-
1
-
-
84975090518
-
Messenger RNA modifications: Form, distribution, and function
-
Gilbert WV, Bell TA, Schaening C. Messenger RNA modifications: Form, distribution, and function. Science. 2016;352:1408-12.
-
(2016)
Science
, vol.352
, pp. 1408-1412
-
-
Gilbert, W.V.1
Bell, T.A.2
Schaening, C.3
-
2
-
-
84994108096
-
Post-transcriptional gene regulation by mRNA modifications
-
Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31-42.
-
(2017)
Nat Rev Mol Cell Biol
, vol.18
, pp. 31-42
-
-
Zhao, B.S.1
Roundtree, I.A.2
He, C.3
-
3
-
-
0035997389
-
RNA Editing by adenosine deaminases that act on RNA
-
Bass BL. RNA Editing by adenosine deaminases that act on RNA. Annu Rev Biochem. 2002;71:817-46.
-
(2002)
Annu Rev Biochem
, vol.71
, pp. 817-846
-
-
Bass, B.L.1
-
5
-
-
77952293063
-
Functions and regulation of RNA editing by ADAR deaminases
-
Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321-49.
-
(2010)
Annu Rev Biochem
, vol.79
, pp. 321-349
-
-
Nishikura, K.1
-
6
-
-
0023666074
-
A developmentally regulated activity that unwinds RNA duplexes
-
Bass BL, Weintraub H. A developmentally regulated activity that unwinds RNA duplexes. Cell. 1987;48:607-13.
-
(1987)
Cell
, vol.48
, pp. 607-613
-
-
Bass, B.L.1
Weintraub, H.2
-
7
-
-
0023638382
-
Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity
-
Rebagliati MR, Melton DA. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell. 1987;48:599-605.
-
(1987)
Cell
, vol.48
, pp. 599-605
-
-
Rebagliati, M.R.1
Melton, D.A.2
-
8
-
-
0024233053
-
An unwinding activity that covalently modifies its double-stranded RNA substrate
-
Bass BL, Weintraub H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell. 1988;55:1089-98.
-
(1988)
Cell
, vol.55
, pp. 1089-1098
-
-
Bass, B.L.1
Weintraub, H.2
-
9
-
-
0024966063
-
Biased hypermutation of viral RNA genomes could be due to unwinding/modification of double-stranded RNA
-
Bass BL, Weintraub H, Cattaneo R, Billeter MA. Biased hypermutation of viral RNA genomes could be due to unwinding/modification of double-stranded RNA. Cell. 1989;56:331.
-
(1989)
Cell
, vol.56
, pp. 331
-
-
Bass, B.L.1
Weintraub, H.2
Cattaneo, R.3
Billeter, M.A.4
-
10
-
-
0025995296
-
RNA editing in brain controls a determinant of ion flow in glutamate-gated channels
-
Sommer B, Kohler M, Sprengel R, Seeburg PH. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell. 1991;67:11-9.
-
(1991)
Cell
, vol.67
, pp. 11-19
-
-
Sommer, B.1
Kohler, M.2
Sprengel, R.3
Seeburg, P.H.4
-
11
-
-
0027772363
-
RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency
-
Higuchi M, Single FN, Kohler M, Sommer B, Sprengel R, Seeburg PH. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell. 1993;75:1361-70.
-
(1993)
Cell
, vol.75
, pp. 1361-1370
-
-
Higuchi, M.1
Single, F.N.2
Kohler, M.3
Sommer, B.4
Sprengel, R.5
Seeburg, P.H.6
-
12
-
-
0029610443
-
Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice
-
Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, Seeburg PH, et al. Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science. 1995;270:1677-80.
-
(1995)
Science
, vol.270
, pp. 1677-1680
-
-
Brusa, R.1
Zimmermann, F.2
Koh, D.S.3
Feldmeyer, D.4
Gass, P.5
Seeburg, P.H.6
-
13
-
-
0034612640
-
Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2
-
Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature. 2000;406:78-81.
-
(2000)
Nature
, vol.406
, pp. 78-81
-
-
Higuchi, M.1
Maas, S.2
Single, F.N.3
Hartner, J.4
Rozov, A.5
Burnashev, N.6
-
14
-
-
0028574351
-
Control of kinetic properties of AMPA receptor channels by nuclear RNA editing
-
Lomeli H, Mosbacher J, Melcher T, Hoger T, Geiger JR, Kuner T, et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science. 1994;266:1709-13.
