메뉴 건너뛰기




Volumn 9, Issue 1, 2017, Pages

Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network

Author keywords

2D convolutional neural networks; 3D convolutional neural networks; 3D structure; Deep learning; Hyperspectral image classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; NEURAL NETWORKS; SOFTWARE ARCHITECTURE; SPECTROSCOPY;

EID: 85010690651     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9010067     Document Type: Article
Times cited : (1072)

References (47)
  • 4
    • 0034818997 scopus 로고    scopus 로고
    • A Linear Constrained distance-based discriminant analysis for hyperspectral image classification
    • Du, Q.; Chang, C.I. A Linear Constrained distance-based discriminant analysis for hyperspectral image classification. Pattern Recognit. 2001, 34, 361-373.
    • (2001) Pattern Recognit , vol.34 , pp. 361-373
    • Du, Q.1    Chang, C.I.2
  • 5
    • 45849090383 scopus 로고    scopus 로고
    • Supervised classification of remotely sensed imagery using a modified, k-NN technique
    • Samaniego, L.; Bardossy, A.; Schulz, K. Supervised classification of remotely sensed imagery using a modified, k-NN technique. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2112-2125.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , pp. 2112-2125
    • Samaniego, L.1    Bardossy, A.2    Schulz, K.3
  • 6
    • 0031190719 scopus 로고    scopus 로고
    • Hierarchical maximum-likelihood classification for improved accuracies
    • Ediriwickrema, J.; Khorram, S. Hierarchical maximum-likelihood classification for improved accuracies. IEEE Trans. Geosci. Remote Sens. 1997, 35, 810-816.
    • (1997) IEEE Trans. Geosci. Remote Sens , vol.35 , pp. 810-816
    • Ediriwickrema, J.1    Khorram, S.2
  • 7
    • 78049282844 scopus 로고    scopus 로고
    • Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085-4098.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 8
    • 0346061723 scopus 로고    scopus 로고
    • High-dimensional data analysis: The curses and blessings of dimensionality
    • Los Angeles, CA, USA, 6-11 August
    • Donoho, D.L. High-dimensional data analysis: The curses and blessings of dimensionality. In Proceedings of the AMS Math Challenges Lecture, Los Angeles, CA, USA, 6-11 August 2000; Volume 13, pp. 178-183.
    • (2000) Proceedings of the AMS Math Challenges Lecture , vol.13 , pp. 178-183
    • Donoho, D.L.1
  • 10
    • 2142816603 scopus 로고    scopus 로고
    • A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles
    • Plaza, A.; Martinez, P.; Perez, R.; Plaza, J. A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles. Pattern Recognit. 2004, 37, 1097-1116.
    • (2004) Pattern Recognit , vol.37 , pp. 1097-1116
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 11
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480-491.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 12
    • 84921020001 scopus 로고    scopus 로고
    • A survey on spectral-spatial classification techniques based on attribute profiles
    • Ghamisi, P.; Dalla Mura, M.; Benediktsson, J.A. A survey on spectral-spatial classification techniques based on attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2335-2353.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 2335-2353
    • Ghamisi, P.1    Dalla Mura, M.2    Benediktsson, J.A.3
  • 14
    • 79955521136 scopus 로고    scopus 로고
    • Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis
    • Dalla Mura, M.; Villa, A.; Benediktsson, J.A.; Chanussot, J.; Bruzzone, L. Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 2011, 8, 542-546.
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , pp. 542-546
    • Dalla Mura, M.1    Villa, A.2    Benediktsson, J.A.3    Chanussot, J.4    Bruzzone, L.5
  • 15
    • 85027917453 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image classification using regularized low-rank representation and sparse representation-based graph cuts
    • Jia, S.; Zhang, X.; Li, Q. Spectral-spatial hyperspectral image classification using regularized low-rank representation and sparse representation-based graph cuts. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2473-2484.
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.8 , pp. 2473-2484
    • Jia, S.1    Zhang, X.2    Li, Q.3
  • 16
    • 84928485215 scopus 로고    scopus 로고
    • Sparse and Low-rank coupling image segmentation model via nonconvex regularization
    • Zhang, X.; Xu, C.; Li, M.; Sun, X. Sparse and Low-rank coupling image segmentation model via nonconvex regularization. Int. J. Pattern Recognit. Artif. Intell. 2015, 29.
    • (2015) Int. J. Pattern Recognit. Artif. Intell , pp. 29
    • Zhang, X.1    Xu, C.2    Li, M.3    Sun, X.4
  • 17
    • 80052335044 scopus 로고    scopus 로고
    • Adaptive Markov Random field approach for classification of hyperspectral imagery
    • Zhang, B.; Li, S.; Jia, X.; Gao, L.; Peng, M. Adaptive Markov Random field approach for classification of hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 2011, 8, 973-977.
    • (2011) IEEE Geosci. Remote Sens. Lett , vol.8 , pp. 973-977
    • Zhang, B.1    Li, S.2    Jia, X.3    Gao, L.4    Peng, M.5
  • 18
    • 84911420496 scopus 로고    scopus 로고
    • Graph-cut-based model for spectral-spatial classification of hyperspectral images
    • Quebec, QC, Canada, 13-18 July
    • Tarabalka, Y.; Rana, A. Graph-cut-based model for spectral-spatial classification of hyperspectral images. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec, QC, Canada, 13-18 July 2014; pp. 3418-3421.
    • (2014) Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium , pp. 3418-3421
    • Tarabalka, Y.1    Rana, A.2
  • 19
    • 84870840688 scopus 로고    scopus 로고
