-
1
-
-
84858604270
-
Metabolic reprogramming: A cancer hallmark even warburg did not anticipate
-
Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297-308, doi: 10. 1016/j. ccr. 2012. 02. 014 (2012).
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
2
-
-
84920750145
-
Cancer metabolism: Targeting metabolic pathways in cancer therapy
-
Singh, S. R., Tan, M. & Rameshwar, P. Cancer metabolism: targeting metabolic pathways in cancer therapy. Cancer Lett. 356, 147-148, doi: 10. 1016/j. canlet. 2014. 06. 002 (2015).
-
(2015)
Cancer Lett.
, vol.356
, pp. 147-148
-
-
Singh, S.R.1
Tan, M.2
Rameshwar, P.3
-
3
-
-
84928818347
-
Acetylation of MAT IIalpha represses tumour cell growth and is decreased in human hepatocellular cancer
-
Yang, H. B. et al. Acetylation of MAT IIalpha represses tumour cell growth and is decreased in human hepatocellular cancer. Nat. Commun. 6, 6973, doi: 10. 1038/ncomms7973 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 6973
-
-
Yang, H.B.1
-
4
-
-
33751267902
-
Acute myeloid leukaemia
-
Estey, E. & Dohner, H. Acute myeloid leukaemia. Lancet 368, 1894-1907, doi: 10. 1016/S0140-6736(06)69780-8 (2006).
-
(2006)
Lancet
, vol.368
, pp. 1894-1907
-
-
Estey, E.1
Dohner, H.2
-
5
-
-
84955512077
-
Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia
-
Wouters, B. J. & Delwel, R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood 127, 42-52, doi: 10. 1182/blood-2015-07-604512 (2016).
-
(2016)
Blood
, vol.127
, pp. 42-52
-
-
Wouters, B.J.1
Delwel, R.2
-
6
-
-
79955600630
-
Targeting glycolysis in leukemia: A novel inhibitor 3-BrOP in combination with rapamycin
-
Akers, L. J. et al. Targeting glycolysis in leukemia: a novel inhibitor 3-BrOP in combination with rapamycin. Leuk. Res. 35, 814-820, doi: 10. 1016/j. leukres. 2010. 12. 028 (2011).
-
(2011)
Leuk. Res.
, vol.35
, pp. 814-820
-
-
Akers, L.J.1
-
7
-
-
61849134364
-
Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells
-
Hulleman, E. et al. Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood 113, 2014-2021, doi: 10. 1182/blood-2008-05-157842 (2009).
-
(2009)
Blood
, vol.113
, pp. 2014-2021
-
-
Hulleman, E.1
-
8
-
-
5144225468
-
Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells
-
Gottschalk, S., Anderson, N., Hainz, C., Eckhardt, S. G. & Serkova, N. J. Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin. Cancer Res. 10, 6661-6668, doi: 10. 1158/1078-0432. CCR-04-0039 (2004).
-
(2004)
Clin. Cancer Res.
, vol.10
, pp. 6661-6668
-
-
Gottschalk, S.1
Anderson, N.2
Hainz, C.3
Eckhardt, S.G.4
Serkova, N.J.5
-
9
-
-
0037421968
-
Bcl-x(L) and Akt cooperate to promote leukemogenesis in vivo
-
Karnauskas, R. et al. Bcl-x(L) and Akt cooperate to promote leukemogenesis in vivo. Oncogene 22, 688-698, doi: 10. 1038/sj. onc. 1206159 (2003).
-
(2003)
Oncogene
, vol.22
, pp. 688-698
-
-
Karnauskas, R.1
-
10
-
-
84947749584
-
AMPK Protects leukemia-Initiating cells in myeloid leukemias from metabolic stress in the bone marrow
-
Saito, Y., Chapple, R. H., Lin, A., Kitano, A. & Nakada, D. AMPK Protects Leukemia-Initiating Cells in Myeloid Leukemias from Metabolic Stress in the Bone Marrow. Cell Stem Cell 17, 585-596, doi: 10. 1016/j. stem. 2015. 08. 019 (2015).
