메뉴 건너뛰기




Volumn 49, Issue 10 PART 2, 2011, Pages 3947-3960

Hyperspectral image segmentation using a new bayesian approach with active learning

Author keywords

Active learning; graph cuts; hyperspectral image segmentation; ill posed problems; integer optimization; mutual information (MI); sparse multinomial logistic regression (MLR)

Indexed keywords

ACTIVE LEARNING; GRAPH CUT; HYPER-SPECTRAL IMAGES; ILL-POSED PROBLEMS; INTEGER OPTIMIZATION; MULTINOMIAL LOGISTIC REGRESSION; MUTUAL INFORMATIONS;

EID: 80053562930     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2011.2128330     Document Type: Article
Times cited : (394)

References (53)
  • 2
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan.
    • G. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 3
    • 34249810956 scopus 로고    scopus 로고
    • Semisupervised classification of hyperspectral images by SVMs optimized in the primal
    • DOI 10.1109/TGRS.2007.894550
    • M. Chi and L. Bruzzone, "Semi-supervised classification of hyperspectral images by SVMs optimized in the primal," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1870-1880, Jun. 2007. (Pubitemid 46853295)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.6 , pp. 1870-1880
    • Chi, M.1    Bruzzone, L.2
  • 5
    • 82355182769 scopus 로고    scopus 로고
    • Evaluation of Bayesian hyperspectral image segmentation with a discriminative class learning
    • DOI 10.1109/IGARSS.2007.4423673, 4423673, 2007 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2007
    • J. Borges, J. Bioucas-Dias, and A. Marçal, "Evaluation of Bayesian hyperspectral imaging segmentation with a discriminative class learning," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Barcelona, Spain, 2007, pp. 3810-3813. (Pubitemid 351243576)
    • (2008) International Geoscience and Remote Sensing Symposium (IGARSS) , pp. 3810-3813
    • Borges, J.S.1    Marcal, A.R.S.2    Bioucas-Dias, J.M.3
  • 7
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs generative classifiers: A comparison of logistic regression and naive bayes
    • Vancouver, BC, Canada
    • A. Y. Ng and M. I. Jordan, "On discriminative vs generative classifiers: A comparison of logistic regression and naive bayes," in Proc. 16th Annu. Conf.Neural Inf.Process. Syst., Vancouver, BC, Canada, 2002, pp. 841-848.
    • (2002) Proc. 16th Annu. Conf.Neural Inf.Process. Syst. , pp. 841-848
    • Ng, A.Y.1    Jordan, M.I.2
  • 10
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for the semisupervised classification of remote-sensing images
    • Nov.
    • L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for the semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363-3373, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 11
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 12
    • 30344473619 scopus 로고    scopus 로고
    • An ensemble-driven k-NN approach to ill-posed classification problems
    • DOI 10.1016/j.patrec.2005.08.012, PII S0167865505002254, Pattern Recognition in Remote Sensing (PRRS 2004)
    • M. Chi and L. Bruzzone, "An ensemble-driven k-NN approach to ill-posed classification problems," Pattern Recognit. Lett., vol. 27, no. 4, pp. 301-307, Mar. 2006. (Pubitemid 43063113)
    • (2006) Pattern Recognition Letters , vol.27 , Issue.4 , pp. 301-307
    • Chi, M.1    Bruzzone, L.2
  • 13
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov.
    • M. Fauvel, J. Benediktsson, J. Chanussot, and J. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.2    Chanussot, J.3    Sveinsson, J.4
  • 14
    • 12844275025 scopus 로고    scopus 로고
    • A semilabeled-sample-driven bagging technique for Ill-posed classification problems
    • DOI 10.1109/LGRS.2004.841478
    • M. Chi and L. Bruzzone, "A semi-labeled-sample driven bagging technique for ill-posed classification problems," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 1, pp. 69-73, Jan. 2005. (Pubitemid 40162808)
    • (2005) IEEE Geoscience and Remote Sensing Letters , vol.2 , Issue.1 , pp. 69-73
    • Chi, M.1    Bruzzone, L.2
  • 15
