-
1
-
-
34447250376
-
Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT?
-
CrossRef Medline
-
Radisky, D. C., Kenny, P. A., and Bissell, M. J. (2007) Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT? J. Cell. Biochem. 101, 830-839 CrossRef Medline
-
(2007)
J. Cell. Biochem.
, vol.101
, pp. 830-839
-
-
Radisky, D.C.1
Kenny, P.A.2
Bissell, M.J.3
-
2
-
-
84872334083
-
Host responses in tissue repair and fibrosis
-
CrossRef Medline
-
Duffield, J. S., Lupher, M., Thannickal, V. J., and Wynn, T. A. (2013) Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. 8, 241-276 CrossRef Medline
-
(2013)
Annu. Rev. Pathol.
, vol.8
, pp. 241-276
-
-
Duffield, J.S.1
Lupher, M.2
Thannickal, V.J.3
Wynn, T.A.4
-
3
-
-
0038823614
-
Myofibroblast differentiation by transforming growth factor-β1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase
-
CrossRef Medline
-
Thannickal, V. J., Lee, D. Y., White, E. S., Cui, Z., Larios, J. M., Chacon, R., Horowitz, J. C., Day, R. M., and Thomas, P. E. (2003) Myofibroblast differentiation by transforming growth factor-β1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J. Biol. Chem. 278, 12384-12389 CrossRef Medline
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 12384-12389
-
-
Thannickal, V.J.1
Lee, D.Y.2
White, E.S.3
Cui, Z.4
Larios, J.M.5
Chacon, R.6
Horowitz, J.C.7
Day, R.M.8
Thomas, P.E.9
-
4
-
-
0041827227
-
Fibroblast phenotypes in pulmonary fibrosis
-
Medline
-
Phan, S. H. (2003) Fibroblast phenotypes in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 29, S87-S92 Medline
-
(2003)
Am. J. Respir. Cell Mol. Biol.
, vol.29
, pp. S87-S92
-
-
Phan, S.H.1
-
5
-
-
13844270572
-
Tissue repair, contraction, and the myofibroblast
-
CrossRef Medline
-
Desmoulière, A., Chaponnier, C., and Gabbiani, G. (2005) Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 13, 7-12 CrossRef Medline
-
(2005)
Wound Repair Regen.
, vol.13
, pp. 7-12
-
-
Desmoulière, A.1
Chaponnier, C.2
Gabbiani, G.3
-
6
-
-
0142104985
-
Smad-dependent and Smad-independent pathways in TGF-β family signalling
-
CrossRef Medline
-
Derynck, R., and Zhang, Y. E. (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577-584 CrossRef Medline
-
(2003)
Nature
, vol.425
, pp. 577-584
-
-
Derynck, R.1
Zhang, Y.E.2
-
7
-
-
2142646426
-
TGF-β signaling and the fibrotic response
-
CrossRef Medline
-
Leask, A., and Abraham, D. J. (2004) TGF-β signaling and the fibrotic response. FASEB J. 18, 816-827 CrossRef Medline
-
(2004)
FASEB J.
