-
1
-
-
0031615026
-
An accidental biochemist
-
xii-xxxii
-
Krebs E.G. An accidental biochemist. Annu. Rev. Biochem. 1998, 67. xii-xxxii.
-
(1998)
Annu. Rev. Biochem.
, vol.67
-
-
Krebs, E.G.1
-
2
-
-
0014409394
-
An adenosine 3',5'-monophosphate-dependant protein kinase from rabbit skeletal muscle
-
Walsh D.A., et al. An adenosine 3',5'-monophosphate-dependant protein kinase from rabbit skeletal muscle. J. Biol. Chem. 1968, 243:3763-3765.
-
(1968)
J. Biol. Chem.
, vol.243
, pp. 3763-3765
-
-
Walsh, D.A.1
-
3
-
-
63749113783
-
Tyrosine phosphorylation: thirty years and counting
-
Hunter T. Tyrosine phosphorylation: thirty years and counting. Curr. Opin. Cell Biol. 2009, 21:140-146.
-
(2009)
Curr. Opin. Cell Biol.
, vol.21
, pp. 140-146
-
-
Hunter, T.1
-
4
-
-
0011627561
-
Viral src gene products are related to the catalytic chain of mammalian cAMP-dependent protein kinase
-
Barker W.C., Dayhoff M.O. Viral src gene products are related to the catalytic chain of mammalian cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. U. S. A. 1982, 79:2836-2839.
-
(1982)
Proc. Natl. Acad. Sci. U. S. A.
, vol.79
, pp. 2836-2839
-
-
Barker, W.C.1
Dayhoff, M.O.2
-
5
-
-
0029020282
-
Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification
-
Hanks S.K., Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995, 9:576-596.
-
(1995)
FASEB J.
, vol.9
, pp. 576-596
-
-
Hanks, S.K.1
Hunter, T.2
-
6
-
-
0036806311
-
Evolution of protein kinase signaling from yeast to man
-
Manning G., et al. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 2002, 27:514-520.
-
(2002)
Trends Biochem. Sci.
, vol.27
, pp. 514-520
-
-
Manning, G.1
-
7
-
-
0026342401
-
Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase
-
Knighton D.R., et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 1991, 253:407-414.
-
(1991)
Science
, vol.253
, pp. 407-414
-
-
Knighton, D.R.1
-
8
-
-
0026326821
-
Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase
-
Knighton D.R., et al. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 1991, 253:414-420.
-
(1991)
Science
, vol.253
, pp. 414-420
-
-
Knighton, D.R.1
-
9
-
-
23644452511
-
Did protein kinase regulatory mechanisms evolve through elaboration of a simple structural component?
-
Kannan N., Neuwald A.F. Did protein kinase regulatory mechanisms evolve through elaboration of a simple structural component?. J. Mol. Biol. 2005, 351:956-972.
-
(2005)
J. Mol. Biol.
, vol.351
, pp. 956-972
-
-
Kannan, N.1
Neuwald, A.F.2
-
10
-
-
33947226782
-
Structural and functional diversity of the microbial kinome
-
Kannan N., et al. Structural and functional diversity of the microbial kinome. PLoS Biol. 2007, 5:e17.
-
(2007)
PLoS Biol.
, vol.5
-
-
Kannan, N.1
-
11
-
-
33845197964
-
Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism
-
Kornev A.P., et al. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:17783-17788.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 17783-17788
-
-
Kornev, A.P.1
-
12
-
-
55749102720
-
A helix scaffold for the assembly of active protein kinases
-
Kornev A.P., et al. A helix scaffold for the assembly of active protein kinases. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:14377-14382.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 14377-14382
-
-
Kornev, A.P.1
-
13
-
-
67649559353
-
BlockMaster: partitioning protein kinase structures using normal-mode analysis
-
Shudler M., Niv M.Y. BlockMaster: partitioning protein kinase structures using normal-mode analysis. J. Phys. Chem. A. 2009, 113:7528-7534.