-
(1994)
Science
, vol.266
, pp. 1709-1713
-
-
Lomeli, H.1
Mosbacher, J.2
Melcher, T.3
Hoger, T.4
Geiger, J.R.5
Kuner, T.6
-
15
-
-
0028872727
-
Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase
-
O'Connell MA, Krause S, Higuchi M, Hsuan JJ, Totty NF, Jenny A, et al. Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol Cell Biol. 1995;15:1389-97.
-
(1995)
Mol Cell Biol.
, vol.15
, pp. 1389-1397
-
-
O'Connell, M.A.1
Krause, S.2
Higuchi, M.3
Hsuan, J.J.4
Totty, N.F.5
Jenny, A.6
-
16
-
-
0028053929
-
Purification and properties of double-stranded RNA-specific adenosine deaminase from calf thymus
-
O'Connell MA, Keller W. Purification and properties of double-stranded RNA-specific adenosine deaminase from calf thymus. Proc Natl Acad Sci U S A. 1994;91:10596-600.
-
(1994)
Proc Natl Acad Sci U S A
, vol.91
, pp. 10596-10600
-
-
O'Connell, M.A.1
Keller, W.2
-
17
-
-
0029775644
-
RED2, a brain-specific member of the RNA-specific adenosine deaminase family
-
Melcher T, Maas S, Herb A, Sprengel R, Higuchi M, Seeburg PH. RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J Biol Chem. 1996;271:31795-8.
-
(1996)
J Biol Chem
, vol.271
, pp. 31795-31798
-
-
Melcher, T.1
Maas, S.2
Herb, A.3
Sprengel, R.4
Higuchi, M.5
Seeburg, P.H.6
-
18
-
-
0029164692
-
Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase
-
Patterson JB, Samuel CE. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol. 1995;15:5376-88.
-
(1995)
Mol Cell Biol.
, vol.15
, pp. 5376-5388
-
-
Patterson, J.B.1
Samuel, C.E.2
-
19
-
-
0026320763
-
The mechanism of adenosine to inosine conversion by the double-stranded RNA unwinding/modifying activity: a high-performance liquid chromatography-mass spectrometry analysis
-
Polson AG, Crain PF, Pomerantz SC, McCloskey JA, Bass BL. The mechanism of adenosine to inosine conversion by the double-stranded RNA unwinding/modifying activity: a high-performance liquid chromatography-mass spectrometry analysis. Biochemistry. 1991;30:11507-14.
-
(1991)
Biochemistry
, vol.30
, pp. 11507-11514
-
-
Polson, A.G.1
Crain, P.F.2
Pomerantz, S.C.3
McCloskey, J.A.4
Bass, B.L.5
-
20
-
-
79959829720
-
Widespread RNA and DNA sequence differences in the human transcriptome
-
Li M, Wang IX, Li Y, Bruzel A, Richards AL, Toung JM, et al. Widespread RNA and DNA sequence differences in the human transcriptome. Science. 2011;333:53-8.
-
(2011)
Science
, vol.333
, pp. 53-58
-
-
Li, M.1
Wang, I.X.2
Li, Y.3
Bruzel, A.4
Richards, A.L.5
Toung, J.M.6
-
21
-
-
84872186385
-
Lack of evidence for existence of noncanonical RNA editing
-
Piskol R, Peng Z, Wang J, Li JB. Lack of evidence for existence of noncanonical RNA editing. Nat Biotechnol. 2013;31:19-20.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 19-20
-
-
Piskol, R.1
Peng, Z.2
Wang, J.3
Li, J.B.4
-
22
-
-
84858304969
-
Comment on "Widespread RNA and DNA sequence differences in the human transcriptome"
-
Kleinman CL, Majewski J. Comment on "Widespread RNA and DNA sequence differences in the human transcriptome". Science. 2012;335:1302. author reply 1302.
-
(2012)
Science
, vol.335
, pp. 1302
-
-
Kleinman, C.L.1
Majewski, J.2
-
23
-
-
84858311187
-
Comment on "Widespread RNA and DNA sequence differences in the human transcriptome"
-
Lin W, Piskol R, Tan MH, Li JB. Comment on "Widespread RNA and DNA sequence differences in the human transcriptome". Science. 2012;335:1302. author reply 1302.
