.6
-
31
-
-
84901822090
-
SIRT2 knockdown increases basal autophagy and prevents postslippage death by abnormally prolonging the mitotic arrest that is induced by microtubule inhibitors
-
Inoue, T., Nakayama, Y., Li, Y., Matsumori, H., Takahashi, H., Kojima, H., et al. SIRT2 knockdown increases basal autophagy and prevents postslippage death by abnormally prolonging the mitotic arrest that is induced by microtubule inhibitors. FEBS J 281 (2014), 2623–2637.
-
(2014)
FEBS J
, vol.281
, pp. 2623-2637
-
-
Inoue, T.1
Nakayama, Y.2
Li, Y.3
Matsumori, H.4
Takahashi, H.5
Kojima, H.6
-
32
-
-
84870052890
-
SIRT2 interferes with autophagy-mediated degradation of protein aggregates in neuronal cells under proteasome inhibition
-
Gal, J., Bang, Y., Choi, H.J., SIRT2 interferes with autophagy-mediated degradation of protein aggregates in neuronal cells under proteasome inhibition. Neurochem Int 61 (2012), 992–1000.
-
(2012)
Neurochem Int
, vol.61
, pp. 992-1000
-
-
Gal, J.1
Bang, Y.2
Choi, H.J.3
-
33
-
-
84923645539
-
Minireview: autophagy in pancreatic β-cells and its implication in diabetes
-
Watada, H., Fujitani, Y., Minireview: autophagy in pancreatic β-cells and its implication in diabetes. Mol Endocrinol 29 (2015), 338–348.
-
(2015)
Mol Endocrinol
, vol.29
, pp. 338-348
-
-
Watada, H.1
Fujitani, Y.2
-
34
-
-
84969921764
-
Mechanisms in endocrinology: metabolic and inflammatory pathways on the pathogenesis of type 2 diabetes
-
Coope, A., Torsoni, A.S., Velloso, L.A., Mechanisms in endocrinology: metabolic and inflammatory pathways on the pathogenesis of type 2 diabetes. Eur J Endocrinol 174 (2016), R175–R187.
-
(2016)
Eur J Endocrinol
, vol.174
, pp. R175-R187
-
-
Coope, A.1
Torsoni, A.S.2
Velloso, L.A.3
-
35
-
-
79957920754
-
Inflammatory links between obesity and metabolic disease
-
Lumeng, C.N., Saltiel, A.R., Inflammatory links between obesity and metabolic disease. J Clin Invest 121 (2011), 2111–2117.
-
(2011)
J Clin Invest
, vol.121
, pp. 2111-2117
-
-
Lumeng, C.N.1
Saltiel, A.R.2
-
36
-
-
84875198920
-
Transcriptional regulation and its misregulation in disease
-
Lee, T.I., Young, R.A., Transcriptional regulation and its misregulation in disease. Cell 152 (2013), 1237–1251.
-
(2013)
Cell
, vol.152
, pp. 1237-1251
-
-
Lee, T.I.1
Young, R.A.2
-
37
-
-
84926338262
-
(2) Classification and diagnosis of diabetes
-
American Diabetes Association, (2) Classification and diagnosis of diabetes. Diabetes Care 38:Suppl (2015), S8–S16.
-
(2015)
Diabetes Care
, vol.38
, pp. S8-S16
-
-
American Diabetes Association1
-
38
-
-
84965101983
-
Polymorphisms falling within putative miRNA target sites in the 3'UTR region of SIRT2 and DRD2 genes are correlated with human longevity
-
Crocco, P., Montesanto, A., Passarino, G., Rose, G., Polymorphisms falling within putative miRNA target sites in the 3'UTR region of SIRT2 and DRD2 genes are correlated with human longevity. J Gerontol A Biol Sci Med Sci 71 (2016), 586–592.
-
(2016)
J Gerontol A Biol Sci Med Sci
, vol.71
, pp. 586-592
-
-
Crocco, P.1
Montesanto, A.2
Passarino, G.3
Rose, G.4
-
39
-
-
84870910536
-
Association between SIRT2 gene polymorphism and height in healthy, elderly Japanese subjects
-
Haketa, A., Soma, M., Nakayama, T., Kosuge, K., Aoi, N., Hishiki, M., et al. Association between SIRT2 gene polymorphism and height in healthy, elderly Japanese subjects. Transl Res 161 (2013), 57–58.