-
(2009)
J. Phys. Chem. A.
, vol.113
, pp. 7528-7534
-
-
Shudler, M.1
Niv, M.Y.2
-
14
-
-
0032847133
-
600 ps molecular dynamics reveals stable substructures and flexible hinge points in cAMP dependent protein kinase
-
Tsigelny I., et al. 600 ps molecular dynamics reveals stable substructures and flexible hinge points in cAMP dependent protein kinase. Biopolymers 1999, 50:513-524.
-
(1999)
Biopolymers
, vol.50
, pp. 513-524
-
-
Tsigelny, I.1
-
15
-
-
0036215864
-
Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase
-
Madhusudan, et al. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nat. Struct. Biol. 2002, 9:273-277.
-
(2002)
Nat. Struct. Biol.
, vol.9
, pp. 273-277
-
-
Madhusudan1
-
16
-
-
0037412181
-
A conformational analysis of Walker motif A [GXXXXGKT (S)] in nucleotide-binding and other proteins
-
Ramakrishnan C., et al. A conformational analysis of Walker motif A [GXXXXGKT (S)] in nucleotide-binding and other proteins. Protein Eng. 2002, 15:783-798.
-
(2002)
Protein Eng.
, vol.15
, pp. 783-798
-
-
Ramakrishnan, C.1
-
17
-
-
0035413608
-
Dynamics of cAMP-dependent protein kinase
-
Johnson D.A., et al. Dynamics of cAMP-dependent protein kinase. Chem. Rev. 2001, 101:2243-2270.
-
(2001)
Chem. Rev.
, vol.101
, pp. 2243-2270
-
-
Johnson, D.A.1
-
18
-
-
0030932129
-
Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine
-
Narayana N., et al. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine. Biochemistry 1997, 36:4438-4448.
-
(1997)
Biochemistry
, vol.36
, pp. 4438-4448
-
-
Narayana, N.1
-
19
-
-
77950482089
-
Global consequences of activation loop phosphorylation on protein kinase A
-
Steichen J.M., et al. Global consequences of activation loop phosphorylation on protein kinase A. J. Biol. Chem. 2010, 285:3825-3832.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 3825-3832
-
-
Steichen, J.M.1
-
20
-
-
12344334691
-
Allosteric network of cAMP-dependent protein kinase revealed by mutation of Tyr204 in the P+1 loop
-
Yang J., et al. Allosteric network of cAMP-dependent protein kinase revealed by mutation of Tyr204 in the P+1 loop. J. Mol. Biol. 2005, 346:191-201.
-
(2005)
J. Mol. Biol.
, vol.346
, pp. 191-201
-
-
Yang, J.1
-
21
-
-
68949214333
-
Distal recognition sites in substrates are required for efficient phosphorylation by the cAMP-dependent protein kinase
-
Deminoff S.J., et al. Distal recognition sites in substrates are required for efficient phosphorylation by the cAMP-dependent protein kinase. Genetics 2009, 182:529-539.
-
(2009)
Genetics
, vol.182
, pp. 529-539
-
-
Deminoff, S.J.1
-
22
-
-
0037013143
-
The conformational plasticity of protein kinases
-
Huse M., Kuriyan J. The conformational plasticity of protein kinases. Cell 2002, 109:275-282.
-
(2002)
Cell
, vol.109
, pp. 275-282
-
-
Huse, M.1
Kuriyan, J.2
-
23
-
-
41849110846
-
Structural evolution of the protein kinase-like superfamily
-
Scheeff E.D., Bourne P.E. Structural evolution of the protein kinase-like superfamily. PLoS Comput. Biol. 2005, 1:e49.
-
(2005)
PLoS Comput. Biol.