, vol.18
, pp. 816-827
-
-
Leask, A.1
Abraham, D.J.2
-
8
-
-
0345832090
-
Activation of the prosurvival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-β1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor
-
CrossRef Medline
-
Horowitz, J. C., Lee, D. Y., Waghray, M., Keshamouni, V. G., Thomas, P. E., Zhang, H., Cui, Z., and Thannickal, V. J. (2004) Activation of the prosurvival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-β1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. J. Biol. Chem. 279, 1359 -1367 CrossRef Medline
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 1359-1367
-
-
Horowitz, J.C.1
Lee, D.Y.2
Waghray, M.3
Keshamouni, V.G.4
Thomas, P.E.5
Zhang, H.6
Cui, Z.7
Thannickal, V.J.8
-
9
-
-
85042323081
-
The emerging role and targetability of the TCA cycle in cancer metabolism
-
CrossRef
-
Anderson, N. M., Mucka, P., Kern, J. G., and Feng, H. (2017) The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell, 1-22 CrossRef
-
(2017)
Protein Cell
, pp. 1-22
-
-
Anderson, N.M.1
Mucka, P.2
Kern, J.G.3
Feng, H.4
-
10
-
-
0019402721
-
The evolution of metabolic cycles
-
CrossRef Medline
-
Baldwin, J. E., and Krebs, H. (1981) The evolution of metabolic cycles. Nature 291, 381-382 CrossRef Medline
-
(1981)
Nature
, vol.291
, pp. 381-382
-
-
Baldwin, J.E.1
Krebs, H.2
-
11
-
-
0030057186
-
Glucose and glutamine metabolism in C6 glioma cells studied by carbon 13 NMR
-
CrossRef Medline
-
Portais, J. C., Voisin, P., Merle, M., and Canioni, P. (1996) Glucose and glutamine metabolism in C6 glioma cells studied by carbon 13 NMR. Biochimie 78, 155-164 CrossRef Medline
-
(1996)
Biochimie
, vol.78
, pp. 155-164
-
-
Portais, J.C.1
Voisin, P.2
Merle, M.3
Canioni, P.4
-
12
-
-
84855453655
-
Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells
-
CrossRef Medline
-
Le, A., Lane, A. N., Hamaker, M., Bose, S., Gouw, A., Barbi, J., Tsukamoto, T., Rojas, C. J., Slusher, B. S., Zhang, H., Zimmerman, L. J., Liebler, D. C., Slebos, R. J., Lorkiewicz, P. K., Higashi, R. M., et al. (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110-121 CrossRef Medline
-
(2012)
Cell Metab.
, vol.15
, pp. 110-121
-
-
Le, A.1
Lane, A.N.2
Hamaker, M.3
Bose, S.4
Gouw, A.5
Barbi, J.6
Tsukamoto, T.7
Rojas, C.J.8
Slusher, B.S.9
Zhang, H.10
Zimmerman, L.J.11
Liebler, D.C.12
Slebos, R.J.13
Lorkiewicz, P.K.14
Higashi, R.M.15
-
13
-
-
0018386209
-
Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells
-
Medline
-
Reitzer, L. J., Wice, B. M., and Kennell, D. (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 254, 2669-2676 Medline
-
(1979)
J. Biol. Chem.
, vol.254
, pp. 2669-2676
-
-
Reitzer, L.J.1
Wice, B.M.2
Kennell, D.3
-
14
-
-
37449034854
-
Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
-
CrossRef Medline
-
DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., and Thompson, C. B. (2007) Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 19345-19350 CrossRef Medline
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 19345-19350
-
-
DeBerardinis, R.J.1
Mancuso, A.2
Daikhin, E.3
Nissim, I.4
Yudkoff, M.5
Wehrli, S.6
Thompson, C.B.7
-
15
-
-
0037163021
-
The key role of anaplerosis and cataplerosis for citric acid cycle function
-
CrossRef Medline
-
Owen, O. E., Kalhan, S. C., and Hanson, R. W. (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem. 277, 30409-30412 CrossRef Medline
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 30409-30412
-
-
Owen, O.E.1
Kalhan, S.C.2
Hanson, R.W.3
-
16
-
-
84907200741
-
Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versushost disease
-
CrossRef Medline
-
Glick, G. D., Rossignol, R., Lyssiotis, C. A., Wahl, D., Lesch, C., Sanchez, B., Liu, X., Hao, L. Y., Taylor, C., Hurd, A., Ferrara, J. L., Tkachev, V., Byersdorfer, C. A., Boros, L., and Opipari, A. W. (2014) Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versushost disease. J. Pharmacol. Exp. Ther. 351, 298-307 CrossRef Medline
-
(2014)
J. Pharmacol. Exp. Ther.
, vol.351
, pp. 298-307
-
-
Glick, G.D.1
Rossignol, R.2
Lyssiotis, C.A.3
Wahl, D.4
Lesch, C.5
Sanchez, B.6
Liu, X.7
Hao, L.Y.8
Taylor, C.9
Hurd, A.10
Ferrara, J.L.11
Tkachev, V.12
Byersdorfer, C.A.13
Boros, L.14
Opipari, A.W.15
-
17
-
-
84982993825
-
From Krebs to clinic: Glutamine metabolism to cancer therapy
-
CrossRef Medline
-
Altman, B. J., Stine, Z. E., and Dang, C. V. (2016) From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat. Rev. Cancer. 16, 749 CrossRef Medline
-
(2016)
Nat. Rev. Cancer.
