메뉴 건너뛰기




Volumn 1, Issue January, 2014, Pages 766-774

Discriminative unsupervised feature learning with convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; IMAGE MATCHING; INFORMATION SCIENCE; NEURAL NETWORKS; OBJECT RECOGNITION;

EID: 84937964776     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1074)

References (32)
  • 1
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, pages 1106-1114, 2012.
    • (2012) NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 2
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 4
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 5
    • 84897512451 scopus 로고    scopus 로고
    • Simple sparsification improves sparse denoising autoencoders in denoising highly corrupted images
    • K. Cho. Simple sparsification improves sparse denoising autoencoders in denoising highly corrupted images. In ICML. JMLR Workshop and Conference Proceedings, 2013.
    • (2013) ICML. JMLR Workshop and Conference Proceedings
    • Cho, K.1
  • 9
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, pages 1096-1103, 2008.
    • (2008) ICML , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 10
    • 84877777295 scopus 로고    scopus 로고
    • Deep learning of invariant features via simulated fixations in video
    • W. Y. Zou, A. Y. Ng, S. Zhu, and K. Yu. Deep learning of invariant features via simulated fixations in video. In NIPS, pages 3212-3220, 2012.
    • (2012) NIPS , pp. 3212-3220
    • Zou, W.Y.1    Ng, A.Y.2    Zhu, S.3    Yu, K.4
  • 11
    • 84867120801 scopus 로고    scopus 로고
    • Learning invariant representations with local transformations
    • K. Sohn and H. Lee. Learning invariant representations with local transformations. In ICML, 2012.
    • (2012) ICML
    • Sohn, K.1    Lee, H.2
  • 12
    • 84897486975 scopus 로고    scopus 로고
    • Direct modeling of complex invariances for visual object features
    • K. Y. Hui. Direct modeling of complex invariances for visual object features. In ICML, 2013.
    • (2013) ICML
    • Hui, K.Y.1
  • 13
    • 0001440803 scopus 로고
    • Tangent prop - A formalism for specifying selected invariances in an adaptive network
    • P. Simard, B. Victorri, Y. LeCun, and J. S. Denker. Tangent Prop - A formalism for specifying selected invariances in an adaptive network. In NIPS, 1992.
    • (1992) NIPS
    • Simard, P.1    Victorri, B.2    LeCun, Y.3    Denker, J.S.4
  • 14
    • 0026953305 scopus 로고
    • Improving generalization performance using double backpropagation
    • H. Drucker and Y. LeCun. Improving generalization performance using double backpropagation. IEEE Transactions on Neural Networks, 3(6):991-997, 1992.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.6 , pp. 991-997
    • Drucker, H.1    LeCun, Y.2
  • 15
    • 29344456417 scopus 로고    scopus 로고
    • Semi supervised logistic regression
    • M.-R. Amini and P. Gallinari. Semi supervised logistic regression. In ECAI, pages 390-394, 2002.
    • (2002) ECAI , pp. 390-394
    • Amini, M.-R.1    Gallinari, P.2
  • 17
    • 56749159833 scopus 로고    scopus 로고
    • Training hierarchical feed-forward visual recognition models using transfer learning from pseudo-tasks
    • A. Ahmed, K. Yu, W. Xu, Y. Gong, and E. Xing. Training hierarchical feed-forward visual recognition models using transfer learning from pseudo-tasks. In ECCV (3), pages 69-82, 2008.
    • (2008) ECCV (3) , pp. 69-82
    • Ahmed, A.1    Yu, K.2    Xu, W.3    Gong, Y.4    Xing, E.5
  • 19
    • 84896538964 scopus 로고    scopus 로고
    • Dropout training as adaptive regularization
    • S. Wager, S. Wang, and P. Liang. Dropout training as adaptive regularization. In NIPS. 2013.
    • (2013) NIPS
    • Wager, S.1    Wang, S.2    Liang, P.3
  • 21
    • 80053446757 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • A. Coates, H. Lee, and A. Y. Ng. An analysis of single-layer networks in unsupervised feature learning. AISTATS, 2011.
    • (2011) AISTATS
    • Coates, A.1    Lee, H.2    Ng, A.Y.3
  • 23
    • 33745118277 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In CVPR WGMBV, 2004.
    • (2004) CVPR WGMBV
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 26
    • 85162494200 scopus 로고    scopus 로고
    • Selecting receptive fields in deep networks
    • A. Coates and A. Y. Ng. Selecting receptive fields in deep networks. In NIPS, pages 2528-2536, 2011.
    • (2011) NIPS , pp. 2528-2536
    • Coates, A.1    Ng, A.Y.2
  • 27
    • 84872231524 scopus 로고    scopus 로고
    • Unsupervised feature learning for RGB-D based object recognition
    • June
    • L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for RGB-D based object recognition. In ISER, June 2012.
    • (2012) ISER
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 28
    • 84856649187 scopus 로고    scopus 로고
    • Ask the locals: Multi-way local pooling for image recognition
    • IEEE
    • Y. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun. Ask the locals: multi-way local pooling for image recognition. In ICCV'11. IEEE, 2011.
    • (2011) ICCV'11
    • Boureau, Y.1    Le Roux, N.2    Bach, F.3    Ponce, J.4    LeCun, Y.5
  • 29
    • 84887371778 scopus 로고    scopus 로고
    • Multipath sparse coding using hierarchical matching pursuit
    • L. Bo, X. Ren, and D. Fox. Multipath sparse coding using hierarchical matching pursuit. In CVPR, pages 660-667, 2013.
    • (2013) CVPR , pp. 660-667
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 30
  • 31
  • 32
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.