-
1
-
-
73449130903
-
SNPs: Impact on gene function and phenotype
-
Shastry BS. SNPs: impact on gene function and phenotype. Methods Mol Biol. 2009;578:3-22. doi:10.1007/978-1-60327-411-1-1
-
(2009)
Methods Mol Biol.
, vol.578
, pp. 3-22
-
-
Shastry, B.S.1
-
2
-
-
79958253457
-
The biology of genomes. Disease risk links to gene regulation
-
Pennisi E. The biology of genomes. Disease risk links to gene regulation. Science. 2011;332:1031. doi:10.1126/science.332.6033.1031
-
(2011)
Science
, vol.332
, pp. 1031
-
-
Pennisi, E.1
-
3
-
-
84859929074
-
Epidemiological, genetic and epigenetic aspects of the research on healthy ageing and longevity
-
Montesanto A, Dato S, Bellizzi D, Rose G, Passarino G. Epidemiological, genetic and epigenetic aspects of the research on healthy ageing and longevity. Immun Ageing. 2012;9:6. doi:10.1186/1742-4933-9-6
-
(2012)
Immun Ageing
, vol.9
, pp. 6
-
-
Montesanto, A.1
Dato, S.2
Bellizzi, D.3
Rose, G.4
Passarino, G.5
-
4
-
-
84880940121
-
Gene expression changes with age in skin, adipose tissue, blood and brain
-
Glass D, Vinuela A, Davies MN, et al. Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol. 2013;14:R75. doi:10.1186/gb-2013-14-7-r75
-
(2013)
Genome Biol.
, vol.14
, pp. R75
-
-
Glass, D.1
Vinuela, A.2
Davies, M.N.3
-
5
-
-
83855165805
-
MicroRNAs as a novel cellular senescence regulator
-
Liu FJ, Wen T, Liu L. MicroRNAs as a novel cellular senescence regulator. Ageing Res Rev. 2012;11:41-50. doi:10.1016/j.arr.2011.06.001
-
(2012)
Ageing Res Rev.
, vol.11
, pp. 41-50
-
-
Liu, F.J.1
Wen, T.2
Liu, L.3
-
6
-
-
77649338690
-
Novel modulators of senescence, aging, and longevity: Small non-coding RNAs enter the stage
-
Grillari J, Grillari-Voglauer R. Novel modulators of senescence, aging, and longevity: Small non-coding RNAs enter the stage. Exp Gerontol. 2010;45:302-311. doi:10.1016/j.exger.2010.01.007
-
(2010)
Exp Gerontol.
, vol.45
, pp. 302-311
-
-
Grillari, J.1
Grillari-Voglauer, R.2
-
7
-
-
77955644289
-
Mammalian microRNAs predominantly act to decrease target mRNA levels
-
Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835-840. doi:10.1038/nature09267
-
(2010)
Nature
, vol.466
, pp. 835-840
-
-
Guo, H.1
Ingolia, N.T.2
Weissman, J.S.3
Bartel, D.P.4
-
9
-
-
73949085491
-
Non-coding RNAs: Regulators of disease
-
Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2010;220:126-139. doi:10.1002/path.2638
-
(2010)
J Pathol.
, vol.220
, pp. 126-139
-
-
Taft, R.J.1
Pang, K.C.2
Mercer, T.R.3
Dinger, M.4
Mattick, J.S.5
-
10
-
-
84858142662
-
MicroRNAs and their roles in aging
-
Smith-Vikos T, Slack FJ. MicroRNAs and their roles in aging. J Cell Sci. 2012;125:7-17. doi:10.1242/jcs.099200
-
(2012)
J Cell Sci.
, vol.125
, pp. 7-17
-
-
Smith-Vikos, T.1
Slack, F.J.2
-
11
-
-
84946616107
-
MicroRNA-34a induces vascular smooth muscle cells senescence by SIRT1 downregulation and promotes the expression of age-associated pro-inflammatory secretory factors
-
epub ahead of print
-
Badi I, Burba I, Ruggeri C, et al. MicroRNA-34a induces vascular smooth muscle cells senescence by SIRT1 downregulation and promotes the expression of age-associated pro-inflammatory secretory factors. J Gerontol A Biol Sci Med Sci. 2014; epub ahead of print. doi:10.1093/gerona/glu180
-
(2014)
J Gerontol A Biol Sci Med Sci.