-
(2013)
Transl Res
, vol.161
, pp. 57-58
-
-
Haketa, A.1
Soma, M.2
Nakayama, T.3
Kosuge, K.4
Aoi, N.5
Hishiki, M.6
-
40
-
-
84901336093
-
The SIRT2 polymorphism rs10410544 and risk of Alzheimer's disease: a meta-analysis
-
Wei, W., Xu, X., Li, H., Zhang, Y., Han, D., Wang, Y., et al. The SIRT2 polymorphism rs10410544 and risk of Alzheimer's disease: a meta-analysis. Neuromol Med 16 (2014), 448–456.
-
(2014)
Neuromol Med
, vol.16
, pp. 448-456
-
-
Wei, W.1
Xu, X.2
Li, H.3
Zhang, Y.4
Han, D.5
Wang, Y.6
-
41
-
-
0032977614
-
Characterization of a human gene with sequence homology to Saccharomyces cerevisiae SIR2
-
Afshar, G., Murnane, J.P., Characterization of a human gene with sequence homology to Saccharomyces cerevisiae SIR2. Gene 234 (1999), 161–168.
-
(1999)
Gene
, vol.234
, pp. 161-168
-
-
Afshar, G.1
Murnane, J.P.2
-
42
-
-
0033600176
-
Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
-
Frye, R.A., Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 260 (1999), 273–279.
-
(1999)
Biochem Biophys Res Commun
, vol.260
, pp. 273-279
-
-
Frye, R.A.1
-
43
-
-
33644643513
-
FISH-mapping and genomic organization of the NAD-dependent histone deacetylase gene, Sirtuin 2 (Sirt2)
-
Voelter-Mahlknecht, S., Ho, A.D., Mahlknecht, U., FISH-mapping and genomic organization of the NAD-dependent histone deacetylase gene, Sirtuin 2 (Sirt2). Int J Oncol 27 (2005), 1187–1196.
-
(2005)
Int J Oncol
, vol.27
, pp. 1187-1196
-
-
Voelter-Mahlknecht, S.1
Ho, A.D.2
Mahlknecht, U.3
-
44
-
-
84976263041
-
Increased expression of SIRT2 is a novel marker of cellular senescence and is dependent on wild type p53 status
-
Anwar, T., Khosla, S., Ramakrishna, G., Increased expression of SIRT2 is a novel marker of cellular senescence and is dependent on wild type p53 status. Cell Cycle 15 (2016), 1883–1897.
-
(2016)
Cell Cycle
, vol.15
, pp. 1883-1897
-
-
Anwar, T.1
Khosla, S.2
Ramakrishna, G.3
-
45
-
-
84962069907
-
MicroRNA-7 inhibits neuronal apoptosis in a cellular Parkinson's disease model by targeting Bax and Sirt2
-
Li, S., Lv, X., Zhai, K., Xu, R., Zhang, Y., Zhao, S., et al. MicroRNA-7 inhibits neuronal apoptosis in a cellular Parkinson's disease model by targeting Bax and Sirt2. Am J Transl Res 8 (2016), 993–1004.
-
(2016)
Am J Transl Res
, vol.8
, pp. 993-1004
-
-
Li, S.1
Lv, X.2
Zhai, K.3
Xu, R.4
Zhang, Y.5
Zhao, S.6
-
46
-
-
49749088697
-
Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction
-
Crujeiras, A.B., Parra, D., Goyenechea, E., Martínez, J.A., Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur J Clin Invest 38 (2008), 672–678.
-
(2008)
Eur J Clin Invest
, vol.38
, pp. 672-678
-
-
Crujeiras, A.B.1
Parra, D.2
Goyenechea, E.3
Martínez, J.A.4
-
47
-
-
84946903988
-
Age-related decrease of Sirtuin 2 protein in human peripheral blood mononuclear cells
-
Yudoh, K., Karasawa, R., Ishikawa, J., Age-related decrease of Sirtuin 2 protein in human peripheral blood mononuclear cells. Curr Aging Sci 8 (2015), 256–258.
-
(2015)
Curr Aging Sci
, vol.8
, pp. 256-258
-
-
Yudoh, K.1
Karasawa, R.2
Ishikawa, J.3
-
48
-
-
84872448285
-
High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway
-
Mortuza, R., Chen, S., Feng, B., Sen, S., Chakrabarti, S., High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS ONE, 8, 2013, e54514.