, vol.16
, pp. 749
-
-
Altman, B.J.1
Stine, Z.E.2
Dang, C.V.3
-
18
-
-
0021264219
-
Purification, kinetic behavior, and regulation of NAD(P) malic enzyme of tumor mitochondria
-
Medline
-
Moreadith, R. W., and Lehninger, A. L. (1984) Purification, kinetic behavior, and regulation of NAD(P) malic enzyme of tumor mitochondria. J. Biol. Chem. 259, 6222-6227 Medline
-
(1984)
J. Biol. Chem.
, vol.259
, pp. 6222-6227
-
-
Moreadith, R.W.1
Lehninger, A.L.2
-
19
-
-
0001062019
-
Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues
-
CrossRef Medline
-
Krebs, H. A. (1935) Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem. J. 29, 1951-1969 CrossRef Medline
-
(1935)
Biochem. J.
, vol.29
, pp. 1951-1969
-
-
Krebs, H.A.1
-
20
-
-
0026052695
-
Isolation, characterization, and in vitro expression of a cDNA that encodes the kidney isoenzyme of the mitochondrial glutaminase
-
Medline
-
Shapiro, R. A., Farrell, L., Srinivasan, M., and Curthoys, N. P. (1991) Isolation, characterization, and in vitro expression of a cDNA that encodes the kidney isoenzyme of the mitochondrial glutaminase. J. Biol. Chem. 266, 18792-18796 Medline
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 18792-18796
-
-
Shapiro, R.A.1
Farrell, L.2
Srinivasan, M.3
Curthoys, N.P.4
-
21
-
-
0033620972
-
Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing
-
Medline
-
Elgadi, K. M., Meguid, R. A., Qian, M., Souba, W. W., and Abcouwer, S. F. (1999) Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiol. Genomics 1, 51-62 Medline
-
(1999)
Physiol. Genomics
, vol.1
, pp. 51-62
-
-
Elgadi, K.M.1
Meguid, R.A.2
Qian, M.3
Souba, W.W.4
Abcouwer, S.F.5
-
22
-
-
84906270661
-
Discovery of selective inhibitors of glutaminase-2, which inhibit mTORC1, activate autophagy and inhibit proliferation in cancer cells
-
CrossRef Medline
-
Lee, Y. Z., Yang, C. W., Chang, H. Y., Hsu, H. Y., Chen, I. S., Chang, H. S., Lee, C. H., Lee, J. C., Kumar, C. R., Qiu, Y. Q., Chao, Y. S., and Lee, S. J. (2014) Discovery of selective inhibitors of glutaminase-2, which inhibit mTORC1, activate autophagy and inhibit proliferation in cancer cells. Oncotarget 5, 6087-6101 CrossRef Medline
-
(2014)
Oncotarget
, vol.5
, pp. 6087-6101
-
-
Lee, Y.Z.1
Yang, C.W.2
Chang, H.Y.3
Hsu, H.Y.4
Chen, I.S.5
Chang, H.S.6
Lee, C.H.7
Lee, J.C.8
Kumar, C.R.9
Qiu, Y.Q.10
Chao, Y.S.11
Lee, S.J.12
-
23
-
-
84928408102
-
Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma
-
CrossRef Medline
-
Yu, D., Shi, X., Meng, G., Chen, J., Yan, C., Jiang, Y., Wei, J., and Ding, Y. (2015) Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma. Oncotarget 6, 7619 -7631 CrossRef Medline
-
(2015)
Oncotarget
, vol.6
, pp. 7619-7631
-
-
Yu, D.1
Shi, X.2
Meng, G.3
Chen, J.4
Yan, C.5
Jiang, Y.6
Wei, J.7
Ding, Y.8
-
24
-
-
84960128702
-
Normoxic accumulation of HIF1α is associated with glutaminolysis
-
CrossRef Medline
-
Kappler, M., Pabst, U., Rot, S., Taubert, H., Wichmann, H., Schubert, J., Bache, M., Weinholdt, C., Immel, U. D., Grosse, I., Vordermark, D., and Eckert, A. W. (2017) Normoxic accumulation of HIF1α is associated with glutaminolysis. Clin. Oral. Investig. 21, 211-224 CrossRef Medline
-
(2017)
Clin. Oral. Investig.
