메뉴 건너뛰기




Volumn 145, Issue , 2018, Pages 120-147

A new deep convolutional neural network for fast hyperspectral image classification

Author keywords

Classification; Convolutional neural networks (CNNs); Deep learning; Graphics processing units (GPUs); Hyperspectral imaging

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER GRAPHICS; CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; GRAPHICS PROCESSING UNIT; HYPERSPECTRAL IMAGING; IMAGE RECOGNITION; INDEPENDENT COMPONENT ANALYSIS; NEURAL NETWORKS; PROGRAM PROCESSORS; SPECTROSCOPY;

EID: 85036494607     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2017.11.021     Document Type: Article
Times cited : (510)

References (85)
  • 1
    • 0031105739 scopus 로고    scopus 로고
    • Introduction neural networks in remote sensing
    • Atkinson, P.M., Tatnall, A.R.L., Introduction neural networks in remote sensing. Int. J. Remote Sens. 18:4 (1997), 699–709, 10.1080/014311697218700.
    • (1997) Int. J. Remote Sens. , vol.18 , Issue.4 , pp. 699-709
    • Atkinson, P.M.1    Tatnall, A.R.L.2
  • 2
    • 85054314830 scopus 로고
    • Statistical Methods and Neural Network Approaches for Classification of Data from Multiple Sources (Ph.D. thesis). Purdue Univ., School of Elect. Eng. West Lafayette, IN.
    • Benediktsson, J.A., Swain, P.H., 1990. Statistical Methods and Neural Network Approaches for Classification of Data from Multiple Sources (Ph.D. thesis). Purdue Univ., School of Elect. Eng. West Lafayette, IN.
    • (1990)
    • Benediktsson, J.A.1    Swain, P.H.2
  • 3
    • 0027789411 scopus 로고
    • Conjugate gradient neural networks in classification of very high dimensional remote sensing data
    • Benediktsson, J.A., Swain, P.H., Ersoy, O.K., Conjugate gradient neural networks in classification of very high dimensional remote sensing data. Int. J. Remote Sens. 14:15 (1993), 2883–2903.
    • (1993) Int. J. Remote Sens. , vol.14 , Issue.15 , pp. 2883-2903
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 4
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio, Y., Learning deep architectures for AI. Mach. Learn. 2:1 (2009), 1–127.
    • (2009) Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 6
    • 0003487601 scopus 로고
    • Neural Networks for Pattern Recognition
    • Clarendon Press
    • Bishop, C.M., Neural Networks for Pattern Recognition. 1995, Clarendon Press .
    • (1995)
    • Bishop, C.M.1
  • 7
    • 0040528764 scopus 로고
    • Multinomial logistic regression algorithm
    • Böhning, D., Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 44:1 (1992), 197–200.
    • (1992) Ann. Inst. Stat. Math. , vol.44 , Issue.1 , pp. 197-200
    • Böhning, D.1
  • 8
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Camps-Valls, G., Bruzzone, L., Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43:6 (2005), 1351–1362.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 9
    • 0003984676 scopus 로고    scopus 로고
    • Hyperspectral Imaging: Techniques for Spectral Detection and Classification
    • Springer US
    • Chang, C.-I., Hyperspectral Imaging: Techniques for Spectral Detection and Classification. 2003, Springer, US.
    • (2003)
    • Chang, C.-I.1
  • 10
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P., Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54:10 (2016), 6232–6251 .
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 12
    • 85017152027 scopus 로고    scopus 로고
    • Remote sensing image scene classification: benchmark and state of the art
    • Cheng, G., Han, J., Lu, X., Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE(99), 2017, 1–19.
    • (2017) Proc. IEEE , Issue.99 , pp. 1-19
    • Cheng, G.1    Han, J.2    Lu, X.3
  • 13
    • 84885231850 scopus 로고
    • Pattern classification and scene analysis
    • Chien, Y., Pattern classification and scene analysis. IEEE Trans. Autom. Control 19:4 (1974), 462–463.