    • 42749086766 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing data with primal support vector machines
    • M. Chi, R. Feng, and L. Bruzzone, "Classification of hyperspectral remote sensing data with primal support vector machines," Adv. Space Res., vol. 41, no. 11, pp. 1793-1799, 2008.
    • (2008) Adv. Space Res. , vol.41 , Issue.11 , pp. 1793-1799
    • Chi, M.1    Feng, R.2    Bruzzone, L.3
  • 16
    • 0040528764 scopus 로고
    • Multinomial logistic regression algorithm
    • Mar.
    • D. Böhning, "Multinomial logistic regression algorithm," Ann. Inst. Stat. Math., vol. 44, no. 1, pp. 197-200, Mar. 1992.
    • (1992) Ann. Inst. Stat. Math. , vol.44 , Issue.1 , pp. 197-200
    • Böhning, D.1
  • 17
    • 85172422630 scopus 로고    scopus 로고
    • Discriminative vs. informative learning
    • Y. D. Rubinstein and T. Hastie, "Discriminative vs. informative learning," in Proc. ACM KDD, 1997, pp. 49-53.
    • (1997) Proc. ACM KDD , pp. 49-53
    • Rubinstein, Y.D.1    Hastie, T.2
  • 20
    • 78049282844 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Nov.
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085-4098, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 21
    • 61849102996 scopus 로고    scopus 로고
    • A robust multi-classifier decision fusion framework for hyperspectral, multi-temporal classification
    • S. Prasad, L. Bruce, and H. Kalluri, "A robust multi-classifier decision fusion framework for hyperspectral, multi-temporal classification, " in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2008, pp. 3048-3051.
    • (2008) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 3048-3051
    • Prasad, S.1    Bruce, L.2    Kalluri, H.3
  • 22
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • Jul.
    • D. Mackay, "Information-based objective functions for active data selection," Neural Comput., vol. 4, no. 4, pp. 590-604, Jul. 1992.
    • (1992) Neural Comput. , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.1
  • 24
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • DOI 10.1109/TGRS.2007.910220, 4469868
    • S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008. (Pubitemid 351459470)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 27
    • 67649763976 scopus 로고    scopus 로고
    • An efficient active learning algorithm with knowledge transfer for hyperspectral data analysis
    • G. Jun and J. Ghosh, "An efficient active learning algorithm with knowledge transfer for hyperspectral data analysis," in Proc. Int. Geosci. Remote Sens. Symp., 2008, pp. I52-I55.
    • (2008) Proc. Int. Geosci. Remote Sens. Symp.
    • Jun, G.1    Ghosh, J.2
  • 28
    • 78649738931 scopus 로고    scopus 로고
    • Unbiased query-by-bagging active learning for VHR image classification
    • L. Copa, D. Tuia, M. Volpi, andM. Kaneski, "Unbiased query-by-bagging active learning for VHR image classification," in Proc. SPIE Eur. Remote Sens., 2010, p. 783 00K.
    • (2010) Proc. SPIE Eur. Remote Sens.
    • Copa, L.1    Tuia, D.2    Volpi, M.3    Kaneski, M.4
  • 29
    • 77958017904 scopus 로고    scopus 로고
    • SVM and MRF-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. Benediktsson, "SVM and MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.4
  • 32
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Sep.
    • Y. Boykov and V. Kolmogorov, "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124-1137, Sep. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 35
    • 1342332031 scopus 로고    scopus 로고
    • A tutorial on MM algorithms
    • D. R. Hunter and K. Lange, "A tutorial on MM algorithms," Amer. Statistician, vol. 58, no. 1, pp. 30-37, Feb. 2004. (Pubitemid 38260327)
    • (2004) American Statistician , vol.58 , Issue.1 , pp. 30-37
    • Hunter, D.R.1    Lange, K.2
  • 36
    • 77950936203 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image classification based on a Markov random field and sparse multinomial logistic regression