-
(2012)
Science
, vol.335
, pp. 1302
-
-
Lin, W.1
Piskol, R.2
Tan, M.H.3
Li, J.B.4
-
24
-
-
84858328300
-
Comment on "Widespread RNA and DNA sequence differences in the human transcriptome"
-
Pickrell JK, Gilad Y, Pritchard JK. Comment on "Widespread RNA and DNA sequence differences in the human transcriptome". Science. 2012;335:1302. author reply 1302.
-
(2012)
Science
, vol.335
, pp. 1302
-
-
Pickrell, J.K.1
Gilad, Y.2
Pritchard, J.K.3
-
25
-
-
84895535383
-
A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes
-
Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2014;24:365-76.
-
(2014)
Genome Res
, vol.24
, pp. 365-376
-
-
Bazak, L.1
Haviv, A.2
Barak, M.3
Jacob-Hirsch, J.4
Deng, P.5
Zhang, R.6
-
26
-
-
84969542866
-
Identification of human RNA editing sites: A historical perspective
-
Ramaswami G, Li JB. Identification of human RNA editing sites: A historical perspective. Methods. 2016;107:42-7.
-
(2016)
Methods
, vol.107
, pp. 42-47
-
-
Ramaswami, G.1
Li, J.B.2
-
27
-
-
3543004084
-
Systematic identification of abundant A-to-I editing sites in the human transcriptome
-
Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol. 2004;22:1001-5.
-
(2004)
Nat Biotechnol
, vol.22
, pp. 1001-1005
-
-
Levanon, E.Y.1
Eisenberg, E.2
Yelin, R.3
Nemzer, S.4
Hallegger, M.5
Shemesh, R.6
-
28
-
-
84861970552
-
Accurate identification of human Alu and non-Alu RNA editing sites
-
Ramaswami G, Lin W, Piskol R, Tan MH, Davis C, Li JB. Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods. 2012;9:579-81.
-
(2012)
Nat Methods
, vol.9
, pp. 579-581
-
-
Ramaswami, G.1
Lin, W.2
Piskol, R.3
Tan, M.H.4
Davis, C.5
Li, J.B.6
-
29
-
-
84873414540
-
Identifying RNA editing sites using RNA sequencing data alone
-
Ramaswami G, Zhang R, Piskol R, Keegan LP, Deng P, O'Connell MA, et al. Identifying RNA editing sites using RNA sequencing data alone. Nat Methods. 2013;10:128-32.
-
(2013)
Nat Methods
, vol.10
, pp. 128-132
-
-
Ramaswami, G.1
Zhang, R.2
Piskol, R.3
Keegan, L.P.4
Deng, P.5
O'Connell, M.A.6
-
30
-
-
1042278125
-
Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1
-
Hartner JC, Schmittwolf C, Kispert A, Muller AM, Higuchi M, Seeburg PH. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem. 2004;279:4894-902.
-
(2004)
J Biol Chem
, vol.279
, pp. 4894-4902
-
-
Hartner, J.C.1
Schmittwolf, C.2
Kispert, A.3
Muller, A.M.4
Higuchi, M.5
Seeburg, P.H.6
-
31
-
-
66349122954
-
Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing
-
Li JB, Levanon EY, Yoon JK, Aach J, Xie B, Leproust E, et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science. 2009;324:1210-3.
-
(2009)
Science
, vol.324
, pp. 1210-1213
-
-
Li, J.B.1
Levanon, E.Y.2
Yoon, J.K.3
Aach, J.4
Xie, B.5
Leproust, E.6
-
32
-
-
78650542645
-
RNA editing changes the lesion specificity for the DNA repair enzyme NEIL1
-
Yeo J, Goodman RA, Schirle NT, David SS, Beal PA. RNA editing changes the lesion specificity for the DNA repair enzyme NEIL1. Proc Natl Acad Sci U S A. 2010;107:20715-9.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 20715-20719
-
-
Yeo, J.1
Goodman, R.A.2
Schirle, N.T.3
David, S.S.4
Beal, P.A.5
-
33
-
-
84873531277
-
Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma
-
Chen L, Li Y, Lin CH, Chan TH, Chow RK, Song Y, et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat Med. 2013;19:209-16.