-
(2015)
Cell Stem Cell
, vol.17
, pp. 585-596
-
-
Saito, Y.1
Chapple, R.H.2
Lin, A.3
Kitano, A.4
Nakada, D.5
-
11
-
-
84860738218
-
Glycolysis inhibition targets Mcl-1 to restore sensitivity of lymphoma cells to ABT-737-induced apoptosis
-
Meynet, O. et al. Glycolysis inhibition targets Mcl-1 to restore sensitivity of lymphoma cells to ABT-737-induced apoptosis. Leukemia 26, 1145-1147, doi: 10. 1038/leu. 2011. 327 (2012).
-
(2012)
Leukemia
, vol.26
, pp. 1145-1147
-
-
Meynet, O.1
-
12
-
-
84947930457
-
Inhibition of pentose phosphate pathway suppresses acute myelogenous leukemia
-
Chen, Y. et al. Inhibition of pentose phosphate pathway suppresses acute myelogenous leukemia. Tumour Biol. 37, 6027-6034, doi: 10. 1007/s13277-015-4428-5 (2016).
-
(2016)
Tumour Biol.
, vol.37
, pp. 6027-6034
-
-
Chen, Y.1
-
13
-
-
78649973189
-
The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose
-
Lowman, X. H. et al. The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol. Cell 40, 823-833, doi: 10. 1016/j. molcel. 2010. 11. 035 (2010).
-
(2010)
Mol. Cell
, vol.40
, pp. 823-833
-
-
Lowman, X.H.1
-
14
-
-
84896509301
-
Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway
-
Yamamoto, T. et al. Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat. Commun. 5, 3480, doi: 10. 1038/ncomms4480 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 3480
-
-
Yamamoto, T.1
-
15
-
-
84906791699
-
Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth
-
Shan, C. et al. Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol. Cell 55, 552-565, doi: 10. 1016/j. molcel. 2014. 06. 020 (2014).
-
(2014)
Mol. Cell
, vol.55
, pp. 552-565
-
-
Shan, C.1
-
16
-
-
84938740158
-
Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells
-
Kuehne, A. et al. Acute Activation of Oxidative Pentose Phosphate Pathway as First-Line Response to Oxidative Stress in Human Skin Cells. Mol. Cell 59, 359-371, doi: 10. 1016/j. molcel. 2015. 06. 017 (2015).
-
(2015)
Mol. Cell
, vol.59
, pp. 359-371
-
-
Kuehne, A.1
-
17
-
-
79952280229
-
P53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase
-
Jiang, P. et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 13, 310-316, doi: 10. 1038/ncb2172 (2011).
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 310-316
-
-
Jiang, P.1
-
18
-
-
84905187426
-
Regulation of the pentose phosphate pathway in cancer
-
Jiang, P., Du, W. & Wu, M. Regulation of the pentose phosphate pathway in cancer. Protein Cell 5, 592-602, doi: 10. 1007/s13238-014-0082-8 (2014).
-
(2014)
Protein Cell
, vol.5
, pp. 592-602
-
-
Jiang, P.1
Du, W.2
Wu, M.3
-
19
-
-
84904969433
-
The pentose phosphate pathway and cancer
-
Patra, K. C. & Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347-354, doi: 10. 1016/j. tibs. 2014. 06. 005 (2014).
-
(2014)
Trends Biochem. Sci.
, vol.39
, pp. 347-354
-
-
Patra, K.C.1
Hay, N.2
-
20
-
-
84863486244
-
The pentose phosphate pathway: An antioxidant defense and a crossroad in tumor cell fate
-
Riganti, C., Gazzano, E., Polimeni, M., Aldieri, E. & Ghigo, D. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic. Biol. Med. 53, 421-436, doi: 10. 1016/j. freeradbiomed. 2012. 05. 006 (2012).
-
(2012)
Free Radic. Biol. Med.
, vol.53
, pp. 421-436
-
-
Riganti, C.1
Gazzano, E.2
Polimeni, M.3
Aldieri, E.4
Ghigo, D.5
-
21
-
-
84881453767
-
TAp73 enhances the pentose phosphate pathway and supports cell proliferation
-
Du, W. et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat. Cell Biol. 15, 991-1000, doi: 10. 1038/ncb2789 (2013).