    • (1974) IEEE Trans. Autom. Control , vol.19 , Issue.4 , pp. 462-463
    • Chien, Y.1
  • 14
    • 85054294544 scopus 로고    scopus 로고
    • Foundations and Advances in Deep Learning (Ph.D. thesis). Aalto University.
    • Cho, K., 2014. Foundations and Advances in Deep Learning (Ph.D. thesis). Aalto University.
    • (2014)
    • Cho, K.1
  • 15
    • 84903724014 scopus 로고    scopus 로고
    • Deep learning: methods and applications
    • Deng, L., Yu, D., Deep learning: methods and applications. Found. Trends® Signal Process. 7:3–4 (2014), 197–387.
    • (2014) Found. Trends® Signal Process. , vol.7 , Issue.3-4 , pp. 197-387
    • Deng, L.1    Yu, D.2
  • 16
    • 84937964776 scopus 로고    scopus 로고
    • Discriminative unsupervised feature learning with convolutional neural networks
    • Z. Ghahramani M. Welling C. Cortes N.D. Lawrence K.Q. Weinberger Curran Associates, Inc.
    • Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T., Discriminative unsupervised feature learning with convolutional neural networks. Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., (eds.) Advances in Neural Information Processing Systems, vol. 27, 2014, Curran Associates, Inc., 766–774.
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 766-774
    • Dosovitskiy, A.1    Springenberg, J.T.2    Riedmiller, M.3    Brox, T.4
  • 17
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization∗
    • Duchi, J., Edu, J.B., Hazan, E., Singer, Y., Adaptive subgradient methods for online learning and stochastic optimization∗. J. Mach. Learn. Res. 12 (2011), 2121–2159.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2121-2159
    • Duchi, J.1    Edu, J.B.2    Hazan, E.3    Singer, Y.4
  • 18
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R., Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46:11 (2008), 3804–3814.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 19
    • 0031080306 scopus 로고    scopus 로고
    • The pixel: a snare and a delusion
    • Fisher, P., The pixel: a snare and a delusion. Int. J. Remote Sens. 18:3 (1997), 679–685.
    • (1997) Int. J. Remote Sens. , vol.18 , Issue.3 , pp. 679-685
    • Fisher, P.1
  • 21
    • 85016188297 scopus 로고    scopus 로고
    • Advanced supervised spectral classifiers for hyperspectral images: a review
    • Ghamisi, P., Plaza, J., Chen, Y., Li, J., Plaza, A., Advanced supervised spectral classifiers for hyperspectral images: a review. IEEE Geosci. Remote Sens. Mag. 5:1 (2017), 8–32.
    • (2017) IEEE Geosci. Remote Sens. Mag. , vol.5 , Issue.1 , pp. 8-32
    • Ghamisi, P.1    Plaza, J.2    Chen, Y.3    Li, J.4    Plaza, A.5
  • 22
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS10). Society for Artificial Intelligence and Statistics.
    • Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS10). Society for Artificial Intelligence and Statistics. pp. 249–256.
    • (2010) , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 23
    • 84862294866 scopus 로고    scopus 로고
    • Deep sparse rectifier neural networks. In: Gordon, Geoffrey J., Dunson, David B. (Ed.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11). Journal of Machine Learning Research – Workshop and Conference Proceedings
    • Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. In: Gordon, Geoffrey J., Dunson, David B. (Ed.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11). Journal of Machine Learning Research – Workshop and Conference Proceedings, pp. 315–323.
    • (2011) , pp. 315-323
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 26
    • 84991694265 scopus 로고    scopus 로고
    • Cloud implementation of the k-means algorithm for hyperspectral image analysis
    • Haut, J.M., Paoletti, M., Plaza, J., Plaza, A., Cloud implementation of the k-means algorithm for hyperspectral image analysis. J. Supercomput. 73:1 (2017), 514–529, 10.1007/s11227-016-1896-3.
