메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation

Author keywords

[No Author keywords available]

Indexed keywords

GLUCOSE 6 PHOSPHATE DEHYDROGENASE; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; SIRT2 PROTEIN, HUMAN; SIRTUIN 2;

EID: 84986252287     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep32734     Document Type: Article
Times cited : (93)

References (50)
  • 1
    • 84858604270 scopus 로고    scopus 로고
    • Metabolic reprogramming: A cancer hallmark even warburg did not anticipate
    • Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297-308, doi: 10. 1016/j. ccr. 2012. 02. 014 (2012).
    • (2012) Cancer Cell , vol.21 , pp. 297-308
    • Ward, P.S.1    Thompson, C.B.2
  • 2
    • 84920750145 scopus 로고    scopus 로고
    • Cancer metabolism: Targeting metabolic pathways in cancer therapy
    • Singh, S. R., Tan, M. & Rameshwar, P. Cancer metabolism: targeting metabolic pathways in cancer therapy. Cancer Lett. 356, 147-148, doi: 10. 1016/j. canlet. 2014. 06. 002 (2015).
    • (2015) Cancer Lett. , vol.356 , pp. 147-148
    • Singh, S.R.1    Tan, M.2    Rameshwar, P.3
  • 3
    • 84928818347 scopus 로고    scopus 로고
    • Acetylation of MAT IIalpha represses tumour cell growth and is decreased in human hepatocellular cancer
    • Yang, H. B. et al. Acetylation of MAT IIalpha represses tumour cell growth and is decreased in human hepatocellular cancer. Nat. Commun. 6, 6973, doi: 10. 1038/ncomms7973 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 6973
    • Yang, H.B.1
  • 4
    • 33751267902 scopus 로고    scopus 로고
    • Acute myeloid leukaemia
    • Estey, E. & Dohner, H. Acute myeloid leukaemia. Lancet 368, 1894-1907, doi: 10. 1016/S0140-6736(06)69780-8 (2006).
    • (2006) Lancet , vol.368 , pp. 1894-1907
    • Estey, E.1    Dohner, H.2
  • 5
    • 84955512077 scopus 로고    scopus 로고
    • Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia
    • Wouters, B. J. & Delwel, R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood 127, 42-52, doi: 10. 1182/blood-2015-07-604512 (2016).
    • (2016) Blood , vol.127 , pp. 42-52
    • Wouters, B.J.1    Delwel, R.2
  • 6
    • 79955600630 scopus 로고    scopus 로고
    • Targeting glycolysis in leukemia: A novel inhibitor 3-BrOP in combination with rapamycin
    • Akers, L. J. et al. Targeting glycolysis in leukemia: a novel inhibitor 3-BrOP in combination with rapamycin. Leuk. Res. 35, 814-820, doi: 10. 1016/j. leukres. 2010. 12. 028 (2011).
    • (2011) Leuk. Res. , vol.35 , pp. 814-820
    • Akers, L.J.1
  • 7
    • 61849134364 scopus 로고    scopus 로고
    • Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells
    • Hulleman, E. et al. Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood 113, 2014-2021, doi: 10. 1182/blood-2008-05-157842 (2009).
    • (2009) Blood , vol.113 , pp. 2014-2021
    • Hulleman, E.1
  • 8
    • 5144225468 scopus 로고    scopus 로고
    • Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells
    • Gottschalk, S., Anderson, N., Hainz, C., Eckhardt, S. G. & Serkova, N. J. Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin. Cancer Res. 10, 6661-6668, doi: 10. 1158/1078-0432. CCR-04-0039 (2004).
    • (2004) Clin. Cancer Res. , vol.10 , pp. 6661-6668
    • Gottschalk, S.1    Anderson, N.2    Hainz, C.3    Eckhardt, S.G.4    Serkova, N.J.5
  • 9
    • 0037421968 scopus 로고    scopus 로고
    • Bcl-x(L) and Akt cooperate to promote leukemogenesis in vivo
    • Karnauskas, R. et al. Bcl-x(L) and Akt cooperate to promote leukemogenesis in vivo. Oncogene 22, 688-698, doi: 10. 1038/sj. onc. 1206159 (2003).