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 991-1000
-
-
Du, W.1
-
22
-
-
37549026846
-
Glucose-6-phosphate dehydrogenase deficiency
-
Cappellini, M. D. & Fiorelli, G. Glucose-6-phosphate dehydrogenase deficiency. Lancet 371, 64-74, doi: 10. 1016/S0140-6736(08)60073-2 (2008).
-
(2008)
Lancet
, vol.371
, pp. 64-74
-
-
Cappellini, M.D.1
Fiorelli, G.2
-
23
-
-
33846963787
-
Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity
-
doi: nm1545
-
Leopold, J. A. et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat. Med. 13, 189-197, doi: nm1545 (2007).
-
(2007)
Nat. Med.
, vol.13
, pp. 189-197
-
-
Leopold, J.A.1
-
24
-
-
84903317314
-
Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress
-
Wang, Y. P. et al. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J. 33, 1304-1320, doi: 10. 1002/embj. 201387224 (2014).
-
(2014)
EMBO J.
, vol.33
, pp. 1304-1320
-
-
Wang, Y.P.1
-
25
-
-
77649336663
-
Metabolic genes in cancer: Their roles in tumor progression and clinical implications
-
Furuta, E., Okuda, H., Kobayashi, A. & Watabe, K. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim. Biophys. Acta. 1805, 141-152, doi: 10. 1016/j. bbcan. 2010. 01. 005 (2010).
-
(2010)
Biochim. Biophys. Acta.
, vol.1805
, pp. 141-152
-
-
Furuta, E.1
Okuda, H.2
Kobayashi, A.3
Watabe, K.4
-
26
-
-
0033011226
-
G6PD activity and gene expression in leukemic cells from G6PD-deficient subjects
-
Batetta, B. et al. G6PD activity and gene expression in leukemic cells from G6PD-deficient subjects. Cancer Lett. 140, 53-58 (1999).
-
(1999)
Cancer Lett.
, vol.140
, pp. 53-58
-
-
Batetta, B.1
-
27
-
-
84859482232
-
New prognostic markers, determined using gene expression analyses, reveal two distinct subtypes of chronic myelomonocytic leukaemia patients
-
Bou Samra, E. et al. New prognostic markers, determined using gene expression analyses, reveal two distinct subtypes of chronic myelomonocytic leukaemia patients. Br. J. Haematol. 157, 347-356, doi: 10. 1111/j. 1365-2141. 2012. 09069. x (2012).
-
(2012)
Br. J. Haematol.
, vol.157
, pp. 347-356
-
-
Bou Samra, E.1
-
28
-
-
84878372012
-
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
-
Cancer Genome Atlas Research Network
-
Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059-2074, doi: 10. 1056/NEJMoa1301689 (2013).
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 2059-2074
-
-
-
29
-
-
0032562785
-
Importance of glucose-6-phosphate dehydrogenase activity for cell growth
-
Tian, W. N. et al. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J. Biol. Chem. 273, 10609-10617 (1998).
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 10609-10617
-
-
Tian, W.N.1
-
30
-
-
0031045266
-
Role of glucose-6-phosphate dehydrogenase inhibition in the antiproliferative effects of dehydroepiandrosterone on human breast cancer cells
-
Di Monaco, M. et al. Role of glucose-6-phosphate dehydrogenase inhibition in the antiproliferative effects of dehydroepiandrosterone on human breast cancer cells. Br. J. Cancer 75, 589-592 (1997).
-
(1997)
Br. J. Cancer
, vol.75
, pp. 589-592
-
-
Di Monaco, M.1
-
31
-
-
84874088088
-
Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease
-
Hecker, P. A., Leopold, J. A., Gupte, S. A., Recchia, F. A. & Stanley, W. C. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 304, H491-H500, doi: 10. 1152/ajpheart. 00721. 2012 (2013).
-
(2013)
Am. J. Physiol. Heart Circ. Physiol.