, vol.21
, pp. 211-224
-
-
Kappler, M.1
Pabst, U.2
Rot, S.3
Taubert, H.4
Wichmann, H.5
Schubert, J.6
Bache, M.7
Weinholdt, C.8
Immel, U.D.9
Grosse, I.10
Vordermark, D.11
Eckert, A.W.12
-
25
-
-
0037443517
-
Cellular response to hypoxia involves signaling via Smad proteins
-
CrossRef Medline
-
Zhang, H., Akman, H. O., Smith, E. L., Zhao, J., Murphy-Ullrich, J. E., and Batuman, O. A. (2003) Cellular response to hypoxia involves signaling via Smad proteins. Blood 101, 2253-2260 CrossRef Medline
-
(2003)
Blood
, vol.101
, pp. 2253-2260
-
-
Zhang, H.1
Akman, H.O.2
Smith, E.L.3
Zhao, J.4
Murphy-Ullrich, J.E.5
Batuman, O.A.6
-
26
-
-
79954463134
-
Interdependence of HIF-1α and TGF-β/ Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression
-
CrossRef Medline
-
Basu, R. K., Hubchak, S., Hayashida, T., Runyan, C. E., Schumacker, P. T., and Schnaper, H. W. (2011) Interdependence of HIF-1α and TGF-β/ Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am. J. Physiol. Renal. Physiol. 300, F898-F905 CrossRef Medline
-
(2011)
Am. J. Physiol. Renal. Physiol.
, vol.300
, pp. F898-F905
-
-
Basu, R.K.1
Hubchak, S.2
Hayashida, T.3
Runyan, C.E.4
Schumacker, P.T.5
Schnaper, H.W.6
-
27
-
-
0028068606
-
Transcriptional regulation of genes encoding glycolytic enzymes by hypoxiainducible factor 1
-
Medline
-
Semenza, G. L., Roth, P. H., Fang, H. M., and Wang, G. L. (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxiainducible factor 1. J. Biol. Chem. 269, 23757-23763 Medline
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 23757-23763
-
-
Semenza, G.L.1
Roth, P.H.2
Fang, H.M.3
Wang, G.L.4
-
28
-
-
0030460724
-
Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1
-
CrossRef Medline
-
Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P., and Giallongo, A. (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271, 32529-32537 CrossRef Medline
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 32529-32537
-
-
Semenza, G.L.1
Jiang, B.H.2
Leung, S.W.3
Passantino, R.4
Concordet, J.P.5
Maire, P.6
Giallongo, A.7
-
29
-
-
19944428439
-
Induction of glucose transporter 1 expression through hypoxiainducible factor 1α under hypoxic conditions in trophoblast-derived cells
-
CrossRef Medline
-
Hayashi, M., Sakata, M., Takeda, T., Yamamoto, T., Okamoto, Y., Sawada, K., Kimura, A., Minekawa, R., Tahara, M., Tasaka, K., and Murata, Y. (2004) Induction of glucose transporter 1 expression through hypoxiainducible factor 1α under hypoxic conditions in trophoblast-derived cells. J. Endocrinol. 183, 145-154 CrossRef Medline
-
(2004)