-
-
Badi, I.1
Burba, I.2
Ruggeri, C.3
-
12
-
-
33744485559
-
Modulated microRNA expression during adult lifespan in Caenorhabditis elegans
-
Ibáñez-Ventoso C, Yang M, Guo S, Robins H, Padgett RW, Driscoll M. Modulated microRNA expression during adult lifespan in Caenorhabditis elegans. Aging Cell. 2006;5:235-246. doi:10.1111/j.1474-9726.2006.00210.x
-
(2006)
Aging Cell.
, vol.5
, pp. 235-246
-
-
Ibáñez-Ventoso, C.1
Yang, M.2
Guo, S.3
Robins, H.4
Padgett, R.W.5
Driscoll, M.6
-
13
-
-
46649098396
-
Murine microRNAs implicated in liver functions and aging process
-
Maes OC, An J, Sarojini H, Wang E. Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev. 2008;129:534-541. doi:10.1016/j.mad.2008.05.004
-
(2008)
Mech Ageing Dev.
, vol.129
, pp. 534-541
-
-
Maes, O.C.1
An, J.2
Sarojini, H.3
Wang, E.4
-
14
-
-
79954592065
-
Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain
-
Li N, Bates DJ, An J, Terry DA, Wang E. Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol Aging. 2011;32:944-955. doi:10.1016/j.neurobiolaging.2009.04.020
-
(2011)
Neurobiol Aging
, vol.32
, pp. 944-955
-
-
Li, N.1
Bates, D.J.2
An, J.3
Terry, D.A.4
Wang, E.5
-
15
-
-
84862776753
-
The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila
-
Liu N, Landreh M, Cao K, et al. The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature. 2012;482:519-523. doi:10.1038/nature10810
-
(2012)
Nature
, vol.482
, pp. 519-523
-
-
Liu, N.1
Landreh, M.2
Cao, K.3
-
16
-
-
77956513434
-
MicroRNA expression patterns reveal differential expression of target genes with age
-
Noren Hooten N, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman AB, Evans MK. microRNA expression patterns reveal differential expression of target genes with age. PLoS One. 2010;5:e10724. doi:10.1371/journal.pone.0010724
-
(2010)
PLoS One
, vol.5
-
-
Noren Hooten, N.1
Abdelmohsen, K.2
Gorospe, M.3
Ejiogu, N.4
Zonderman, A.B.5
Evans, M.K.6
-
17
-
-
84870741421
-
Age-related differences in the expression of circulating microRNAs: MiR-21 as a new circulating marker of inflammaging
-
Olivieri F, Spazzafumo L, Santini G, et al. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev. 2012;133:675-685. doi:10.1016/j.mad.2012.09.004
-
(2012)
Mech Ageing Dev.
, vol.133
, pp. 675-685
-
-
Olivieri, F.1
Spazzafumo, L.2
Santini, G.3
-
18
-
-
84922476539
-
Investigation of microRNA expression in human serum during the aging process
-
Zhang H, Yang H, Zhang C, et al. Investigation of microRNA expression in human serum during the aging process. J Gerontol A Biol Sci Med Sci. 2015;70:102-109. doi:10.1093/gerona/glu145
-
(2015)
J Gerontol A Biol Sci Med Sci.
, vol.70
, pp. 102-109
-
-
Zhang, H.1
Yang, H.2
Zhang, C.3
-
19
-
-
84863555312
-
Impact of microRNA regulation on variation in human gene expression
-
Lu J, Clark AG. Impact of microRNA regulation on variation in human gene expression. Genome Res. 2012;22:1243-1254. doi:10.1101/gr.132514.111
-
(2012)
Genome Res.
, vol.22
, pp. 1243-1254
-
-
Lu, J.1
Clark, A.G.2
-
20
-
-
49349086396
-
Polymorphisms in microRNA targets: A gold mine for molecular epidemiology
-
Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W. Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. Carcinogenesis. 2008;29:1306-1311. doi:10.1093/carcin/bgn116
-
(2008)
Carcinogenesis
, vol.29
, pp. 1306-1311
-
-
Chen, K.1
Song, F.2
Calin, G.A.3
Wei, Q.4
Hao, X.5
Zhang, W.6
-
21
-
-
84863471303
-
MicroRNA-mediated regulation of gene expression is affected by disease-associated SNPs within the 3′-UTR via altered RNA structure
-
Haas U, Sczakiel G, Laufer SD. MicroRNA-mediated regulation of gene expression is affected by disease-associated SNPs within the 3′-UTR via altered RNA structure. RNA Biol. 2012;9:924-937. doi:10.4161/rna.20497
-
(2012)
RNA Biol.