    • (2017) J. Supercomput. , vol.73 , Issue.1 , pp. 514-529
    • Haut, J.M.1    Paoletti, M.2    Plaza, J.3    Plaza, A.4
  • 27
    • 85053610615 scopus 로고    scopus 로고
    • Cloud implementation of logistic regression for hyperspectral image classification. In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE, 2017
    • Haut, J.M., Paoletti, M.E., Paz-Gallardo, A., Plaza, J., Plaza, A., 2017b. Cloud implementation of logistic regression for hyperspectral image classification. In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2017. pp. 1063–2321.
    • (2017) , pp. 1063-2321
    • Haut, J.M.1    Paoletti, M.E.2    Paz-Gallardo, A.3    Plaza, J.4    Plaza, A.5
  • 28
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He, H., Garcia, E.A., Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21:9 (2009), 1263–1284.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 29
    • 85007463494 scopus 로고    scopus 로고
    • Hyperspectral image classification based on deep stacking network. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).
    • He, M., Li, X., Zhang, Y., Zhang, J., Wang, W., 2016. Hyperspectral image classification based on deep stacking network. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp. 3286–3289.
    • (2016) , pp. 3286-3289
    • He, M.1    Li, X.2    Zhang, Y.3    Zhang, J.4    Wang, W.5
  • 30
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G., Salakhutdinov, R., Reducing the dimensionality of data with neural networks. Science 313 (2006), 504–507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 31
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets. Neural Comput. 18:7 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 32
    • 85054310888 scopus 로고    scopus 로고
    • Improving neural networks by preventing co-adaptation of feature detectors. CoRR. Available from
    • Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R., 2012. Improving neural networks by preventing co-adaptation of feature detectors. CoRR. Available from: 1207.0580.
    • (2012)
    • Hinton, G.E.1    Srivastava, N.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.R.5
  • 33
  • 34
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery in surveying, mapping and remote sensing
    • Hu, F., Xia, G.-S., Hu, J., Zhang, L., Foody, G.M., Wang, L., Thenkabail, P.S., Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery in surveying, mapping and remote sensing. Remote Sens. 7:11 (2015), 14680–14707 .
    • (2015) Remote Sens. , vol.7 , Issue.11 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4    Foody, G.M.5    Wang, L.6    Thenkabail, P.S.7
  • 35
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H., Deep convolutional neural networks for hyperspectral image classification. J. Sensors, 2015.
    • (2015) J. Sensors
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 36
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • IEEE
    • Jarrett, K., Kavukcuoglu, K., Ranzato, M.A., Lecun, Y., What is the best multi-stage architecture for object recognition?. ICCV, 2009, IEEE, 2146–2153.
    • (2009) ICCV , pp. 2146-2153
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.A.3    Lecun, Y.4
  • 37
    • 85054313381 scopus 로고    scopus 로고
    • Unsupervised Deep Learning: A Short Review.
    • Karhunen, J., Raiko, T., Cho, K., 2015. Unsupervised Deep Learning: A Short Review.
    • (2015)
    • Karhunen, J.1    Raiko, T.2    Cho, K.3
  • 38
    • 84901857500 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization
    • Khodadadzadeh, M., Li, J., Plaza, A., Ghassemian, H., Bioucas-Dias, J.M., Li, X., Spectral-spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization. IEEE Trans. Geosci. Remote Sens. 52:10 (2014), 6298–6314.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.10 , pp. 6298-6314
    • Khodadadzadeh, M.1    Li, J.2    Plaza, A.3    Ghassemian, H.4    Bioucas-Dias, J.M.5    Li, X.6
  • 39
    • 85054340488 scopus 로고    scopus 로고
    • ADAM: {A} method for stochastic optimization. CoRR. Available from
    • Kingma, D.P., Ba, J.L., 2014. ADAM: {A} method for stochastic optimization. CoRR. Available from: 1412.6980.
    • (2014)
    • Kingma, D.P.1    Ba, J.L.2
  • 40
    • 84958490588 scopus 로고
    • ROSIS (Reflective Optics System Imaging Spectrometer) – A candidate instrument for polar platform missions. In: Seeley, J., Bowyer, S. (Eds.), Optoelectronic technologies for remote sensing from space.