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Semi-supervised hyperspectral image classification based on a Markov random field and sparse multinomial logistic regression," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2009, pp. III-817-III-820.
    • (2009) Proc. IEEE Int. Geosci. Remote Sens. Symp.
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 37
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images
    • S. Geman and D. Geman, "Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 6, pp. 721-741, Nov. 1984. (Pubitemid 15453722)
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 39
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • J. Besag, "Spatial interaction and the statistical analysis of lattice systems," J. R. Stat. Soc. B, vol. 36, no. 2, pp. 192-236, 1974.
    • (1974) J. R. Stat. Soc. B , vol.36 , Issue.2 , pp. 192-236
    • Besag, J.1
  • 40
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • Feb.
    • V. Kolmogorov and R. Zabih, "What energy functions can be minimized via graph cuts?" IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp. 147-159, Feb. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.2 , pp. 147-159
    • Kolmogorov, V.1    Zabih, R.2
  • 42
    • 23744513375 scopus 로고    scopus 로고
    • Constructing free-energy approximations and generalized belief propagation algorithms
    • DOI 10.1109/TIT.2005.850085
    • J. S. Yedidia, W. T. Freeman, and Y. Weiss, "Constructing free energy approximations and generalized belief propagation algorithms," IEEE Trans. Inf. Theory, vol. 51, no. 7, pp. 2282-2312, Jul. 2005. (Pubitemid 41136394)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.7 , pp. 2282-2312
    • Yedidia, J.S.1    Freeman, W.T.2    Weiss, Y.3
  • 43
    • 33750129298 scopus 로고    scopus 로고
    • Convergent tree-reweighted message passing for energy minimization
    • DOI 10.1109/TPAMI.2006.200
    • V. Kolmogorov, "Convergent tree-reweighted message passing for energy minimization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1568-1583, Oct. 2006. (Pubitemid 46405078)
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.10 , pp. 1568-1583
    • Kolmogorov, V.1
  • 45
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • DOI 10.1162/15324430152748236
    • M. E. Tipping and A. Smola, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 46
    • 70350446701 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral classification using active label selection
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Semi-supervised hyperspectral classification using active label selection," in Proc. SPIE Eur. Remote Sens., 2009, vol. 7477, pp. 74770F1-74770F8.
    • (2009) Proc. SPIE Eur. Remote Sens. , vol.7477
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 47
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection," in Proc. Int. Joint Conf. Artif. Intell., 1995, pp. 1137-1143.
    • (1995) Proc. Int. Joint Conf. Artif. Intell. , pp. 1137-1143
    • Kohavi, R.1
  • 50
  • 51
    • 34249837486 scopus 로고
    • On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators
    • Jun.
    • J. Eckstein and D. P. Bertsekas, "On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators," Math. Program., vol. 55, no. 3, pp. 293-318, Jun. 1992.
    • (1992) Math. Program. , vol.55 , Issue.3 , pp. 293-318
    • Eckstein, J.1    Bertsekas, D.P.2
  • 52
    • 77955783919 scopus 로고    scopus 로고
    • Fast image recovery using variable splitting and constrained optimization
    • Sep.
    • M. V. Afonso, J. Bioucas-Dias, and M. Figueiredo, "Fast image recovery using variable splitting and constrained optimization," IEEE Trans. Image Process., vol. 19, no. 9, pp. 2345-2356, Sep. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.9 , pp. 2345-2356
    • Afonso, M.V.1    Bioucas-Dias, J.2    Figueiredo, M.3
  • 53
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • May
    • D. L. Donoho, "De-noising by soft-thresholding," IEEE Trans. Inf. Theory, vol. 41, no. 3, pp. 613-627, May 1995.
    • (1995) IEEE Trans. Inf. Theory , vol.41 , Issue.3 , pp. 613-627
    • Donoho, D.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.