    • Improving Wishart classification of polarimetric SAR data using the Hopfield neural network optimization approach
    • Pajares, G.; Lópezmartínez, C.; Sánchezlladó, F.J.; Molina, I. Improving Wishart classification of polarimetric SAR data using the Hopfield neural network optimization approach. Remote Sens. 2012, 4, 3571-3595.
    • (2012) Remote Sens , vol.4 , pp. 3571-3595
    • Pajares, G.1    Lópezmartínez, C.2    Sánchezlladó, F.J.3    Molina, I.4
  • 20
    • 70350033785 scopus 로고    scopus 로고
    • Image-based airborne sensors: A combined approach for spectral signatures classification through deterministic simulated annealing
    • Guijarro, M.; Pajares, G.; Herrera, P.J. Image-based airborne sensors: A combined approach for spectral signatures classification through deterministic simulated annealing. Sensors 2009, 9, 7132-7149.
    • (2009) Sensors , vol.9 , pp. 7132-7149
    • Guijarro, M.1    Pajares, G.2    Herrera, P.J.3
  • 21
    • 80053927332 scopus 로고    scopus 로고
    • Improving the Wishart synthetic aperture radar image classifications through deterministic simulated annealing
    • Sánchez-Lladó, F.J.; Pajares, G.; López-Martínez, C. Improving the Wishart synthetic aperture radar image classifications through deterministic simulated annealing. ISPRS J. Photogramm. Remote Sens. 2011, 66, 845-857.
    • (2011) ISPRS J. Photogramm. Remote Sens , vol.66 , pp. 845-857
    • Sánchez-Lladó, F.J.1    Pajares, G.2    López-Martínez, C.3
  • 22
    • 84899940849 scopus 로고    scopus 로고
    • An adaptive Memetic fuzzy clustering algorithm with spatial information for remote sensing imagery
    • Zhong, Y.; Ma, A.; Zhang, L. An adaptive Memetic fuzzy clustering algorithm with spatial information for remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1235-1248.
    • (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.7 , pp. 1235-1248
    • Zhong, Y.1    Ma, A.2    Zhang, L.3
  • 23
    • 84875713130 scopus 로고    scopus 로고
    • Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features
    • Qian, Y.; Ye, M.; Zhou, J. Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2276-2291.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , pp. 2276-2291
    • Qian, Y.1    Ye, M.2    Zhou, J.3
  • 24
    • 82155181590 scopus 로고    scopus 로고
    • Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification
    • Shen, L.; Jia, S. Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5039-5046.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , pp. 5039-5046
    • Shen, L.1    Jia, S.2
  • 25
    • 84920995322 scopus 로고    scopus 로고
    • Hyperspectral image classification based on three-dimensional scattering wavelet transform
    • Tang, Y.; Lu, Y.; Yuan, H. Hyperspectral image classification based on three-dimensional scattering wavelet transform. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2467-2480.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 2467-2480
    • Tang, Y.1    Lu, Y.2    Yuan, H.3
  • 26
    • 84871736244 scopus 로고    scopus 로고
    • Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction
    • Zhang, L.; Zhang, L.; Tao, D.; Huang, X. Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction. IEEE Trans. Geosci. Remote Sens. 2013, 53, 242-256.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 242-256
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 27
    • 84931572289 scopus 로고    scopus 로고
    • Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
    • Zhang, L.; Zhang, Q.; Zhang, L.; Tao, D.; Huang, X.; Du, B.O. Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding. Pattern Recognit. 2015, 48, 3102-3112.
    • (2015) Pattern Recognit , vol.48 , pp. 3102-3112
    • Zhang, L.1    Zhang, Q.2    Zhang, L.3    Tao, D.4    Huang, X.5    Du, B.O.6
  • 28
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the art
    • Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22-40.
    • (2016) IEEE Geosci. Remote Sens. Mag , vol.4 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 31
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on deep belief network
    • Chen, Y.; Zhao, X.; Jia, X. Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1-12.
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.8 , pp. 1-12
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 32
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
    • Zhao, W.; Du, S. Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544-4554.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 33
    • 84930423638 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
    • Yue, J.; Zhao, W.; Mao, S.; Liu, H. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens. Lett. 2015, 6, 468-477.
    • (2015) Remote Sens. Lett , vol.6 , pp. 468-477
    • Yue, J.1    Zhao, W.2    Mao, S.3    Liu, H.4
  • 35
    • 84962611241 scopus 로고    scopus 로고
    • Hyperspectral imagery classification using sparse representations of convolutional neural network features
    • Liang, H.; Li, Q. Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens. 2016, 8.
    • (2016) Remote Sens , pp. 8
    • Liang, H.1    Li, Q.2
  • 36
    • 84870183903 scopus 로고    scopus 로고
    • 3D convolutional neural networks for human action recognition
    • Ji, S.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221-231.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , pp. 221-231
    • Ji, S.1    Yang, M.2    Yu, K.3
  • 39
    • 84939247735 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904-1916.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell , vol.37 , pp. 1904-1916
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 47
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232-6251.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.