, vol.9
, pp. 924-937
-
-
Haas, U.1
Sczakiel, G.2
Laufer, S.D.3
-
22
-
-
84904966095
-
MicroRNA binding site polymorphisms as biomarkers in cancer management and research
-
Cipollini M, Landi S, Gemignani F. MicroRNA binding site polymorphisms as biomarkers in cancer management and research. Pharmgenomics Pers Med. 2014;7:173-191. doi:10.2147/PGPM.S61693
-
(2014)
Pharmgenomics Pers Med.
, vol.7
, pp. 173-191
-
-
Cipollini, M.1
Landi, S.2
Gemignani, F.3
-
23
-
-
79960105647
-
A complex crosstalk between polymorphic microRNA target sites and AD prognosis
-
Mallick B, Ghosh Z. A complex crosstalk between polymorphic microRNA target sites and AD prognosis. RNA Biol. 2011;8:665-673. doi:10.4161/rna.8.4.15584
-
(2011)
RNA Biol.
, vol.8
, pp. 665-673
-
-
Mallick, B.1
Ghosh, Z.2
-
24
-
-
34547727263
-
Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: A mechanism for functional single-nucleotide polymorphisms related to phenotypes
-
Sethupathy P, Borel C, Gagnebin M, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet. 2007;81:405-413. doi:10.1086/519979
-
(2007)
Am J Hum Genet.
, vol.81
, pp. 405-413
-
-
Sethupathy, P.1
Borel, C.2
Gagnebin, M.3
-
25
-
-
34548207751
-
The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microRNA-155 binding
-
Martin MM, Buckenberger JA, Jiang J, et al. The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microRNA-155 binding. J Biol Chem 2007;282:24262-24269. doi:10.1074/jbc.M701050200
-
(2007)
J Biol Chem
, vol.282
, pp. 24262-24269
-
-
Martin, M.M.1
Buckenberger, J.A.2
Jiang, J.3
-
26
-
-
31744435871
-
Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies
-
Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet. 2006;38:209-213. doi:10.1038/ng1706
-
(2006)
Nat Genet.
, vol.38
, pp. 209-213
-
-
Skol, A.D.1
Scott, L.J.2
Abecasis, G.R.3
Boehnke, M.4
-
27
-
-
84869884324
-
MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs
-
10.1186/1471-2164-13-661
-
Liu C, Zhang F, Li T, et al. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics. 2012;13:661. doi:10.1186/1471-2164-13-661
-
(2012)
BMC Genomics
, vol.13
, pp. 661
-
-
Liu, C.1
Zhang, F.2
Li, T.3
-
28
-
-
84856105903
-
MiRdSNP: A database of disease-associated SNPs and microRNA target sites on 3′UTRs of human genes
-
Bruno AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z. miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3′UTRs of human genes. BMC Genomics. 2012;13:44. doi:10.1186/1471-2164-13-44
-
(2012)
BMC Genomics
, vol.13
, pp. 44
-
-
Bruno, A.E.1
Li, L.2
Kalabus, J.L.3
Pan, Y.4
Yu, A.5
Hu, Z.6
-
29
-
-
75549088251
-
Patrocles: A database of polymorphic miRNA-mediated gene regulation in vertebrates
-
Hiard S, Charlier C, Coppieters W, Georges M, Baurain D. Patrocles: a database of polymorphic miRNA-mediated gene regulation in vertebrates. Nucleic Acids Res. 2010;38:D640-D651. doi:10.1093/nar/gkp926
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. D640-D651
-
-
Hiard, S.1
Charlier, C.2
Coppieters, W.3
Georges, M.4
Baurain, D.5
-
30
-
-
84891770518
-
PolymiRTS Database 3.0: Linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways
-
Bhattacharya A, Ziebarth JD, Cui Y. PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res. 2014;42:D86-D91. doi:10.1093/nar/gkt1028
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. D86-D91
-
-
Bhattacharya, A.1
Ziebarth, J.D.2
Cui, Y.3
-
31