J. Endocrinol.
, vol.183
, pp. 145-154
-
-
Hayashi, M.1
Sakata, M.2
Takeda, T.3
Yamamoto, T.4
Okamoto, Y.5
Sawada, K.6
Kimura, A.7
Minekawa, R.8
Tahara, M.9
Tasaka, K.10
Murata, Y.11
-
30
-
-
84944463362
-
Metabolic reprogramming is required for myofibroblast contractility and differentiation
-
CrossRef Medline
-
Bernard, K., Logsdon, N. J., Ravi, S., Xie, N., Persons, B. P., Rangarajan, S., Zmijewski, J. W., Mitra, K., Liu, G., Darley-Usmar, V. M., and Thannickal, V. J. (2015) Metabolic reprogramming is required for myofibroblast contractility and differentiation. J. Biol. Chem. 290, 25427-25438 CrossRef Medline
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 25427-25438
-
-
Bernard, K.1
Logsdon, N.J.2
Ravi, S.3
Xie, N.4
Persons, B.P.5
Rangarajan, S.6
Zmijewski, J.W.7
Mitra, K.8
Liu, G.9
Darley-Usmar, V.M.10
Thannickal, V.J.11
-
31
-
-
84952063696
-
Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis
-
CrossRef Medline
-
Xie, N., Tan, Z., Banerjee, S., Cui, H., Ge, J., Liu, R. M., Bernard, K., Thannickal, V. J., and Liu, G. (2015) Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am J Respir. Crit. Care. Med. 192, 1462-1474 CrossRef Medline
-
(2015)
Am J Respir. Crit. Care. Med.
, vol.192
, pp. 1462-1474
-
-
Xie, N.1
Tan, Z.2
Banerjee, S.3
Cui, H.4
Ge, J.5
Liu, R.M.6
Bernard, K.7
Thannickal, V.J.8
Liu, G.9
-
32
-
-
0038682002
-
Mechanisms of TGF-β signaling from cell membrane to the nucleus
-
CrossRef Medline
-
Shi, Y., and Massagué, J. (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685-700 CrossRef Medline
-
(2003)
Cell
, vol.113
, pp. 685-700
-
-
Shi, Y.1
Massagué, J.2
-
33
-
-
4444341835
-
SB-431542, a small molecule transforming growth factor-β-receptor antagonist, inhibits human glioma cell line proliferation and motility
-
Medline
-
Hjelmeland, M. D., Hjelmeland, A. B., Sathornsumetee, S., Reese, E. D., Herbstreith, M. H., Laping, N. J., Friedman, H. S., Bigner, D. D., Wang, X. F., and Rich, J. N. (2004) SB-431542, a small molecule transforming growth factor-β-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol. Cancer Ther. 3, 737-745 Medline
-
(2004)
Mol. Cancer Ther.
, vol.3
, pp. 737-745
-
-
Hjelmeland, M.D.1
Hjelmeland, A.B.2
Sathornsumetee, S.3
Reese, E.D.4
Herbstreith, M.H.5
Laping, N.J.6
Friedman, H.S.7
Bigner, D.D.8
Wang, X.F.9
Rich, J.N.10
-
34
-
-
85027840673
-
Targeted blockade of TGF-β and IL-6/JAK2/STAT3 pathways inhibits lung cancer growth promoted by bone marrow-derived myofibroblasts
-
CrossRef Medline
-
Shi, J., Feng, J., Xie, J., Mei, Z., Shi, T., Wang, S., Du, Y., Yang, G., Wu, Y., Cheng, X., Li, S., Zhu, L., Yang, C. S., Tu, S., and Jie, Z. (2017) Targeted blockade of TGF-β and IL-6/JAK2/STAT3 pathways inhibits lung cancer growth promoted by bone marrow-derived myofibroblasts. Sci. Rep. 7, 8660 CrossRef Medline
-
(2017)
Sci. Rep.