, vol.304
, pp. H491-H500
-
-
Hecker, P.A.1
Leopold, J.A.2
Gupte, S.A.3
Recchia, F.A.4
Stanley, W.C.5
-
32
-
-
84908500698
-
PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis
-
Hong, X. et al. PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis. Gut 63, 1635-1647, doi: 10. 1136/gutjnl-2013-305302 (2014).
-
(2014)
Gut
, vol.63
, pp. 1635-1647
-
-
Hong, X.1
-
33
-
-
79551580561
-
ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair
-
Cosentino, C., Grieco, D. & Costanzo, V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J. 30, 546-555, doi: 10. 1038/emboj. 2010. 330 (2011).
-
(2011)
EMBO J.
, vol.30
, pp. 546-555
-
-
Cosentino, C.1
Grieco, D.2
Costanzo, V.3
-
34
-
-
84942134095
-
O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth
-
Rao, X. et al. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat. Commun. 6, 8468, doi: 10. 1038/ncomms9468 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 8468
-
-
Rao, X.1
-
35
-
-
26844519964
-
Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex
-
doi: 00076.2005
-
Xu, Y., Osborne, B. W. & Stanton, R. C. Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Am. J. Physiol. Renal Physiol. 289, F1040-F1047, doi: 00076. 2005 (2005).
-
(2005)
Am. J. Physiol. Renal Physiol.
, vol.289
, pp. F1040-F1047
-
-
Xu, Y.1
Osborne, B.W.2
Stanton, R.C.3
-
36
-
-
0034704167
-
High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells
-
Zhang, Z., Apse, K., Pang, J. & Stanton, R. C. High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J. Biol. Chem. 275, 40042-40047, doi: 10. 1074/jbc. M007505200 (2000).
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 40042-40047
-
-
Zhang, Z.1
Apse, K.2
Pang, J.3
Stanton, R.C.4
-
37
-
-
85047289450
-
TRAF6-mediated SM22alpha K21 ubiquitination promotes G6PD activation and NADPH production, contributing to GSH homeostasis and VSMC survival in vitro and in vivo
-
Dong, L. H. et al. TRAF6-mediated SM22alpha K21 ubiquitination promotes G6PD activation and NADPH production, contributing to GSH homeostasis and VSMC survival in vitro and in vivo. Circ. Res. 117, 684-694, doi: 10. 1161/CIRCRESAHA. 115. 306233 (2015).
-
(2015)
Circ. Res.
, vol.117
, pp. 684-694
-
-
Dong, L.H.1
-
38
-
-
84903310390
-
SIRT2 controls the pentose phosphate switch
-
Wu, L. E. & Sinclair, D. A. SIRT2 controls the pentose phosphate switch. EMBO J. 33, 1287-1288, doi: 10. 15252/embj. 201488713 (2014).
-
(2014)
EMBO J.
, vol.33
, pp. 1287-1288
-
-
Wu, L.E.1
Sinclair, D.A.2
-
39
-
-
84946227815
-
Emerging role of sirtuin 2 in the regulation of Mammalian metabolism
-
Gomes, P., Outeiro, T. F. & Cavadas, C. Emerging Role of Sirtuin 2 in the Regulation of Mammalian Metabolism. Trends Pharmacol. Sci. 36, 756-768, doi: 10. 1016/j. tips. 2015. 08. 001 (2015).
-
(2015)
Trends Pharmacol. Sci.
, vol.36
, pp. 756-768
-
-
Gomes, P.1
Outeiro, T.F.2
Cavadas, C.3
-
40
-
-
84942372058
-
The multifaceted functions of sirtuins in cancer
-
Targeting 41. Chalkiadaki, A. & Guarente, L
-
Kleszcz, R., Paluszczak, J. & Baer-Dubowska, W. Targeting 41. Chalkiadaki, A. & Guarente, L. The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer 15, 608-624, doi: 10. 1038/nrc3985 (2015).