-
-
84857691987
-
Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis
-
Gong J, Tong Y, Zhang HM, et al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat. 2012;33:254-263. doi:10.1002/humu.21641
-
(2012)
Hum Mutat
, vol.33
, pp. 254-263
-
-
Gong, J.1
Tong, Y.2
Zhang, H.M.3
-
32
-
-
80052476453
-
Inferring causative variants in microRNA target sites
-
Thomas LF, Saito T, Saetrom P. Inferring causative variants in microRNA target sites. Nucleic Acids Res. 2011;39:e109. doi:10.1093/nar/gkr414
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. e109
-
-
Thomas, L.F.1
Saito, T.2
Saetrom, P.3
-
33
-
-
38549124383
-
The microRNA.org resource: Targets and expression
-
Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008;36:D149-D153. doi:10.1093/nar/gkm995
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. D149-D153
-
-
Betel, D.1
Wilson, M.2
Gabow, A.3
Marks, D.S.4
Sander, C.5
-
34
-
-
40949137791
-
Polymorphisms within microRNA-binding sites and risk of sporadic colorectal cancer
-
Landi D, Gemignani F, Naccarati A, et al. Polymorphisms within microRNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis. 2008;29:579-584. doi:10.1093/carcin/bgm304
-
(2008)
Carcinogenesis
, vol.29
, pp. 579-584
-
-
Landi, D.1
Gemignani, F.2
Naccarati, A.3
-
35
-
-
78651293534
-
MiRBase: Integrating microRNA annotation and deep-sequencing data
-
Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152-D157. doi:10.1093/nar/gkq1027
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. D152-D157
-
-
Kozomara, A.1
Griffiths-Jones, S.2
-
36
-
-
34548292504
-
PLINK: A tool set for whole-genome association and population-based linkage analyses
-
Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559-575. doi:10.1086/519795
-
(2007)
Am J Hum Genet.
, vol.81
, pp. 559-575
-
-
Purcell, S.1
Neale, B.2
Todd-Brown, K.3
-
37
-
-
34249083199
-
Sirtuins in mammals: Insights into their biological function
-
Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404:1-13. doi:10.1042/BJ20070140
-
(2007)
Biochem J
, vol.404
, pp. 1-13
-
-
Michan, S.1
Sinclair, D.2
-
38
-
-
78649328799
-
Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling
-
Verdin E, Hirschey MD, Finley LW, Haigis MC. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci. 2010;35:669-675. doi:10.1016/j.tibs.2010.07.003
-
(2010)
Trends Biochem Sci.
, vol.35
, pp. 669-675
-
-
Verdin, E.1
Hirschey, M.D.2
Finley, L.W.3
Haigis, M.C.4
-
39
-
-
84875136721
-
Sirtuin activation: A role for plasma membrane in the cell growth puzzle
-
Crane FL, Navas P, Low H, Sun IL, de Cabo R. Sirtuin activation: a role for plasma membrane in the cell growth puzzle. J Gerontol A Biol Sci Med Sci. 2013;68:368-370. doi:10.1093/gerona/gls184
-
(2013)
J Gerontol A Biol Sci Med Sci.
, vol.68
, pp. 368-370
-
-
Crane, F.L.1
Navas, P.2
Low, H.3
Sun, I.L.4
De Cabo, R.5
-
40
-
-
33746228121
-
Sirtuins in aging and age-related disease
-
Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell. 2006;126:257-268. doi:10.1016/j.cell.2006.07.002
-
(2006)
Cell.
, vol.126
, pp. 257-268
-
-
Longo, V.D.1
Kennedy, B.K.2
-
41
-
-
84874594425
-
The sirtuin family's role in aging and age-associated pathologies
-
Hall JA, Dominy JE, Lee Y, Puigserver P. The sirtuin family's role in aging and age-associated pathologies. J Clin Invest. 2013;123:973-979. doi:10.1172/JCI64094
-
(2013)
J Clin Invest.
