-
1
-
-
77957988489
-
Class prediction for high-dimensional class-imbalanced data
-
Blagus, R., Lusa, L.: Class prediction for high-dimensional class-imbalanced data. Bioinformatics 11(1), 523-540 (2010)
-
(2010)
Bioinformatics
, vol.11
, Issue.1
, pp. 523-540
-
-
Blagus, R.1
Lusa, L.2
-
2
-
-
0031277930
-
Classification of imbalanced remote-sensing data by neural networks
-
Bruzzone, L., Serpico, S.B.: Classification of imbalanced remote-sensing data by neural networks. Pattern Recogn. Lett. 18(11-13), 1323-1328 (1997)
-
(1997)
Pattern Recogn. Lett.
, vol.18
, Issue.11-13
, pp. 1323-1328
-
-
Bruzzone, L.1
Serpico, S.B.2
-
4
-
-
0346586663
-
SMOTE: Synthetic minority oversampling technique
-
Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: Synthetic minority oversampling technique. J. Artif. Intell. Res. 16, 321-357 (2002)
-
(2002)
J. Artif. Intell. Res.
, vol.16
, pp. 321-357
-
-
Chawla, N.1
Bowyer, K.2
Hall, L.3
Kegelmeyer, W.4
-
5
-
-
77958005784
-
Semisupervised feature selection for unbalanced sample sets of VHR images
-
Chen, X., Fang, T., Huo, H., Li, D.: Semisupervised feature selection for unbalanced sample sets of VHR images. IEEE Geosci. Remote Sens. Lett. 7(4), 781-785 (2010)
-
(2010)
IEEE Geosci. Remote Sens. Lett.
, vol.7
, Issue.4
, pp. 781-785
-
-
Chen, X.1
Fang, T.2
Huo, H.3
Li, D.4
-
6
-
-
84926662675
-
Nearest neighbor pattern classification
-
Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21-27 (1967)
-
(1967)
IEEE Trans. Inf. Theory
, vol.13
, Issue.1
, pp. 21-27
-
-
Cover, T.1
Hart, P.2
-
7
-
-
0012130233
-
Learning goal oriented bayesian networks for telecommunications risk management
-
Ezawa, K., Singh, M., Norton, S.: Learning goal oriented bayesian networks for telecommunications risk management. In: Proc. 13th Int'. Conf. Machine Learning, pp. 139-147 (1996)
-
(1996)
Proc. 13th Int'. Conf. Machine Learning
, pp. 139-147
-
-
Ezawa, K.1
Singh, M.2
Norton, S.3
-
9
-
-
70349617264
-
Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy
-
García, S., Herrera, F.: Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy. Evol. Comput. 17(3), 275-306 (2009)
-
(2009)
Evol. Comput.
, vol.17
, Issue.3
, pp. 275-306
-
-
García, S.1
Herrera, F.2
-
10
-
-
76749092270
-
The WEKA data mining software: An update
-
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: an update. SIGKDD Explor. Newslett. 11, 10-18 (2009)
-
(2009)
SIGKDD Explor. Newslett.
, vol.11
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.6
-
11
-
-
27144501672
-
Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
-
Han, H., Wang, W.Y., Mao, B.H.: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In: Proc. Int'l. Conf. Intelligent Computing, Hefei, China, pp. 878-887 (2005)
-
(2005)
Proc. Int'l. Conf. Intelligent Computing, Hefei, China
, pp. 878-887
-
-
Han, H.1
Wang, W.Y.2
Mao, B.H.3
-
12
-
-
68549133155
-
Learning from imbalanced data
-
He, H., Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263-1284 (2009)
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.2
-
13
-
-
85016972555
-
Dimension reduction of hyperspectral images for classification applications
-
Hsu, P.H., Tseng, Y.H., Gong, P.: Dimension reduction of hyperspectral images for classification applications. Geogr. Inf. Sci. 8(1), 1-8 (2002)
-
(2002)
Geogr. Inf. Sci.
, vol.8
, Issue.1
, pp. 1-8
-
-
Hsu, P.H.1
Tseng, Y.H.2
Gong, P.3
-
14
-
-
33845536164
-
The class imbalance problem: A systematic study
-
Japkowicz, N., Stephen, S.: The class imbalance problem: A systematic study. Intell. Data Anal. 6(5), 429-449 (2002)
-
(2002)
Intell. Data Anal.
, vol.6
, Issue.5
, pp. 429-449
-
-
Japkowicz, N.1
Stephen, S.2
-
15
-
-
70450190457
-
Gene selection for microarray expression data with imbalanced sample distributions
-
Kamal, A., Zhu, X., Narayanan, R.: Gene selection for microarray expression data with imbalanced sample distributions. In: Proc. Int'l. Joint Conf. Bioinformatics, Systems Biology and Intelligent Computing, Shanghai, China, pp. 3-9 (2009)
-
(2009)
Proc. Int'l. Joint Conf. Bioinformatics, Systems Biology and Intelligent Computing, Shanghai, China
, pp. 3-9
-
-
Kamal, A.1
Zhu, X.2
Narayanan, R.3
-
16
-
-
0031998121
-
Machine learning for the detection of oil spills in satellite radar images
-
Kubat, M., Holte, R., Matwin, S.: Machine learning for the detection of oil spills in satellite radar images. Mach. Learn. 30(2-3), 195-215 (1998)
-
(1998)
Mach. Learn.