    • (2003) Oncogene , vol.22 , pp. 688-698
    • Karnauskas, R.1
  • 10
    • 84947749584 scopus 로고    scopus 로고
    • AMPK Protects leukemia-Initiating cells in myeloid leukemias from metabolic stress in the bone marrow
    • Saito, Y., Chapple, R. H., Lin, A., Kitano, A. & Nakada, D. AMPK Protects Leukemia-Initiating Cells in Myeloid Leukemias from Metabolic Stress in the Bone Marrow. Cell Stem Cell 17, 585-596, doi: 10. 1016/j. stem. 2015. 08. 019 (2015).
    • (2015) Cell Stem Cell , vol.17 , pp. 585-596
    • Saito, Y.1    Chapple, R.H.2    Lin, A.3    Kitano, A.4    Nakada, D.5
  • 11
    • 84860738218 scopus 로고    scopus 로고
    • Glycolysis inhibition targets Mcl-1 to restore sensitivity of lymphoma cells to ABT-737-induced apoptosis
    • Meynet, O. et al. Glycolysis inhibition targets Mcl-1 to restore sensitivity of lymphoma cells to ABT-737-induced apoptosis. Leukemia 26, 1145-1147, doi: 10. 1038/leu. 2011. 327 (2012).
    • (2012) Leukemia , vol.26 , pp. 1145-1147
    • Meynet, O.1
  • 12
    • 84947930457 scopus 로고    scopus 로고
    • Inhibition of pentose phosphate pathway suppresses acute myelogenous leukemia
    • Chen, Y. et al. Inhibition of pentose phosphate pathway suppresses acute myelogenous leukemia. Tumour Biol. 37, 6027-6034, doi: 10. 1007/s13277-015-4428-5 (2016).
    • (2016) Tumour Biol. , vol.37 , pp. 6027-6034
    • Chen, Y.1
  • 13
    • 78649973189 scopus 로고    scopus 로고
    • The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose
    • Lowman, X. H. et al. The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol. Cell 40, 823-833, doi: 10. 1016/j. molcel. 2010. 11. 035 (2010).
    • (2010) Mol. Cell , vol.40 , pp. 823-833
    • Lowman, X.H.1
  • 14
    • 84896509301 scopus 로고    scopus 로고
    • Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway
    • Yamamoto, T. et al. Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat. Commun. 5, 3480, doi: 10. 1038/ncomms4480 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 3480
    • Yamamoto, T.1
  • 15
    • 84906791699 scopus 로고    scopus 로고
    • Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth
    • Shan, C. et al. Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol. Cell 55, 552-565, doi: 10. 1016/j. molcel. 2014. 06. 020 (2014).
    • (2014) Mol. Cell , vol.55 , pp. 552-565
    • Shan, C.1
  • 16
    • 84938740158 scopus 로고    scopus 로고
    • Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells
    • Kuehne, A. et al. Acute Activation of Oxidative Pentose Phosphate Pathway as First-Line Response to Oxidative Stress in Human Skin Cells. Mol. Cell 59, 359-371, doi: 10. 1016/j. molcel. 2015. 06. 017 (2015).
    • (2015) Mol. Cell , vol.59 , pp. 359-371
    • Kuehne, A.1
  • 17
    • 79952280229 scopus 로고    scopus 로고
    • P53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase
    • Jiang, P. et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 13, 310-316, doi: 10. 1038/ncb2172 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 310-316
    • Jiang, P.1
  • 18
    • 84905187426 scopus 로고    scopus 로고
    • Regulation of the pentose phosphate pathway in cancer
    • Jiang, P., Du, W. & Wu, M. Regulation of the pentose phosphate pathway in cancer. Protein Cell 5, 592-602, doi: 10. 1007/s13238-014-0082-8 (2014).
    • (2014) Protein Cell , vol.5 , pp. 592-602
    • Jiang, P.1    Du, W.2    Wu, M.3
  • 19
    • 84904969433 scopus 로고    scopus 로고
    • The pentose phosphate pathway and cancer
    • Patra, K. C. & Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347-354, doi: 10. 1016/j. tibs. 2014. 06. 005 (2014).
    • (2014) Trends Biochem. Sci. , vol.39 , pp. 347-354
    • Patra, K.C.1    Hay, N.2
  • 20
    • 84863486244 scopus 로고    scopus 로고
    • The pentose phosphate pathway: An antioxidant defense and a crossroad in tumor cell fate
    • Riganti, C., Gazzano, E., Polimeni, M., Aldieri, E. & Ghigo, D. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic. Biol. Med. 53, 421-436, doi: 10. 1016/j. freeradbiomed. 2012. 05. 006 (2012).