, vol.123
, pp. 973-979
-
-
Hall, J.A.1
Dominy, J.E.2
Lee, Y.3
Puigserver, P.4
-
42
-
-
24944559665
-
HST2 mediates SIR2-independent life-span extension by calorie restriction
-
Lamming DW, Latorre-Esteves M, Medvedik O, et al. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science. 2005;309:1861-1864. doi:10.1126/science.1113611
-
(2005)
Science
, vol.309
, pp. 1861-1864
-
-
Lamming, D.W.1
Latorre-Esteves, M.2
Medvedik, O.3
-
43
-
-
84903744004
-
SIRT2 induces the checkpoint kinase BubR1 to increase lifespan
-
North BJ, Rosenberg MA, Jeganathan KB, et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 2014;33:1438-1453. doi:10.15252/embj.201386907
-
(2014)
EMBO J
, vol.33
, pp. 1438-1453
-
-
North, B.J.1
Rosenberg, M.A.2
Jeganathan, K.B.3
-
44
-
-
0037291214
-
The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
-
North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 2003;11:437-444. doi:10.1016/S1097-2765(03)00038-8
-
(2003)
Mol Cell.
, vol.11
, pp. 437-444
-
-
North, B.J.1
Marshall, B.L.2
Borra, M.T.3
Denu, J.M.4
Verdin, E.5
-
45
-
-
33646550204
-
SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
-
Vaquero A, Scher MB, Lee DH, et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 2006;20:1256-1261. doi:10.1101/gad.1412706
-
(2006)
Genes Dev.
, vol.20
, pp. 1256-1261
-
-
Vaquero, A.1
Scher, M.B.2
Lee, D.H.3
-
46
-
-
34248151365
-
The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation
-
Inoue T, Hiratsuka M, Osaki M, Oshimura M. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle. 2007;6:1011-1018. doi:10.4161/cc.6.9.4219
-
(2007)
Cell Cycle
, vol.6
, pp. 1011-1018
-
-
Inoue, T.1
Hiratsuka, M.2
Osaki, M.3
Oshimura, M.4
-
48
-
-
0041829415
-
Proteomics-based identification of differentially expressed genes in human gliomas: Down-regulation of SIRT2 gene
-
Hiratsuka M, Inoue T, Toda T, et al. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun. 2003;309:558-566. doi:10.1016/j.bbrc.2003.08.029
-
(2003)
Biochem Biophys Res Commun.
, vol.309
, pp. 558-566
-
-
Hiratsuka, M.1
Inoue, T.2
Toda, T.3
-
49
-
-
84884414960
-
Regulation of SIRT2 levels for human non-small cell lung cancer therapy
-
Li Z, Xie QR, Chen Z, Lu S, Xia W. Regulation of SIRT2 levels for human non-small cell lung cancer therapy. Lung Cancer. 2013;82:9-15. doi:10.1016/j.lungcan.2013.05.013
-
(2013)
Lung Cancer
, vol.82
, pp. 9-15
-
-
Li, Z.1
Xie, Q.R.2
Chen, Z.3
Lu, S.4
Xia, W.5
-
50
-
-
80054769188
-
SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity
-
Kim HS, Vassilopoulos A, Wang RH, et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell. 2011;20:487-499. doi:10.1016/j.ccr.2011.09.004
-
(2011)
Cancer Cell.
, vol.20
, pp. 487-499
-
-
Kim, H.S.1
Vassilopoulos, A.2
Wang, R.H.3
-
51
-
-
78651538767
-
Discovery pipeline for epigenetically deregulated miRNAs in cancer: Integration of primary miRNA transcription
-
Hulf T, Sibbritt T, Wiklund ED, et al. Discovery pipeline for epigenetically deregulated miRNAs in cancer: integration of primary miRNA transcription. BMC Genomics. 2011;12:54. doi:10.1186/1471-2164-12-54
-
(2011)
BMC Genomics
, vol.12
, pp. 54
-
-
Hulf, T.1
Sibbritt, T.2
Wiklund, E.D.3
-
52
-
-
84899042719
-
MiR-615-5p is epigenetically inactivated and functions as a tumor suppressor in pancreatic ductal adenocarcinoma
-
epub ahead of print
-
Gao W, Gu Y, Li Z, et al. miR-615-5p is epigenetically inactivated and functions as a tumor suppressor in pancreatic ductal adenocarcinoma. Oncogene. 2014; epub ahead of print. doi:10.1038/onc.2014.101
-
(2014)
Oncogene
-
-
Gao, W.1
Gu, Y.2
Li, Z.3
-
53
-
-
84901741983
-
MicroRNAs located in the Hox gene clusters are implicated in huntington's disease pathogenesis
-
Hoss AG, Kartha VK, Dong X, et al. MicroRNAs located in the Hox gene clusters are implicated in huntington's disease pathogenesis. PLoS Genet. 2014;10:e1004188. doi:10.1371/journal.pgen.1004188
-
(2014)
PLoS Genet.