, vol.7
, pp. 8660
-
-
Shi, J.1
Feng, J.2
Xie, J.3
Mei, Z.4
Shi, T.5
Wang, S.6
Du, Y.7
Yang, G.8
Wu, Y.9
Cheng, X.10
Li, S.11
Zhu, L.12
Yang, C.S.13
Tu, S.14
Jie, Z.15
-
35
-
-
0032698069
-
The p38 mitogen-activated protein kinase is required for NF-κBdependent gene expression. The role of TATA-binding protein (TBP)
-
CrossRef Medline
-
Carter, A. B., Knudtson, K. L., Monick, M. M., and Hunninghake, G. W. (1999) The p38 mitogen-activated protein kinase is required for NF-κBdependent gene expression. The role of TATA-binding protein (TBP). J. Biol. Chem. 274, 30858-30863 CrossRef Medline
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 30858-30863
-
-
Carter, A.B.1
Knudtson, K.L.2
Monick, M.M.3
Hunninghake, G.W.4
-
36
-
-
84957941184
-
HIF-1α promotes glutamine-mediated redox homeostasis and glycogendependent bioenergetics to support postimplantation bone cell survival
-
CrossRef Medline
-
Stegen, S., van Gastel, N., Eelen, G., Ghesquière, B., D'Anna, F., Thienpont, B., Goveia, J., Torrekens, S., Van Looveren, R., Luyten, F. P., Maxwell, P. H., Wielockx, B., Lambrechts, D., Fendt, S. M., Carmeliet, P., et al. (2016) HIF-1α promotes glutamine-mediated redox homeostasis and glycogendependent bioenergetics to support postimplantation bone cell survival. Cell Metab. 23, 265-279 CrossRef Medline
-
(2016)
Cell Metab.
, vol.23
, pp. 265-279
-
-
Stegen, S.1
Van Gastel, N.2
Eelen, G.3
Ghesquière, B.4
D'Anna, F.5
Thienpont, B.6
Goveia, J.7
Torrekens, S.8
Van Looveren, R.9
Luyten, F.P.10
Maxwell, P.H.11
Wielockx, B.12
Lambrechts, D.13
Fendt, S.M.14
Carmeliet, P.15
-
37
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
CrossRef Medline
-
Wise, D. R., DeBerardinis, R. J., Mancuso, A., Sayed, N., Zhang, X. Y., Pfeiffer, H. K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S. B., and Thompson, C. B. (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. U.S.A. 105, 18782-18787 CrossRef Medline
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 18782-18787
-
-
Wise, D.R.1
DeBerardinis, R.J.2
Mancuso, A.3
Sayed, N.4
Zhang, X.Y.5
Pfeiffer, H.K.6
Nissim, I.7
Daikhin, E.8
Yudkoff, M.9
McMahon, S.B.10
Thompson, C.B.11
-
38
-
-
84975299342
-
Enhanced OXPHOS, glutaminolysis and β-oxidation constitute the metastatic phenotype of melanoma cells
-
CrossRef Medline
-
Rodrigues, M. F., Obre, E., de Melo, F. H., Santos, G. C., Jr, Galina, A., Jasiulionis, M. G., Rossignol, R., Rumjanek, F. D., and Amoêdo, N. D. (2016) Enhanced OXPHOS, glutaminolysis and β-oxidation constitute the metastatic phenotype of melanoma cells. Biochem. J. 473, 703-715 CrossRef Medline
-
(2016)
Biochem. J.
, vol.473
, pp. 703-715
-
-
Rodrigues, M.F.1
Obre, E.2
De Melo, F.H.3
Santos, G.C.4
Galina, A.5
Jasiulionis, M.G.6
Rossignol, R.7
Rumjanek, F.D.8
Amoêdo, N.D.9
-
39
-
-
80055106592
-
Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-β
-
CrossRef Medline
-
Sandbo, N., Lau, A., Kach, J., Ngam, C., Yau, D., and Dulin, N. O. (2011) Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-β. Am. J. Physiol. Lung. Cell. Mol. Physiol. 301, L656-L666 CrossRef Medline
-
(2011)
Am. J. Physiol. Lung. Cell. Mol. Physiol.
, vol.301
, pp. L656-L666
-
-
Sandbo, N.1
Lau, A.2
Kach, J.3
Ngam, C.4
Yau, D.5
Dulin, N.O.6
-
40
-
-
84874609382
-
Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis
-
CrossRef Medline
-
Zhou, Y., Huang, X., Hecker, L., Kurundkar, D., Kurundkar, A., Liu, H., Jin, T. H., Desai, L., Bernard, K., and Thannickal, V. J. (2013) Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J. Clin. Invest. 123, 1096 -1108 CrossRef Medline
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 1096-1108
-
-
Zhou, Y.1
Huang, X.2
Hecker, L.3
Kurundkar, D.4
Kurundkar, A.5
Liu, H.6
Jin, T.H.7
Desai, L.8
Bernard, K.9
Thannickal, V.J.10
-
41
-
-
84890209181
-
Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia
-
Medline
-
Fan, J., Kamphorst, J. J., Mathew, R., Chung, M. K., White, E., Shlomi, T., and Rabinowitz, J. D. (2013) Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 9, 712 Medline
-
(2013)
Mol. Syst. Biol.