    • (2012) Free Radic. Biol. Med. , vol.53 , pp. 421-436
    • Riganti, C.1    Gazzano, E.2    Polimeni, M.3    Aldieri, E.4    Ghigo, D.5
  • 21
    • 84881453767 scopus 로고    scopus 로고
    • TAp73 enhances the pentose phosphate pathway and supports cell proliferation
    • Du, W. et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat. Cell Biol. 15, 991-1000, doi: 10. 1038/ncb2789 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 991-1000
    • Du, W.1
  • 22
    • 37549026846 scopus 로고    scopus 로고
    • Glucose-6-phosphate dehydrogenase deficiency
    • Cappellini, M. D. & Fiorelli, G. Glucose-6-phosphate dehydrogenase deficiency. Lancet 371, 64-74, doi: 10. 1016/S0140-6736(08)60073-2 (2008).
    • (2008) Lancet , vol.371 , pp. 64-74
    • Cappellini, M.D.1    Fiorelli, G.2
  • 23
    • 33846963787 scopus 로고    scopus 로고
    • Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity
    • doi: nm1545
    • Leopold, J. A. et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat. Med. 13, 189-197, doi: nm1545 (2007).
    • (2007) Nat. Med. , vol.13 , pp. 189-197
    • Leopold, J.A.1
  • 24
    • 84903317314 scopus 로고    scopus 로고
    • Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress
    • Wang, Y. P. et al. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J. 33, 1304-1320, doi: 10. 1002/embj. 201387224 (2014).
    • (2014) EMBO J. , vol.33 , pp. 1304-1320
    • Wang, Y.P.1
  • 25
    • 77649336663 scopus 로고    scopus 로고
    • Metabolic genes in cancer: Their roles in tumor progression and clinical implications
    • Furuta, E., Okuda, H., Kobayashi, A. & Watabe, K. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim. Biophys. Acta. 1805, 141-152, doi: 10. 1016/j. bbcan. 2010. 01. 005 (2010).
    • (2010) Biochim. Biophys. Acta. , vol.1805 , pp. 141-152
    • Furuta, E.1    Okuda, H.2    Kobayashi, A.3    Watabe, K.4
  • 26
    • 0033011226 scopus 로고    scopus 로고
    • G6PD activity and gene expression in leukemic cells from G6PD-deficient subjects
    • Batetta, B. et al. G6PD activity and gene expression in leukemic cells from G6PD-deficient subjects. Cancer Lett. 140, 53-58 (1999).
    • (1999) Cancer Lett. , vol.140 , pp. 53-58
    • Batetta, B.1
  • 27
    • 84859482232 scopus 로고    scopus 로고
    • New prognostic markers, determined using gene expression analyses, reveal two distinct subtypes of chronic myelomonocytic leukaemia patients
    • Bou Samra, E. et al. New prognostic markers, determined using gene expression analyses, reveal two distinct subtypes of chronic myelomonocytic leukaemia patients. Br. J. Haematol. 157, 347-356, doi: 10. 1111/j. 1365-2141. 2012. 09069. x (2012).
    • (2012) Br. J. Haematol. , vol.157 , pp. 347-356
    • Bou Samra, E.1
  • 28
    • 84878372012 scopus 로고    scopus 로고
    • Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
    • Cancer Genome Atlas Research Network
    • Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059-2074, doi: 10. 1056/NEJMoa1301689 (2013).
    • (2013) N. Engl. J. Med. , vol.368 , pp. 2059-2074
  • 29
    • 0032562785 scopus 로고    scopus 로고
    • Importance of glucose-6-phosphate dehydrogenase activity for cell growth
    • Tian, W. N. et al. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J. Biol. Chem. 273, 10609-10617 (1998).
    • (1998) J. Biol. Chem. , vol.273 , pp. 10609-10617
    • Tian, W.N.1
  • 30
    • 0031045266 scopus 로고    scopus 로고
    • Role of glucose-6-phosphate dehydrogenase inhibition in the antiproliferative effects of dehydroepiandrosterone on human breast cancer cells
    • Di Monaco, M. et al. Role of glucose-6-phosphate dehydrogenase inhibition in the antiproliferative effects of dehydroepiandrosterone on human breast cancer cells. Br. J. Cancer 75, 589-592 (1997).
    • (1997) Br. J. Cancer , vol.75 , pp. 589-592
    • Di Monaco, M.1
  • 31
    • 84874088088 scopus 로고    scopus 로고
    • Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease
    • Hecker, P. A., Leopold, J. A., Gupte, S. A., Recchia, F. A. & Stanley, W. C. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 304, H491-H500, doi: 10. 1152/ajpheart. 00721. 2012 (2013).