, vol.1
-
-
Scheeff, E.D.1
Bourne, P.E.2
-
24
-
-
0037436388
-
Dynamic features of cAMP-dependent protein kinase revealed by apoenzyme crystal structure
-
Akamine P., et al. Dynamic features of cAMP-dependent protein kinase revealed by apoenzyme crystal structure. J. Mol. Biol. 2003, 327:159-171.
-
(2003)
J. Mol. Biol.
, vol.327
, pp. 159-171
-
-
Akamine, P.1
-
25
-
-
0035413606
-
Kinetic and catalytic mechanisms of protein kinases
-
Adams J.A. Kinetic and catalytic mechanisms of protein kinases. Chem. Rev. 2001, 101:2271-2290.
-
(2001)
Chem. Rev.
, vol.101
, pp. 2271-2290
-
-
Adams, J.A.1
-
26
-
-
36949034492
-
Phosphorylation reaction in cAPK protein kinase-free energy quantum mechanical/molecular mechanics simulations
-
Valiev M., et al. Phosphorylation reaction in cAPK protein kinase-free energy quantum mechanical/molecular mechanics simulations. J. Phys. Chem. B 2007, 111:13455-13464.
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 13455-13464
-
-
Valiev, M.1
-
27
-
-
0037469146
-
Activation loop phosphorylation and catalysis in protein kinases: Is there functional evidence for the autoinhibitor model?
-
Adams J.A. Activation loop phosphorylation and catalysis in protein kinases: Is there functional evidence for the autoinhibitor model?. Biochemistry 2003, 42:601-607.
-
(2003)
Biochemistry
, vol.42
, pp. 601-607
-
-
Adams, J.A.1
-
28
-
-
0035413607
-
Structural basis for control by phosphorylation
-
Johnson L.N., Lewis R.J. Structural basis for control by phosphorylation. Chem. Rev. 2001, 101:2209-2242.
-
(2001)
Chem. Rev.
, vol.101
, pp. 2209-2242
-
-
Johnson, L.N.1
Lewis, R.J.2
-
29
-
-
77958160823
-
Dynamics connect substrate recognition to catalysis in protein kinase A
-
doi:10.1038/nchembio.452
-
Masterson, L.R. et al. (2010) Dynamics connect substrate recognition to catalysis in protein kinase A. Nat. Chem. Biol. doi:10.1038/nchembio.452.
-
(2010)
Nat. Chem. Biol.
-
-
Masterson, L.R.1
-
30
-
-
0028582185
-
Crystal structure of the tyrosine kinase domain of the human insulin receptor
-
Hubbard S.R., et al. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 1994, 372:746-754.
-
(1994)
Nature
, vol.372
, pp. 746-754
-
-
Hubbard, S.R.1
-
31
-
-
0036295728
-
Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation
-
Yang J., et al. Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol. Cell 2002, 9:1227-1240.
-
(2002)
Mol. Cell
, vol.9
, pp. 1227-1240
-
-
Yang, J.1
-
32
-
-
46349099824
-
Structural basis for the recognition of c-Src by its inactivator Csk
-
Levinson N.M., et al. Structural basis for the recognition of c-Src by its inactivator Csk. Cell 2008, 134:124-134.
-
(2008)
Cell
, vol.134
, pp. 124-134
-
-
Levinson, N.M.1
-
33
-
-
58549114067
-
A conserved protonation-dependent switch controls drug binding in the Abl kinase
-
Shan Y., et al. A conserved protonation-dependent switch controls drug binding in the Abl kinase. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:139-144.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 139-144
-
-
Shan, Y.1
-
34
-
-
0033605643
-
Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity
-
Brown N.R., et al. Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J. Biol. Chem. 1999, 274:8746-8756.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 8746-8756
-
-
Brown, N.R.1
-
35
-
-
0033001789
-
Crystal structures of c-Src reveal features of its autoinhibitory mechanism
-
Xu W., et al. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell 1999, 3:629-638.