, vol.9
, pp. 712
-
-
Fan, J.1
Kamphorst, J.J.2
Mathew, R.3
Chung, M.K.4
White, E.5
Shlomi, T.6
Rabinowitz, J.D.7
-
42
-
-
0030961006
-
Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes
-
CrossRef Medline
-
Salceda, S., and Caro, J. (1997) Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272, 22642-22647 CrossRef Medline
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 22642-22647
-
-
Salceda, S.1
Caro, J.2
-
43
-
-
0032493368
-
Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway
-
CrossRef Medline
-
Huang, L. E., Gu, J., Schau, M., and Bunn, H. F. (1998) Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. U.S.A. 95, 7987-7992 CrossRef Medline
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 7987-7992
-
-
Huang, L.E.1
Gu, J.2
Schau, M.3
Bunn, H.F.4
-
44
-
-
38749106115
-
Hypoxia-inducible factor-1α stabilization in nonhypoxic conditions: Role of oxidation and intracellular ascorbate depletion
-
CrossRef Medline
-
Pagé, E. L., Chan, D. A., Giaccia, A. J., Levine, M., and Richard, D. E. (2008) Hypoxia-inducible factor-1α stabilization in nonhypoxic conditions: Role of oxidation and intracellular ascorbate depletion. Mol. Biol. Cell 19, 86-94 CrossRef Medline
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 86-94
-
-
Pagé, E.L.1
Chan, D.A.2
Giaccia, A.J.3
Levine, M.4
Richard, D.E.5
-
45
-
-
84994672095
-
Mitochondrial protein lipoylation and the 2-oxoglutarate dehydrogenase complex controls HIF1α stability in aerobic conditions
-
CrossRef Medline
-
Burr, S. P., Costa, A. S., Grice, G. L., Timms, R. T., Lobb, I. T., Freisinger, P., Dodd, R. B., Dougan, G., Lehner, P. J., Frezza, C., and Nathan, J. A. (2016) Mitochondrial protein lipoylation and the 2-oxoglutarate dehydrogenase complex controls HIF1α stability in aerobic conditions. Cell Metab. 24, 740-752 CrossRef Medline
-
(2016)
Cell Metab.
, vol.24
, pp. 740-752
-
-
Burr, S.P.1
Costa, A.S.2
Grice, G.L.3
Timms, R.T.4
Lobb, I.T.5
Freisinger, P.6
Dodd, R.B.7
Dougan, G.8
Lehner, P.J.9
Frezza, C.10
Nathan, J.A.11
-
46
-
-
19944433653
-
Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase
-
CrossRef Medline
-
Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., Pan, Y., Simon, M. C., Thompson, C. B., and Gottlieb, E. (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7, 77-85 CrossRef Medline
-
(2005)
Cancer Cell
, vol.7
, pp. 77-85
-
-
Selak, M.A.1
Armour, S.M.2
MacKenzie, E.D.3
Boulahbel, H.4
Watson, D.G.5
Mansfield, K.D.6
Pan, Y.7
Simon, M.C.8
Thompson, C.B.9
Gottlieb, E.10
-
47
-
-
27744606274
-
Mitochondrial succinate is instrumental for HIF1α nuclear translocation in SDHAmutant fibroblasts under normoxic conditions
-
CrossRef Medline
-
Brière, J. J., Favier, J., Bénit, P., El Ghouzzi, V., Lorenzato, A., Rabier, D., Di Renzo, M. F., Gimenez-Roqueplo, A. P., and Rustin, P. (2005) Mitochondrial succinate is instrumental for HIF1α nuclear translocation in SDHAmutant fibroblasts under normoxic conditions. Hum. Mol. Genet. 14, 3263-3269 CrossRef Medline
-
(2005)
Hum. Mol. Genet.