    • (2013) Am. J. Physiol. Heart Circ. Physiol. , vol.304 , pp. H491-H500
    • Hecker, P.A.1    Leopold, J.A.2    Gupte, S.A.3    Recchia, F.A.4    Stanley, W.C.5
  • 32
    • 84908500698 scopus 로고    scopus 로고
    • PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis
    • Hong, X. et al. PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis. Gut 63, 1635-1647, doi: 10. 1136/gutjnl-2013-305302 (2014).
    • (2014) Gut , vol.63 , pp. 1635-1647
    • Hong, X.1
  • 33
    • 79551580561 scopus 로고    scopus 로고
    • ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair
    • Cosentino, C., Grieco, D. & Costanzo, V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J. 30, 546-555, doi: 10. 1038/emboj. 2010. 330 (2011).
    • (2011) EMBO J. , vol.30 , pp. 546-555
    • Cosentino, C.1    Grieco, D.2    Costanzo, V.3
  • 34
    • 84942134095 scopus 로고    scopus 로고
    • O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth
    • Rao, X. et al. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat. Commun. 6, 8468, doi: 10. 1038/ncomms9468 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 8468
    • Rao, X.1
  • 35
    • 26844519964 scopus 로고    scopus 로고
    • Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex
    • doi: 00076.2005
    • Xu, Y., Osborne, B. W. & Stanton, R. C. Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Am. J. Physiol. Renal Physiol. 289, F1040-F1047, doi: 00076. 2005 (2005).
    • (2005) Am. J. Physiol. Renal Physiol. , vol.289 , pp. F1040-F1047
    • Xu, Y.1    Osborne, B.W.2    Stanton, R.C.3
  • 36
    • 0034704167 scopus 로고    scopus 로고
    • High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells
    • Zhang, Z., Apse, K., Pang, J. & Stanton, R. C. High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J. Biol. Chem. 275, 40042-40047, doi: 10. 1074/jbc. M007505200 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 40042-40047
    • Zhang, Z.1    Apse, K.2    Pang, J.3    Stanton, R.C.4
  • 37
    • 85047289450 scopus 로고    scopus 로고
    • TRAF6-mediated SM22alpha K21 ubiquitination promotes G6PD activation and NADPH production, contributing to GSH homeostasis and VSMC survival in vitro and in vivo
    • Dong, L. H. et al. TRAF6-mediated SM22alpha K21 ubiquitination promotes G6PD activation and NADPH production, contributing to GSH homeostasis and VSMC survival in vitro and in vivo. Circ. Res. 117, 684-694, doi: 10. 1161/CIRCRESAHA. 115. 306233 (2015).
    • (2015) Circ. Res. , vol.117 , pp. 684-694
    • Dong, L.H.1
  • 38
    • 84903310390 scopus 로고    scopus 로고
    • SIRT2 controls the pentose phosphate switch
    • Wu, L. E. & Sinclair, D. A. SIRT2 controls the pentose phosphate switch. EMBO J. 33, 1287-1288, doi: 10. 15252/embj. 201488713 (2014).
    • (2014) EMBO J. , vol.33 , pp. 1287-1288
    • Wu, L.E.1    Sinclair, D.A.2
  • 39
    • 84946227815 scopus 로고    scopus 로고
    • Emerging role of sirtuin 2 in the regulation of Mammalian metabolism
    • Gomes, P., Outeiro, T. F. & Cavadas, C. Emerging Role of Sirtuin 2 in the Regulation of Mammalian Metabolism. Trends Pharmacol. Sci. 36, 756-768, doi: 10. 1016/j. tips. 2015. 08. 001 (2015).
    • (2015) Trends Pharmacol. Sci. , vol.36 , pp. 756-768
    • Gomes, P.1    Outeiro, T.F.2    Cavadas, C.3
  • 40
    • 84942372058 scopus 로고    scopus 로고
    • The multifaceted functions of sirtuins in cancer
    • Targeting 41. Chalkiadaki, A. & Guarente, L
    • Kleszcz, R., Paluszczak, J. & Baer-Dubowska, W. Targeting 41. Chalkiadaki, A. & Guarente, L. The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer 15, 608-624, doi: 10. 1038/nrc3985 (2015).