-
(2013)
PLoS ONE
, vol.8
, pp. e54514
-
-
Mortuza, R.1
Chen, S.2
Feng, B.3
Sen, S.4
Chakrabarti, S.5
-
49
-
-
84948083261
-
The role of mammalian sirtuins in cancer metabolism
-
Sebastián, C., Mostoslavsky, R., The role of mammalian sirtuins in cancer metabolism. Semin Cell Dev Biol 43 (2015), 33–42.
-
(2015)
Semin Cell Dev Biol
, vol.43
, pp. 33-42
-
-
Sebastián, C.1
Mostoslavsky, R.2
-
50
-
-
84882605310
-
Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth
-
Lin, R., Tao, R., Gao, X., Li, T., Zhou, X., Guan, K.L., et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell 51 (2013), 506–518.
-
(2013)
Mol Cell
, vol.51
, pp. 506-518
-
-
Lin, R.1
Tao, R.2
Gao, X.3
Li, T.4
Zhou, X.5
Guan, K.L.6
-
51
-
-
77952413052
-
SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis
-
Luthi-Carter, R., Taylor, D.M., Pallos, J., Lambert, E., Amore, A., Parker, A., et al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci USA 107 (2010), 7927–7932.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 7927-7932
-
-
Luthi-Carter, R.1
Taylor, D.M.2
Pallos, J.3
Lambert, E.4
Amore, A.5
Parker, A.6
-
52
-
-
84858795617
-
Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation
-
Wang, F., Chan, C.H., Chen, K., Guan, X., Lin, H.K., Tong, Q., Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 31 (2012), 1546–1557.
-
(2012)
Oncogene
, vol.31
, pp. 1546-1557
-
-
Wang, F.1
Chan, C.H.2
Chen, K.3
Guan, X.4
Lin, H.K.5
Tong, Q.6
-
53
-
-
34447626095
-
SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
-
Wang, F., Nguyen, M., Qin, F.X., Tong, Q., SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6 (2007), 505–514.
-
(2007)
Aging Cell
, vol.6
, pp. 505-514
-
-
Wang, F.1
Nguyen, M.2
Qin, F.X.3
Tong, Q.4
-
54
-
-
84884594284
-
The role of FOXO1 in β-cell failure and type 2 diabetes mellitus
-
Kitamura, T., The role of FOXO1 in β-cell failure and type 2 diabetes mellitus. Nat Rev Endocrinol 9 (2013), 615–623.
-
(2013)
Nat Rev Endocrinol
, vol.9
, pp. 615-623
-
-
Kitamura, T.1
-
55
-
-
77954225200
-
Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
-
Zhao, Y., Yang, J., Liao, W., Liu, X., Zhang, H., Wang, S., et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol 12 (2010), 665–675.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 665-675
-
-
Zhao, Y.1
Yang, J.2
Liao, W.3
Liu, X.4
Zhang, H.5
Wang, S.6
-
56
-
-
84992092060
-
Human Sirtuin 2 localization, transient interactions, and impact on the proteome point to its role in intracellular trafficking
-
Budayeva, H.G., Cristea, I.M., Human Sirtuin 2 localization, transient interactions, and impact on the proteome point to its role in intracellular trafficking. Mol Cell Proteom 15 (2016), 3107–3125.
-
(2016)
Mol Cell Proteom
, vol.15
, pp. 3107-3125
-
-
Budayeva, H.G.1
Cristea, I.M.2
-
57
-
-
33746017379
-
FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity
-
Armoni, M., Harel, C., Karni, S., Chen, H., Bar-Yoseph, F., Ver, M.R., et al. FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity. J Biol Chem 281 (2006), 19881–19891.
-
(2006)
J Biol Chem
, vol.281
, pp. 19881-19891
-
-
Armoni, M.1
Harel, C.2
Karni, S.3
Chen, H.4
Bar-Yoseph, F.5
Ver, M.R.6
-
58
-
-
0043234630
-
Peroxisome proliferator-activated receptor-gamma represses GLUT4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect
-
Armoni, M., Kritz, N., Harel, C., Bar-Yoseph, F., Chen, H., Quon, M.J., et al. Peroxisome proliferator-activated receptor-gamma represses GLUT4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect. J Biol Chem 278 (2003), 30614–30623.
-
(2003)
J Biol Chem
, vol.278
, pp. 30614-30623
-
-
Armoni, M.1
Kritz, N.2
Harel, C.3
Bar-Yoseph, F.4
Chen, H.5
Quon, M.J.6
|