, vol.14
, pp. 3263-3269
-
-
Brière, J.J.1
Favier, J.2
Bénit, P.3
El Ghouzzi, V.4
Lorenzato, A.5
Rabier, D.6
Di Renzo, M.F.7
Gimenez-Roqueplo, A.P.8
Rustin, P.9
-
48
-
-
33947520506
-
Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: Possible links between cell metabolism and stabilization of HIF
-
CrossRef Medline
-
Koivunen, P., Hirsila, M., Remes, A. M., Hassinen, I. E., Kivirikko, K. I., and Myllyharju, J. (2007) Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: Possible links between cell metabolism and stabilization of HIF. J. Biol. Chem. 282, 4524-4532 CrossRef Medline
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 4524-4532
-
-
Koivunen, P.1
Hirsila, M.2
Remes, A.M.3
Hassinen, I.E.4
Kivirikko, K.I.5
Myllyharju, J.6
-
49
-
-
85003874481
-
Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity
-
CrossRef Medline
-
Arts, R. J., Novakovic, B., Ter Horst, R., Carvalho, A., Bekkering, S., Lachmandas, E., Rodrigues, F., Silvestre, R., Cheng, S. C., Wang, S. Y., Habibi, E., Gonçalves, L. G., Mesquita, I., Cunha, C., et al. (2016) Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab. 24, 807- 819 CrossRef Medline
-
(2016)
Cell Metab.
, vol.24
, pp. 807-819
-
-
Arts, R.J.1
Novakovic, B.2
Ter Horst, R.3
Carvalho, A.4
Bekkering, S.5
Lachmandas, E.6
Rodrigues, F.7
Silvestre, R.8
Cheng, S.C.9
Wang, S.Y.10
Habibi, E.11
Gonçalves, L.G.12
Mesquita, I.13
Cunha, C.14
-
50
-
-
0028935270
-
Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine
-
CrossRef Medline
-
Raingeaud, J., Gupta, S., Rogers, J. S., Dickens, M., Han, J., Ulevitch, R. J., and Davis, R. J. (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420-7426 CrossRef Medline
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 7420-7426
-
-
Raingeaud, J.1
Gupta, S.2
Rogers, J.S.3
Dickens, M.4
Han, J.5
Ulevitch, R.J.6
Davis, R.J.7
-
51
-
-
84954212197
-
Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels
-
CrossRef Medline
-
Smith, M. R., Vayalil, P. K., Zhou, F., Benavides, G. A., Beggs, R. R., Golzarian, H., Nijampatnam, B., Oliver, P. G., Smith, R. A., Murphy, M. P., Velu, S. E., and Landar, A. (2016) Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels. Redox Biol. 8, 136-148 CrossRef Medline
-
(2016)
Redox Biol.
, vol.8
, pp. 136-148
-
-
Smith, M.R.1
Vayalil, P.K.2
Zhou, F.3
Benavides, G.A.4
Beggs, R.R.5
Golzarian, H.6
Nijampatnam, B.7
Oliver, P.G.8
Smith, R.A.9
Murphy, M.P.10
Velu, S.E.11
Landar, A.12
-
52
-
-
80053614458
-
Assessing bioenergetic function in response to oxidative stress by metabolic profiling
-
CrossRef Medline
-
Dranka, B. P., Benavides, G. A., Diers, A. R., Giordano, S., Zelickson, B. R., Reily, C., Zou, L., Chatham, J. C., Hill, B. G., Zhang, J., Landar, A., and Darley-Usmar, V. M. (2011) Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic. Biol. Med. 51, 1621-1635 CrossRef Medline
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 1621-1635
-
-
Dranka, B.P.1
Benavides, G.A.2
Diers, A.R.3
Giordano, S.4
Zelickson, B.R.5
Reily, C.6
Zou, L.7
Chatham, J.C.8
Hill, B.G.9
Zhang, J.10
Landar, A.11
Darley-Usmar, V.M.12
|