, vol.30
, Issue.2-3
, pp. 195-215
-
-
Kubat, M.1
Holte, R.2
Matwin, S.3
-
17
-
-
0001972236
-
Addressing the curse of imbalanced training sets: One-sided selection
-
Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: One-sided selection. In: Proc. 14th Int'l. Conf. Machine Learning, Nashville, USA, pp. 179-186 (1997)
-
(1997)
Proc. 14th Int'l. Conf. Machine Learning, Nashville, USA
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
18
-
-
50949103360
-
Effective feature space reduction with imbalanced data for semantic concept detection
-
Lin, L., Ravitz, G., Shyu, M.L., Chen, S.C.: Effective feature space reduction with imbalanced data for semantic concept detection. In: Proc. Int'l. Conf. Sensor Networks, Ubiquitous, and Trustworthy Computing, Taichung, Taiwan, pp. 262-269 (2008)
-
(2008)
Proc. Int'l. Conf. Sensor Networks, Ubiquitous, and Trustworthy Computing, Taichung, Taiwan
, pp. 262-269
-
-
Lin, L.1
Ravitz, G.2
Shyu, M.L.3
Chen, S.C.4
-
19
-
-
84878098426
-
The influence of class imbalance on cost-sensitive learning: An empirical study
-
Liu, X.Y., Zhou, Z.H.: The influence of class imbalance on cost-sensitive learning: An empirical study. In: Proc. 6th Int'l. Conf. Data Mining, Hong Kong, pp. 970-974 (2006)
-
(2006)
Proc. 6th Int'l. Conf. Data Mining, Hong Kong
, pp. 970-974
-
-
Liu, X.Y.1
Zhou, Z.H.2
-
21
-
-
36348942491
-
Clustering-based hyperspectral band selection using information measures
-
Martínez-Usó, A., Pla, F., Sotoca, J.M., García-Sevilla, P.: Clustering-based hyperspectral band selection using information measures. IEEE Trans. Geosci. Remote Sens. 45(12), 4158-4171 (2007)
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, Issue.12
, pp. 4158-4171
-
-
Martínez-Usó, A.1
Pla, F.2
Sotoca, J.M.3
García-Sevilla, P.4
-
22
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector machines
-
Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778-1790 (2004)
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.8
, pp. 1778-1790
-
-
Melgani, F.1
Bruzzone, L.2
-
23
-
-
55649083745
-
Using suitable neighbors to augment the training set in hyperspectral maximum likelihood classification
-
Richards, J., Jia, X.: Using suitable neighbors to augment the training set in hyperspectral maximum likelihood classification. IEEE Geosci. Remote Sens. Lett. 5(4), 774-777 (2008)
-
(2008)
IEEE Geosci. Remote Sens. Lett.
, vol.5
, Issue.4
, pp. 774-777
-
-
Richards, J.1
Jia, X.2
-
24
-
-
46849114555
-
Application of distributed SVM architectures in classifying forest data cover types
-
Trebar, M., Steele, N.: Application of distributed SVM architectures in classifying forest data cover types. Comput. Electron. Agr. 63(2), 119-130 (2008)
-
(2008)
Comput. Electron. Agr.
, vol.63
, Issue.2
, pp. 119-130
-
-
Trebar, M.1
Steele, N.2
-
25
-
-
77951173974
-
Feature selection with high-dimensional imbalanced data
-
Van Hulse, J., Khoshgoftaar, T., Napolitano, A., Wald, R.: Feature selection with high-dimensional imbalanced data. In: IEEE Int'l. Conf. Data Mining Workshops, Miami, USA, pp. 507-514 (2009)
-
(2009)
IEEE Int'l. Conf. Data Mining Workshops, Miami, USA
, pp. 507-514
-
-
Van Hulse, J.1
Khoshgoftaar, T.2
Napolitano, A.3
Wald, R.4
-
26
-
-
77956023732
-
Combating the small sample class imbalance problem using feature selection
-
Wasikowski, M., Chen, X.W.: Combating the small sample class imbalance problem using feature selection. IEEE Trans. Knowl. Data Eng. 22(10), 1388-1400 (2010)
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.10
, pp. 1388-1400
-
-
Wasikowski, M.1
Chen, X.W.2
-
27
-
-
70349329573
-
Classifying remote sensing data with support vector machines and imbalanced training data
-
Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. Springer, Heidelberg
-
Waske, B., Benediktsson, J.A., Sveinsson, J.R.: Classifying remote sensing data with support vector machines and imbalanced training data. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 375-384. Springer, Heidelberg (2009)
-
(2009)
LNCS
, vol.5519
, pp. 375-384
-
-
Waske, B.1
Benediktsson, J.A.2
Sveinsson, J.R.3
-
28
-
-
67651155767
-
Mine classification with imbalanced data
-
Williams, D., Myers, V., Silvious, M.: Mine classification with imbalanced data. IEEE Geosci. Remote Sens. Lett. 6(3), 528-532 (2009)
-
(2009)
IEEE Geosci. Remote Sens. Lett.
, vol.6
, Issue.3
, pp. 528-532
-
-
Williams, D.1
Myers, V.2
Silvious, M.3
-
30
-
-
31344442851
-
Training cost-sensitive neural networks with methods addressing the class imbalance problem
-
Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63-77 (2006)
-
(2006)
IEEE Trans. Knowl. Data Eng.
, vol.18
, Issue.1
, pp. 63-77
-
-
Zhou, Z.H.1
Liu, X.Y.2
|