    • Kunkel, B., Blechinger, F., Lutz, R., Doerffer, R., van der Piepen, H., 1988. ROSIS (Reflective Optics System Imaging Spectrometer) – A candidate instrument for polar platform missions. In: Seeley, J., Bowyer, S. (Eds.), Optoelectronic technologies for remote sensing from space. pp. 134–141.
    • (1988) , pp. 134-141
    • Kunkel, B.1    Blechinger, F.2    Lutz, R.3    Doerffer, R.4    van der Piepen, H.5
  • 41
    • 56449110012 scopus 로고    scopus 로고
    • Classification using discriminative restricted boltzmann machines. In: Proceedings of the 25th International Conference on Machine learning – ICML ’08
    • Larochelle, H., Bengio, Y., 2008. Classification using discriminative restricted boltzmann machines. In: Proceedings of the 25th International Conference on Machine learning – ICML ’08, pp. 536.
    • (2008) , pp. 536
    • Larochelle, H.1    Bengio, Y.2
  • 43
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition. Proc. IEEE.
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998a. Gradient-based learning applied to document recognition. Proc. IEEE.
    • (1998)
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 45
    • 78049282844 scopus 로고    scopus 로고
    • Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Li, J., Bioucas-Dias, J.M., Plaza, A., Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 48:11 (2010), 4085–4098.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 46
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new Bayesian approach with active learning
    • Li, J., Bioucas-Dias, J.M., Plaza, A., Hyperspectral image segmentation using a new Bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens. 49:10 (2011), 3947–3960.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 47
    • 84903531897 scopus 로고    scopus 로고
    • A review of remote sensing image classification techniques: the role of spatio-contextual information
    • Li, M., Zang, S., Zhang, B., Li, S., Wu, C., A review of remote sensing image classification techniques: the role of spatio-contextual information. Eur. J. Remote Sens. 47 (2014), 389–411.
    • (2014) Eur. J. Remote Sens. , vol.47 , pp. 389-411
    • Li, M.1    Zang, S.2    Zhang, B.3    Li, S.4    Wu, C.5
  • 48
    • 84983164503 scopus 로고    scopus 로고
    • Classification of hyperspectral image based on deep belief networks. In: Image Processing (ICIP), 2014 IEEE International Conference on.
    • Li, T., Zhang, J., Zhang, Y., 2014b. Classification of hyperspectral image based on deep belief networks. In: Image Processing (ICIP), 2014 IEEE International Conference on. pp. 5132–5136.
    • (2014) , pp. 5132-5136
    • Li, T.1    Zhang, J.2    Zhang, Y.3
  • 49
    • 85010690651 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network
    • Li, Y., Zhang, H., Shen, Q., Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens., 9(1), 2017, 67.
    • (2017) Remote Sens. , vol.9 , Issue.1 , pp. 67
    • Li, Y.1    Zhang, H.2    Shen, Q.3
  • 50
    • 80455173952 scopus 로고    scopus 로고
    • Pixel unmixing in hyperspectral data by means of neural networks
    • Licciardi, G.A., Del Frate, F., Pixel unmixing in hyperspectral data by means of neural networks. IEEE Trans. Geosci. Remote Sens. 49:11 (2011), 4163–4172.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4163-4172
    • Licciardi, G.A.1    Del Frate, F.2
  • 51
    • 85019570527 scopus 로고    scopus 로고
    • A semi-supervised convolutional neural network for hyperspectral image classification
    • Liu, B., Yu, X., Zhang, P., Tan, X., Yu, A., Xue, Z., A semi-supervised convolutional neural network for hyperspectral image classification. Remote Sens. Lett. 8:9 (2017), 839–848, 10.1080/2150704X.2017.1331053.