-
(2013)
Nat Med
, vol.19
, pp. 209-216
-
-
Chen, L.1
Li, Y.2
Lin, C.H.3
Chan, T.H.4
Chow, R.K.5
Song, Y.6
-
35
-
-
84891797364
-
RADAR: a rigorously annotated database of A-to-I RNA editing
-
Ramaswami G, Li JB. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res. 2014;42:D109-13.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D109-D113
-
-
Ramaswami, G.1
Li, J.B.2
-
36
-
-
84907361822
-
A genome-wide map of hyper-edited RNA reveals numerous new sites
-
Porath HT, Carmi S, Levanon EY. A genome-wide map of hyper-edited RNA reveals numerous new sites. Nat Commun. 2014;5:4726.
-
(2014)
Nat Commun
, vol.5
, pp. 4726
-
-
Porath, H.T.1
Carmi, S.2
Levanon, E.Y.3
-
37
-
-
80055076214
-
Identification of widespread ultra-edited human RNAs
-
Carmi S, Borukhov I, Levanon EY. Identification of widespread ultra-edited human RNAs. PLoS Genet. 2011;7:1-11.
-
(2011)
PLoS Genet
, vol.7
, pp. 1-11
-
-
Carmi, S.1
Borukhov, I.2
Levanon, E.Y.3
-
38
-
-
84973375141
-
Identification of the long, edited dsRNAome of LPS-stimulated immune cells
-
Blango MG, Bass BL. Identification of the long, edited dsRNAome of LPS-stimulated immune cells. Genome Res. 2016;26:852-62.
-
(2016)
Genome Res
, vol.26
, pp. 852-862
-
-
Blango, M.G.1
Bass, B.L.2
-
39
-
-
84928007563
-
Genome-wide profiling of the C. elegans dsRNAome
-
Whipple JM, Youssef OA, Aruscavage PJ, Nix DA, Hong C, Johnson WE, et al. Genome-wide profiling of the C. elegans dsRNAome. RNA. 2015;21:786-800.
-
(2015)
RNA
, vol.21
, pp. 786-800
-
-
Whipple, J.M.1
Youssef, O.A.2
Aruscavage, P.J.3
Nix, D.A.4
Hong, C.5
Johnson, W.E.6
-
40
-
-
84989936332
-
Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis
-
Liddicoat BJ, Hartner JC, Piskol R, Ramaswami G, Chalk AM, Kingsley PD, et al. Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis. Exp Hematol. 2016;44:947-63.
-
(2016)
Exp Hematol
, vol.44
, pp. 947-963
-
-
Liddicoat, B.J.1
Hartner, J.C.2
Piskol, R.3
Ramaswami, G.4
Chalk, A.M.5
Kingsley, P.D.6
-
41
-
-
84941100160
-
RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself
-
Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, Higuchi M, Hartner JC, et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science. 2015;349:1115-20.
-
(2015)
Science
, vol.349
, pp. 1115-1120
-
-
Liddicoat, B.J.1
Piskol, R.2
Chalk, A.M.3
Ramaswami, G.4
Higuchi, M.5
Hartner, J.C.6
-
42
-
-
85030685604
-
Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance
-
Porath HT, Knisbacher BA, Eisenberg E, Levanon EY. Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biol. 2017;18:185.
-
(2017)
Genome Biol
, vol.18
, pp. 185
-
-
Porath, H.T.1
Knisbacher, B.A.2
Eisenberg, E.3
Levanon, E.Y.4
-
43
-
-
33749256772
-
RNA editing level in the mouse is determined by the genomic repeat repertoire
-
Neeman Y, Levanon EY, Jantsch MF, Eisenberg E. RNA editing level in the mouse is determined by the genomic repeat repertoire. RNA. 2006;12:1802-9.
-
(2006)
RNA
, vol.12
, pp. 1802-1809
-
-
Neeman, Y.1
Levanon, E.Y.2
Jantsch, M.F.3
Eisenberg, E.4
-
44
-
-
78651507445
-
Adenosine deaminases acting on RNA, RNA editing, and interferon action
-
George CX, Gan Z, Liu Y, Samuel CE. Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res. 2010;31:99-117.