-
(1999)
Mol. Cell
, vol.3
, pp. 629-638
-
-
Xu, W.1
-
36
-
-
0031709073
-
A molecular gate which controls unnatural ATP analogue recognition by the tyrosine kinase v-Src
-
Liu Y., et al. A molecular gate which controls unnatural ATP analogue recognition by the tyrosine kinase v-Src. Bioorg. Med. Chem. 1998, 6:1219-1226.
-
(1998)
Bioorg. Med. Chem.
, vol.6
, pp. 1219-1226
-
-
Liu, Y.1
-
37
-
-
77950573400
-
Through the " gatekeeper door": exploiting the active kinase conformation
-
Zuccotto F., et al. Through the " gatekeeper door": exploiting the active kinase conformation. J. Med. Chem. 2010, 53:2681-2694.
-
(2010)
J. Med. Chem.
, vol.53
, pp. 2681-2694
-
-
Zuccotto, F.1
-
38
-
-
20844448396
-
A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient
-
Tamborini E., et al. A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient. Gastroenterology 2004, 27:294-299.
-
(2004)
Gastroenterology
, vol.27
, pp. 294-299
-
-
Tamborini, E.1
-
39
-
-
53549104402
-
Activation of tyrosine kinases by mutation of the gatekeeper threonine
-
Azam M., et al. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat. Struct. Mol. Biol. 2008, 15:1109-1118.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 1109-1118
-
-
Azam, M.1
-
40
-
-
10444280878
-
Strategies to overcome resistance to targeted protein kinase inhibitors
-
Daub H., et al. Strategies to overcome resistance to targeted protein kinase inhibitors. Nat. Rev. Drug Discov. 2004, 3:1001-1010.
-
(2004)
Nat. Rev. Drug Discov.
, vol.3
, pp. 1001-1010
-
-
Daub, H.1
-
41
-
-
19944429284
-
A novel mode of Gleevec binding is revealed by the structure of spleen tyrosine kinase
-
Atwell S., et al. A novel mode of Gleevec binding is revealed by the structure of spleen tyrosine kinase. J. Biol. Chem. 2004, 279:55827-55832.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 55827-55832
-
-
Atwell, S.1
-
42
-
-
70349443699
-
Comparative surface geometry of the protein kinase family
-
Thompson E.E., et al. Comparative surface geometry of the protein kinase family. Protein Sci. 2009, 8:2016-20126.
-
(2009)
Protein Sci.
, vol.8
, pp. 2016-20126
-
-
Thompson, E.E.1
-
43
-
-
0029029617
-
Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex
-
Jeffrey P.D., et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 1995, 376:313-320.
-
(1995)
Nature
, vol.376
, pp. 313-320
-
-
Jeffrey, P.D.1
-
44
-
-
50249132542
-
Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation
-
Filippakopoulos P., et al. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell 2008, 134:793-803.
-
(2008)
Cell
, vol.134
, pp. 793-803
-
-
Filippakopoulos, P.1
-
45
-
-
52449095361
-
The RSK family of kinases: emerging roles in cellular signalling
-
Anjum R., Blenis J. The RSK family of kinases: emerging roles in cellular signalling. Nat. Rev. Mol. Cell Biol. 2008, 9:747-758.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 747-758
-
-
Anjum, R.1
Blenis, J.2
-
46
-
-
33846590132
-
The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module
-
Kannan N., et al. The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:1272-1277.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 1272-1277
-
-
Kannan, N.1
-
47
-
-
70149117469
-
Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations
-
Dixit A., Verkhivker G.M. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations. PLoS Comput. Biol. 2009, 5:e1000487.
-
(2009)
PLoS Comput. Biol.
, vol.5
-
-
Dixit, A.1
Verkhivker, G.M.2
-
48
-
-
67650082449
-
A chimeric mechanism for polyvalent trans-phosphorylation of PKA by PDK1
-
Romano R.A., et al. A chimeric mechanism for polyvalent trans-phosphorylation of PKA by PDK1. Protein Sci. 2009, 18:1486-1497.