    • (2017) Remote Sens. Lett. , vol.8 , Issue.9 , pp. 839-848
    • Liu, B.1    Yu, X.2    Zhang, P.3    Tan, X.4    Yu, A.5    Xue, Z.6
  • 52
    • 85054343860 scopus 로고    scopus 로고
    • Adaptive Deep Pyramid Matching for Remote Sensing Scene Classification. CoRR. Available from
    • Liu, Q., Hang, R., Song, H., Zhu, F., Plaza, J., Plaza, A., 2016. Adaptive Deep Pyramid Matching for Remote Sensing Scene Classification. CoRR. Available from: 1611.03589.
    • (2016)
    • Liu, Q.1    Hang, R.2    Song, H.3    Zhu, F.4    Plaza, J.5    Plaza, A.6
  • 53
    • 85026497771 scopus 로고    scopus 로고
    • Remote sensing scene classification by unsupervised representation learning
    • Lu, X., Zheng, X., Yuan, Y., Remote sensing scene classification by unsupervised representation learning. IEEE Trans. Geosci. Remote Sens.(99), 2017, 1–10.
    • (2017) IEEE Trans. Geosci. Remote Sens. , Issue.99 , pp. 1-10
    • Lu, X.1    Zheng, X.2    Yuan, Y.3
  • 54
    • 84988038682 scopus 로고    scopus 로고
    • Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning
    • Ma, X., Wang, H., Wang, J., Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning. ISPRS J. Photogramm. Remote Sens. 120 (2016), 99–107.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.120 , pp. 99-107
    • Ma, X.1    Wang, H.2    Wang, J.3
  • 55
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F., Bruzzone, L., Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens., 42(8), 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8
    • Melgani, F.1    Bruzzone, L.2
  • 58
    • 85055821594 scopus 로고    scopus 로고
    • Yinyang K-means clustering for hyperspectral image analysis. In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering. Rota
    • Paoletti, M.E., Haut, J.M., Plaza, J., Plaza, A., 2017. Yinyang K-means clustering for hyperspectral image analysis. In: Vigo-Aguiar, J. (Ed.), Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering. Rota, pp. 1625–1636.
    • (2017) , pp. 1625-1636
    • Paoletti, M.E.1    Haut, J.M.2    Plaza, J.3    Plaza, A.4
  • 60
    • 0032983160 scopus 로고    scopus 로고
    • On the momentum term in gradient descent learning algorithms
    • Qian, N., On the momentum term in gradient descent learning algorithms. Neural Netw. 12:1 (1999), 145–151.
    • (1999) Neural Netw. , vol.12 , Issue.1 , pp. 145-151
    • Qian, N.1
  • 61
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • Rajan, S., Ghosh, J., Crawford, M.M., An active learning approach to hyperspectral data classification. IEEE Trans. Geosci. Remote Sens. 46:4 (2008), 1231–1242.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 62
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • B. Schölkopf J. Platt T. Hoffman MIT Press
    • Ranzato, M.A., Poultney, C., Chopra, S., Lecun, Y., Efficient learning of sparse representations with an energy-based model. Schölkopf, B., Platt, J., Hoffman, T., (eds.) Advances in Neural Information Processing Systems, vol. 19, 2006, MIT Press, 1137–1144.
    • (2006) Advances in Neural Information Processing Systems , vol.19 , pp. 1137-1144
    • Ranzato, M.A.1    Poultney, C.2    Chopra, S.3    Lecun, Y.4
  • 63
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • Romero, A., Gatta, C., Camps-Valls, G., Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54:3 (2016), 1349–1362.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 64
    • 85054343481 scopus 로고    scopus 로고
    • Deep boltzmann machines. In: 12th International Conference on Artificial Intelligence and Statistics
    • Salakhutdinov, R., Hinton, G., 2009. Deep boltzmann machines. In: 12th International Conference on Artificial Intelligence and Statistics, pp. 3.
    • (2009) , pp. 3
    • Salakhutdinov, R.1    Hinton, G.2
  • 65
    • 0004094721 scopus 로고    scopus 로고
    • Learning with Kernels:Support Vector Machines, Regularization, Optimization, and Beyond
    • MIT Press Cambridge, MA, USA
    • Scholkopf, B., Smola, A.J., Learning with Kernels:Support Vector Machines, Regularization, Optimization, and Beyond. 2001, MIT Press, Cambridge, MA, USA.