-
(2015)
Nat. Rev. Cancer
, vol.15
, pp. 608-624
-
-
Kleszcz, R.1
Paluszczak, J.2
Baer-Dubowska, W.3
-
41
-
-
84923169946
-
Selective Sirt2 inhibition by ligand-induced rearrangement of the active site
-
Rumpf, T. et al. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat. Commun. 6, 6263, doi: 10. 1038/ncomms7263 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 6263
-
-
Rumpf, T.1
-
42
-
-
84962920604
-
A SIRT2-selective inhibitor promotes c-Myc oncoprotein degradation and exhibits broad anticancer activity
-
Jing, H. et al. A SIRT2-selective inhibitor promotes c-Myc oncoprotein degradation and exhibits broad anticancer activity. Cancer Cell 29, 297-310, doi: 10. 1016/j. ccell. 2016. 02. 007 (2016).
-
(2016)
Cancer Cell
, vol.29
, pp. 297-310
-
-
Jing, H.1
-
43
-
-
84977119276
-
Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia
-
Gao, X. et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat. Commun. 7, 11960, doi: 10. 1038/ncomms11960 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 11960
-
-
Gao, X.1
-
44
-
-
40749145975
-
Targeting lipid metabolism by the lipoprotein lipase inhibitor orlistat results in apoptosis of B-cell chronic lymphocytic leukemia cells
-
doi: 2405058
-
Pallasch, C. P. et al. Targeting lipid metabolism by the lipoprotein lipase inhibitor orlistat results in apoptosis of B-cell chronic lymphocytic leukemia cells. Leukemia 22, 585-592, doi: 2405058 (2008).
-
(2008)
Leukemia
, vol.22
, pp. 585-592
-
-
Pallasch, C.P.1
-
45
-
-
84941734485
-
Drug redeployment to kill leukemia and lymphoma cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids
-
Southam, A. D. et al. Drug redeployment to kill leukemia and lymphoma cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids. Cancer Res. 75, 2530-2540, doi: 10. 1158/0008-5472. CAN-15-0202 (2015).
-
(2015)
Cancer Res.
, vol.75
, pp. 2530-2540
-
-
Southam, A.D.1
-
46
-
-
80052708782
-
Modulation of doxorubicin resistance by the glucose-6-phosphate dehydrogenase activity
-
Polimeni, M. et al. Modulation of doxorubicin resistance by the glucose-6-phosphate dehydrogenase activity. Biochem J. 439, 141-149, doi: 10. 1042/BJ20102016 (2011).
-
(2011)
Biochem J.
, vol.439
, pp. 141-149
-
-
Polimeni, M.1
-
47
-
-
84055178152
-
Targeted polyubiquitylation of RASSF1C by the Mule and SCFbeta-TrCP ligases in response to DNA damage
-
Zhou, X. et al. Targeted polyubiquitylation of RASSF1C by the Mule and SCFbeta-TrCP ligases in response to DNA damage. Biochem. J. 441, 227-236, doi: 10. 1042/BJ20111500 (2012).
-
(2012)
Biochem. J.
, vol.441
, pp. 227-236
-
-
Zhou, X.1
-
48
-
-
33646342738
-
NKX3. 1 stabilizes p53, inhibits AKT activation, blocks prostate cancer initiation caused by PTEN loss
-
doi: S1535-6108(06)00118-8
-
Lei, Q. et al. NKX3. 1 stabilizes p53, inhibits AKT activation, blocks prostate cancer initiation caused by PTEN loss. Cancer Cell 9, 367-378, doi: S1535-6108(06)00118-8 (2006).
-
(2006)
Cancer Cell
, vol.9
, pp. 367-378
-
-
Lei, Q.1
-
49
-
-
79959371914
-
Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth
-
Lv, L. et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell 42, 719-730, doi: 10. 1016/j. molcel. 2011. 04. 025 (2011).
-
(2011)
Mol. Cell
, vol.42
, pp. 719-730
-
-
Lv, L.1
-
50
-
-
84923847396
-
WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation
-
Wang, Y. et al. WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol. Cell 57, 662-673, doi: 10. 1016/j. molcel. 2014. 12. 023 (2015).
-
(2015)
Mol. Cell
, vol.57
, pp. 662-673
-
-
Wang, Y.1
|