-
(2009)
Protein Sci.
, vol.18
, pp. 1486-1497
-
-
Romano, R.A.1
-
49
-
-
25144502820
-
Higher-order substrate recognition of eIF2α by the RNA-dependent protein kinase PKR
-
Dar A.C., et al. Higher-order substrate recognition of eIF2α by the RNA-dependent protein kinase PKR. Cell 2005, 122:887-900.
-
(2005)
Cell
, vol.122
, pp. 887-900
-
-
Dar, A.C.1
-
50
-
-
34548611290
-
PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation
-
Kim C., et al. PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Cell 2007, 130:1032-1043.
-
(2007)
Cell
, vol.130
, pp. 1032-1043
-
-
Kim, C.1
-
51
-
-
35348885465
-
PKA type IIα holoenzyme reveals a combinatorial strategy for isoform diversity
-
Wu J., et al. PKA type IIα holoenzyme reveals a combinatorial strategy for isoform diversity. Science 2007, 318:274-279.
-
(2007)
Science
, vol.318
, pp. 274-279
-
-
Wu, J.1
-
52
-
-
48249116424
-
Congenital disease SNPs target lineage specific structural elements in protein kinases
-
Torkamani A., et al. Congenital disease SNPs target lineage specific structural elements in protein kinases. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:9011-9016.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 9011-9016
-
-
Torkamani, A.1
-
53
-
-
0037032835
-
The protein kinase complement of the human genome
-
Manning G., et al. The protein kinase complement of the human genome. Science 2002, 298:1912-1934.
-
(2002)
Science
, vol.298
, pp. 1912-1934
-
-
Manning, G.1
-
54
-
-
0034595634
-
WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II
-
Xu B., et al. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J. Biol. Chem. 2000, 275:16795-16801.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 16795-16801
-
-
Xu, B.1
-
55
-
-
41949128173
-
CASK functions as a Mg2+-independent neurexin kinase
-
Mukherjee K., et al. CASK functions as a Mg2+-independent neurexin kinase. Cell 2008, 133:328-339.
-
(2008)
Cell
, vol.133
, pp. 328-339
-
-
Mukherjee, K.1
-
56
-
-
58149204174
-
Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site
-
Scheeff E.D., et al. Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site. Structure 2009, 17:128-138.
-
(2009)
Structure
, vol.17
, pp. 128-138
-
-
Scheeff, E.D.1
-
57
-
-
71149097258
-
The pseudoactive site of ILK is essential for its binding to α-Parvin and localization to focal adhesions
-
Fukuda K., et al. The pseudoactive site of ILK is essential for its binding to α-Parvin and localization to focal adhesions. Mol. Cell 2009, 6:819-830.
-
(2009)
Mol. Cell
, vol.6
, pp. 819-830
-
-
Fukuda, K.1
-
58
-
-
58149189627
-
ROP2 from Toxoplasma gondii: A virulence factor with a protein-kinase fold and no enzymatic activity
-
Labesse G., et al. ROP2 from Toxoplasma gondii: A virulence factor with a protein-kinase fold and no enzymatic activity. Structure 2009, 17:139-146.
-
(2009)
Structure
, vol.17
, pp. 139-146
-
-
Labesse, G.1
-
59
-
-
72949115493
-
Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation
-
Zeqiraj E., et al. Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science 2009, 326:1707-1711.
-
(2009)
Science
, vol.326
, pp. 1707-1711
-
-
Zeqiraj, E.1
-
60
-
-
0037219686
-
Evolutionarily conserved networks of residues mediate allosteric communication in proteins
-
Suel G.M., et al. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 2003, 10:59-69.
-
(2003)
Nat. Struct. Biol.
, vol.10
, pp. 59-69
-
-
Suel, G.M.1
|