    • (2001)
    • Scholkopf, B.1    Smola, A.J.2
  • 66
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: foundations of harmony theory
    • David E. Rumelhart J.L. McLelland MIT Press (Chapter 6)
    • Smolensky, P., Information processing in dynamical systems: foundations of harmony theory. Rumelhart, David E., McLelland, J.L., (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Foundations, vol. 1, 1986, MIT Press, 194–281 (Chapter 6).
    • (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Foundations , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 67
    • 27744574209 scopus 로고    scopus 로고
    • Image decomposition via the combination of sparse representations and a variational approach
    • Starck, J.-L., Elad, M., Donoho, D.L., Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process. 14:10 (2005), 1570–1582.
    • (2005) IEEE Trans. Image Process. , vol.14 , Issue.10 , pp. 1570-1582
    • Starck, J.-L.1    Elad, M.2    Donoho, D.L.3
  • 68
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans. Geosci. Remote Sens. 47:8 (2009), 2973–2987.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 69
    • 85014668630 scopus 로고    scopus 로고
    • Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning
    • Vetrivel, A., Gerke, M., Kerle, N., Nex, F., Vosselman, G., Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning. ISPRS J. Photogramm. Remote Sens. 140 (2018), 45–59.
    • (2018) ISPRS J. Photogramm. Remote Sens. , vol.140 , pp. 45-59
    • Vetrivel, A.1    Gerke, M.2    Kerle, N.3    Nex, F.4    Vosselman, G.5
  • 70
    • 84997282964 scopus 로고    scopus 로고
    • Shape-based object extraction in high-resolution remote-sensing images using deep Boltzmann machine
    • Wu, Q., Diao, W., Dou, F., Sun, X., Zheng, X., Fu, K., Zhao, F., Shape-based object extraction in high-resolution remote-sensing images using deep Boltzmann machine. Int. J. Remote Sens. 37:24 (2016), 6012–6022.
    • (2016) Int. J. Remote Sens. , vol.37 , Issue.24 , pp. 6012-6022
    • Wu, Q.1    Diao, W.2    Dou, F.3    Sun, X.4    Zheng, X.5    Fu, K.6    Zhao, F.7
  • 71
    • 85027935420 scopus 로고    scopus 로고
    • Real-time implementation of the sparse multinomial logistic regression for hyperspectral image classification on GPUs
    • Wu, Z., Wang, Q., Plaza, A., Li, J., Wei, Z., Real-time implementation of the sparse multinomial logistic regression for hyperspectral image classification on GPUs. IEEE Geosci. Remote Sens. Lett. 12:7 (2015), 1456–1460.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.7 , pp. 1456-1460
    • Wu, Z.1    Wang, Q.2    Plaza, A.3    Li, J.4    Wei, Z.5
  • 72
    • 84955098205 scopus 로고    scopus 로고
    • Multiple morphological component analysis based decomposition for remote sensing image classification
    • Xu, X., Li, J., Huang, X., Dalla Mura, M., Plaza, A., Multiple morphological component analysis based decomposition for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54:5 (2016), 3083–3102.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.5 , pp. 3083-3102
    • Xu, X.1    Li, J.2    Huang, X.3    Dalla Mura, M.4    Plaza, A.5
  • 73
    • 85007414737 scopus 로고    scopus 로고
    • Lil, f., Plaza, A., 2016b. Fusion of hyperspectral and LiDAR data using morphological component analysis. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
    • Xu, X., Lil, f., Plaza, A., 2016b. Fusion of hyperspectral and LiDAR data using morphological component analysis. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3575–3578.
    • Xu, X.1
  • 74
    • 0033540293 scopus 로고    scopus 로고
    • A back-propagation neural network for mineralogical mapping from AVIRIS data
    • Yang, H., A back-propagation neural network for mineralogical mapping from AVIRIS data. Int. J. Remote Sens. 20:1 (1999), 97–110, 10.1080/014311699213622.