    • (2015) Nat. Rev. Cancer , vol.15 , pp. 608-624
    • Kleszcz, R.1    Paluszczak, J.2    Baer-Dubowska, W.3
  • 41
    • 84923169946 scopus 로고    scopus 로고
    • Selective Sirt2 inhibition by ligand-induced rearrangement of the active site
    • Rumpf, T. et al. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat. Commun. 6, 6263, doi: 10. 1038/ncomms7263 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 6263
    • Rumpf, T.1
  • 42
    • 84962920604 scopus 로고    scopus 로고
    • A SIRT2-selective inhibitor promotes c-Myc oncoprotein degradation and exhibits broad anticancer activity
    • Jing, H. et al. A SIRT2-selective inhibitor promotes c-Myc oncoprotein degradation and exhibits broad anticancer activity. Cancer Cell 29, 297-310, doi: 10. 1016/j. ccell. 2016. 02. 007 (2016).
    • (2016) Cancer Cell , vol.29 , pp. 297-310
    • Jing, H.1
  • 43
    • 84977119276 scopus 로고    scopus 로고
    • Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia
    • Gao, X. et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat. Commun. 7, 11960, doi: 10. 1038/ncomms11960 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 11960
    • Gao, X.1
  • 44
    • 40749145975 scopus 로고    scopus 로고
    • Targeting lipid metabolism by the lipoprotein lipase inhibitor orlistat results in apoptosis of B-cell chronic lymphocytic leukemia cells
    • doi: 2405058
    • Pallasch, C. P. et al. Targeting lipid metabolism by the lipoprotein lipase inhibitor orlistat results in apoptosis of B-cell chronic lymphocytic leukemia cells. Leukemia 22, 585-592, doi: 2405058 (2008).
    • (2008) Leukemia , vol.22 , pp. 585-592
    • Pallasch, C.P.1
  • 45
    • 84941734485 scopus 로고    scopus 로고
    • Drug redeployment to kill leukemia and lymphoma cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids
    • Southam, A. D. et al. Drug redeployment to kill leukemia and lymphoma cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids. Cancer Res. 75, 2530-2540, doi: 10. 1158/0008-5472. CAN-15-0202 (2015).
    • (2015) Cancer Res. , vol.75 , pp. 2530-2540
    • Southam, A.D.1
  • 46
    • 80052708782 scopus 로고    scopus 로고
    • Modulation of doxorubicin resistance by the glucose-6-phosphate dehydrogenase activity
    • Polimeni, M. et al. Modulation of doxorubicin resistance by the glucose-6-phosphate dehydrogenase activity. Biochem J. 439, 141-149, doi: 10. 1042/BJ20102016 (2011).
    • (2011) Biochem J. , vol.439 , pp. 141-149
    • Polimeni, M.1
  • 47
    • 84055178152 scopus 로고    scopus 로고
    • Targeted polyubiquitylation of RASSF1C by the Mule and SCFbeta-TrCP ligases in response to DNA damage
    • Zhou, X. et al. Targeted polyubiquitylation of RASSF1C by the Mule and SCFbeta-TrCP ligases in response to DNA damage. Biochem. J. 441, 227-236, doi: 10. 1042/BJ20111500 (2012).
    • (2012) Biochem. J. , vol.441 , pp. 227-236
    • Zhou, X.1
  • 48
    • 33646342738 scopus 로고    scopus 로고
    • NKX3. 1 stabilizes p53, inhibits AKT activation, blocks prostate cancer initiation caused by PTEN loss
    • doi: S1535-6108(06)00118-8
    • Lei, Q. et al. NKX3. 1 stabilizes p53, inhibits AKT activation, blocks prostate cancer initiation caused by PTEN loss. Cancer Cell 9, 367-378, doi: S1535-6108(06)00118-8 (2006).
    • (2006) Cancer Cell , vol.9 , pp. 367-378
    • Lei, Q.1
  • 49
    • 79959371914 scopus 로고    scopus 로고
    • Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth
    • Lv, L. et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell 42, 719-730, doi: 10. 1016/j. molcel. 2011. 04. 025 (2011).
    • (2011) Mol. Cell , vol.42 , pp. 719-730
    • Lv, L.1
  • 50
    • 84923847396 scopus 로고    scopus 로고
    • WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation
    • Wang, Y. et al. WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol. Cell 57, 662-673, doi: 10. 1016/j. molcel. 2014. 12. 023 (2015).
    • (2015) Mol. Cell , vol.57 , pp. 662-673
    • Wang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.