메뉴 건너뛰기




Volumn 6669 LNCS, Issue , 2011, Pages 644-651

Classification of high dimensional and imbalanced hyperspectral imagery data

Author keywords

[No Author keywords available]

Indexed keywords

CLASS IMBALANCE; CLASSIFICATION PERFORMANCE; DATA SETS; EFFECTIVE ORDER; HIGH DIMENSIONALITY; HIGH-DIMENSIONAL; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL IMAGERY; IMBALANCED CLASS; PREPROCESSING TOOLS; RESAMPLING; RESAMPLING ALGORITHMS; SPECTRAL BAND; HYPER-SPECTRAL IMAGERIES; HYPERSPECTRAL IMAGERY CLASSIFICATIONS;

EID: 79959929569     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-21257-4_80     Document Type: Conference Paper
Times cited : (12)

References (30)
  • 1
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for high-dimensional class-imbalanced data
    • Blagus, R., Lusa, L.: Class prediction for high-dimensional class-imbalanced data. Bioinformatics 11(1), 523-540 (2010)
    • (2010) Bioinformatics , vol.11 , Issue.1 , pp. 523-540
    • Blagus, R.1    Lusa, L.2
  • 2
    • 0031277930 scopus 로고    scopus 로고
    • Classification of imbalanced remote-sensing data by neural networks
    • Bruzzone, L., Serpico, S.B.: Classification of imbalanced remote-sensing data by neural networks. Pattern Recogn. Lett. 18(11-13), 1323-1328 (1997)
    • (1997) Pattern Recogn. Lett. , vol.18 , Issue.11-13 , pp. 1323-1328
    • Bruzzone, L.1    Serpico, S.B.2
  • 5
    • 77958005784 scopus 로고    scopus 로고
    • Semisupervised feature selection for unbalanced sample sets of VHR images
    • Chen, X., Fang, T., Huo, H., Li, D.: Semisupervised feature selection for unbalanced sample sets of VHR images. IEEE Geosci. Remote Sens. Lett. 7(4), 781-785 (2010)
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 781-785
    • Chen, X.1    Fang, T.2    Huo, H.3    Li, D.4
  • 6
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21-27 (1967)
    • (1967) IEEE Trans. Inf. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 7
    • 0012130233 scopus 로고    scopus 로고
    • Learning goal oriented bayesian networks for telecommunications risk management
    • Ezawa, K., Singh, M., Norton, S.: Learning goal oriented bayesian networks for telecommunications risk management. In: Proc. 13th Int'. Conf. Machine Learning, pp. 139-147 (1996)
    • (1996) Proc. 13th Int'. Conf. Machine Learning , pp. 139-147
    • Ezawa, K.1    Singh, M.2    Norton, S.3
  • 9
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy
    • García, S., Herrera, F.: Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy. Evol. Comput. 17(3), 275-306 (2009)
    • (2009) Evol. Comput. , vol.17 , Issue.3 , pp. 275-306
    • García, S.1    Herrera, F.2
  • 12
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He, H., Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263-1284 (2009)
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.2
  • 13
    • 85016972555 scopus 로고    scopus 로고
    • Dimension reduction of hyperspectral images for classification applications
    • Hsu, P.H., Tseng, Y.H., Gong, P.: Dimension reduction of hyperspectral images for classification applications. Geogr. Inf. Sci. 8(1), 1-8 (2002)
    • (2002) Geogr. Inf. Sci. , vol.8 , Issue.1 , pp. 1-8
    • Hsu, P.H.1    Tseng, Y.H.2    Gong, P.3
  • 14
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Japkowicz, N., Stephen, S.: The class imbalance problem: A systematic study. Intell. Data Anal. 6(5), 429-449 (2002)
    • (2002) Intell. Data Anal. , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 16
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat, M., Holte, R., Matwin, S.: Machine learning for the detection of oil spills in satellite radar images. Mach. Learn. 30(2-3), 195-215 (1998)
    • (1998) Mach. Learn. , vol.30 , Issue.2-3 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 19
    • 84878098426 scopus 로고    scopus 로고
    • The influence of class imbalance on cost-sensitive learning: An empirical study
    • Liu, X.Y., Zhou, Z.H.: The influence of class imbalance on cost-sensitive learning: An empirical study. In: Proc. 6th Int'l. Conf. Data Mining, Hong Kong, pp. 970-974 (2006)
    • (2006) Proc. 6th Int'l. Conf. Data Mining, Hong Kong , pp. 970-974
    • Liu, X.Y.1    Zhou, Z.H.2
  • 22
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778-1790 (2004)
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 23
    • 55649083745 scopus 로고    scopus 로고
    • Using suitable neighbors to augment the training set in hyperspectral maximum likelihood classification
    • Richards, J., Jia, X.: Using suitable neighbors to augment the training set in hyperspectral maximum likelihood classification. IEEE Geosci. Remote Sens. Lett. 5(4), 774-777 (2008)
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 774-777
    • Richards, J.1    Jia, X.2
  • 24
    • 46849114555 scopus 로고    scopus 로고
    • Application of distributed SVM architectures in classifying forest data cover types
    • Trebar, M., Steele, N.: Application of distributed SVM architectures in classifying forest data cover types. Comput. Electron. Agr. 63(2), 119-130 (2008)
    • (2008) Comput. Electron. Agr. , vol.63 , Issue.2 , pp. 119-130
    • Trebar, M.1    Steele, N.2
  • 26
    • 77956023732 scopus 로고    scopus 로고
    • Combating the small sample class imbalance problem using feature selection
    • Wasikowski, M., Chen, X.W.: Combating the small sample class imbalance problem using feature selection. IEEE Trans. Knowl. Data Eng. 22(10), 1388-1400 (2010)
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1388-1400
    • Wasikowski, M.1    Chen, X.W.2
  • 27
    • 70349329573 scopus 로고    scopus 로고
    • Classifying remote sensing data with support vector machines and imbalanced training data
    • Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. Springer, Heidelberg
    • Waske, B., Benediktsson, J.A., Sveinsson, J.R.: Classifying remote sensing data with support vector machines and imbalanced training data. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 375-384. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5519 , pp. 375-384
    • Waske, B.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 30
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63-77 (2006)
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.H.1    Liu, X.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.