    • (1999) Int. J. Remote Sens. , vol.20 , Issue.1 , pp. 97-110
    • Yang, H.1
  • 75
    • 85007415863 scopus 로고    scopus 로고
    • Hyperspectral image classification using two-channel deep convolutional neural network. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
    • Yang, J., Zhao, Y., Chan, J.C.W., Yi, C., 2016. Hyperspectral image classification using two-channel deep convolutional neural network. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5079–5082.
    • (2016) , pp. 5079-5082
    • Yang, J.1    Zhao, Y.2    Chan, J.C.W.3    Yi, C.4
  • 76
    • 84994519156 scopus 로고    scopus 로고
    • Convolutional neural networks for hyperspectral image classification
    • Yu, S., Jia, S., Xu, C., 1, Convolutional neural networks for hyperspectral image classification. Neurocomputing 219 (2017), 88–98.
    • (2017) Neurocomputing , vol.219 , pp. 88-98
    • Yu, S.1    Jia, S.2    Xu, C.3
  • 77
    • 84944068115 scopus 로고    scopus 로고
    • Scene recognition by manifold regularized deep learning architecture
    • Yuan, Y., Mou, L., Lu, X., Scene recognition by manifold regularized deep learning architecture. IEEE Trans. Neural Netw. Learn. Syst. 26:10 (2015), 2222–2233.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.10 , pp. 2222-2233
    • Yuan, Y.1    Mou, L.2    Lu, X.3
  • 78
    • 85054335923 scopus 로고    scopus 로고
    • ADADELTA: An Adaptive Learning Rate Method. CoRR. Available from: <>.
    • Zeiler, M.D., 2012. ADADELTA: An Adaptive Learning Rate Method. CoRR. Available from: < 1212.5701>.
    • (2012)
    • Zeiler, M.D.1
  • 79
    • 77956001004 scopus 로고    scopus 로고
    • June 2010. Deconvolutional networks. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    • Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R., June 2010. Deconvolutional networks. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2528–2535.
    • Zeiler, M.D.1    Krishnan, D.2    Taylor, G.W.3    Fergus, R.4
  • 80
    • 85011966281 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network
    • Zhang, H., Li, Y., Zhang, Y., Shen, Q., Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Remote Sens. Lett. 8:5 (2017), 438–447.
    • (2017) Remote Sens. Lett. , vol.8 , Issue.5 , pp. 438-447
    • Zhang, H.1    Li, Y.2    Zhang, Y.3    Shen, Q.4
  • 81
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data advances in machine learning for remote sensing and geosciences
    • Zhang, L., Zhang, L., Du, B., Deep learning for remote sensing data advances in machine learning for remote sensing and geosciences. IEEE Geosci. Remote Sens. Mag. 4:2 (2016), 22–40 .
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , Issue.2 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 82
    • 84960327084 scopus 로고    scopus 로고
    • Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images
    • Zhang, P., Gong, M., Su, L., Liu, J., Li, Z., Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images. ISPRS J. Photogramm. Remote Sens. 116 (2016), 24–41.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.116 , pp. 24-41
    • Zhang, P.1    Gong, M.2    Su, L.3    Liu, J.4    Li, Z.5
  • 83
    • 85054343984 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • Zhao, W., Du, S., Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 128 (2016), 223–239.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.128 , pp. 223-239
    • Zhao, W.1    Du, S.2
  • 84
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach
    • Zhao, W., Du, S., Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 54:8 (2016), 4544–4554.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.8 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 85
    • 85021808543 scopus 로고    scopus 로고
    • Active and semisupervised learning with morphological component analysis for hyperspectral image classification
    • Zhou, X., Prasad, S., Active and semisupervised learning with morphological component analysis for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 14:8 (2017), 1348–1352.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.8 , pp. 1348-1352
    • Zhou, X.1    Prasad, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.