, vol.10
-
-
Hoss, A.G.1
Kartha, V.K.2
Dong, X.3
-
54
-
-
80054085814
-
Platelets in patients with premature coronary artery disease exhibit upregulation of miRNA340∗ and miRNA624∗
-
Sondermeijer BM, Bakker A, Halliani A, et al. Platelets in patients with premature coronary artery disease exhibit upregulation of miRNA340∗ and miRNA624∗. PloS One. 2011;6:e25946. doi:10.1371/journal.pone.0025946
-
(2011)
PloS One
, vol.6
-
-
Sondermeijer, B.M.1
Bakker, A.2
Halliani, A.3
-
55
-
-
84905699788
-
Genome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with aging
-
Kim JY, Park YK, Lee KP, et al. Genome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with aging. Aging. 2014;6:524-544.
-
(2014)
Aging
, vol.6
, pp. 524-544
-
-
Kim, J.Y.1
Park, Y.K.2
Lee, K.P.3
-
56
-
-
0034626740
-
Distinct functions of the two isoforms of dopamine D2 receptors
-
Usiello A, Baik JH, Rouge-Pont F, et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature. 2000;408:199-203. doi:10.1038/35041572
-
(2000)
Nature
, vol.408
, pp. 199-203
-
-
Usiello, A.1
Baik, J.H.2
Rouge-Pont, F.3
-
57
-
-
0034282319
-
Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain
-
Kaasinen V, Vilkman H, Hietala J, et al. Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiology Aging. 2000;21:683-688. doi:10.1016/S0197-4580(00)00149-4
-
(2000)
Neurobiology Aging
, vol.21
, pp. 683-688
-
-
Kaasinen, V.1
Vilkman, H.2
Hietala, J.3
-
58
-
-
33748677357
-
The correlative triad among aging, dopamine, and cognition: Current status and future prospects
-
Backman L, Nyberg L, Lindenberger U, Li SC, Farde L. The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neuroscience Biobehav Rev. 2006;30:791-807. doi:10.1016/j.neubiorev.2006.06.005
-
(2006)
Neuroscience Biobehav Rev.
, vol.30
, pp. 791-807
-
-
Backman, L.1
Nyberg, L.2
Lindenberger, U.3
Li, S.C.4
Farde, L.5
-
59
-
-
0042827344
-
D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes
-
Noble EP. D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. Am J Med Genet B Neuropsychiatr Genet. 2003;116B:103-125. doi:10.1002/ajmg.b.10005
-
(2003)
Am J Med Genet B Neuropsychiatr Genet.
, vol.116 B
, pp. 103-125
-
-
Noble, E.P.1
-
60
-
-
84874677592
-
Suppression of neuroinflammation by astrocytic dopamine D2 receptors via alphaB-crystallin
-
Shao W, Zhang SZ, Tang M, et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via alphaB-crystallin. Nature. 2013;494:90-94. doi:10.1038/nature11748
-
(2013)
Nature
, vol.494
, pp. 90-94
-
-
Shao, W.1
Zhang, S.Z.2
Tang, M.3
-
61
-
-
77952698932
-
Evidence for natural antisense transcript-mediated inhibition of microRNA function
-
Faghihi MA, Zhang M, Huang J, et al. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol. 2010;11:R56. doi:10.1186/gb-2010-11-5-r56
-
(2010)
Genome Biol.
, vol.11
, pp. R56
-
-
Faghihi, M.A.1
Zhang, M.2
Huang, J.3
-
62
-
-
84900457886
-
MicroRNA-9 and microRNA-326 regulate human dopamine D2 receptor expression, and the microRNA-mediated expression regulation is altered by a genetic variant
-
Shi S, Leites C, He D, et al. MicroRNA-9 and microRNA-326 regulate human dopamine D2 receptor expression, and the microRNA-mediated expression regulation is altered by a genetic variant. J Biol Chem. 2014;289:13434-13444. doi:10.1074/jbc.M113.535203
-
(2014)
J Biol Chem.
, vol.289
, pp. 13434-13444
-
-
Shi, S.1
Leites, C.2
He, D.3
|