-
(2010)
J Interferon Cytokine Res
, vol.31
, pp. 99-117
-
-
George, C.X.1
Gan, Z.2
Liu, Y.3
Samuel, C.E.4
-
45
-
-
84995553584
-
Hyperediting by ADAR1 of a new herpesvirus lncRNA during the lytic phase of the oncogenic Marek's disease virus
-
Figueroa T, Boumart I, Coupeau D, Rasschaert D. Hyperediting by ADAR1 of a new herpesvirus lncRNA during the lytic phase of the oncogenic Marek's disease virus. J Gen Virol. 2016;97:2973-88.
-
(2016)
J Gen Virol
, vol.97
, pp. 2973-2988
-
-
Figueroa, T.1
Boumart, I.2
Coupeau, D.3
Rasschaert, D.4
-
46
-
-
84869228793
-
Hyperediting of human T-cell leukemia virus type 2 and simian T-cell leukemia virus type 3 by the dsRNA adenosine deaminase ADAR-1
-
Ko NL, Birlouez E, Wain-Hobson S, Mahieux R, Vartanian JP. Hyperediting of human T-cell leukemia virus type 2 and simian T-cell leukemia virus type 3 by the dsRNA adenosine deaminase ADAR-1. J Gen Virol. 2012;93:2646-51.
-
(2012)
J Gen Virol
, vol.93
, pp. 2646-2651
-
-
Ko, N.L.1
Birlouez, E.2
Wain-Hobson, S.3
Mahieux, R.4
Vartanian, J.P.5
-
47
-
-
0030972389
-
Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts
-
Kumar M, Carmichael GG. Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts. Proc Natl Acad Sci U S A. 1997;94:3542-7.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 3542-3547
-
-
Kumar, M.1
Carmichael, G.G.2
-
48
-
-
0011823131
-
A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs
-
Wagner RW, Smith JE, Cooperman BS, Nishikura K. A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc Natl Acad Sci U S A. 1989;86:2647-51.
-
(1989)
Proc Natl Acad Sci U S A
, vol.86
, pp. 2647-2651
-
-
Wagner, R.W.1
Smith, J.E.2
Cooperman, B.S.3
Nishikura, K.4
-
49
-
-
0023763122
-
Biased hypermutation and other genetic changes in defective measles viruses in human brain infections
-
Cattaneo R, Schmid A, Eschle D, Baczko K, ter Meulen V, Billeter MA. Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell. 1988;55:255-65.
-
(1988)
Cell
, vol.55
, pp. 255-265
-
-
Cattaneo, R.1
Schmid, A.2
Eschle, D.3
Baczko, K.4
Meulen, V.5
Billeter, M.A.6
-
50
-
-
0027967784
-
Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase
-
Polson AG, Bass BL. Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J. 1994;13:5701-11.
-
(1994)
EMBO J
, vol.13
, pp. 5701-5711
-
-
Polson, A.G.1
Bass, B.L.2
-
51
-
-
84872564405
-
Transcriptome-wide identification of A > I RNA editing sites by inosine specific cleavage
-
Cattenoz PB, Taft RJ, Westhof E, Mattick JS. Transcriptome-wide identification of A > I RNA editing sites by inosine specific cleavage. RNA. 2013;19:257-70.
-
(2013)
RNA
, vol.19
, pp. 257-270
-
-
Cattenoz, P.B.1
Taft, R.J.2
Westhof, E.3
Mattick, J.S.4
-
52
-
-
77956897387
-
Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome
-
Sakurai M, Yano T, Kawabata H, Ueda H, Suzuki T. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nat Chem Biol. 2010;6:733-40.
-
(2010)
Nat Chem Biol
, vol.6
, pp. 733-740
-
-
Sakurai, M.1
Yano, T.2
Kawabata, H.3
Ueda, H.4
Suzuki, T.5
-
53
-
-
23844491284
-
Identification of RNA editing sites in the SNP database
-
Eisenberg E, Adamsky K, Cohen L, Amariglio N, Hirshberg A, Rechavi G, et al. Identification of RNA editing sites in the SNP database. Nucleic Acids Res. 2005;33:4612-7.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 4612-4617
-
-
Eisenberg, E.1
Adamsky, K.2
Cohen, L.3
Amariglio, N.4
Hirshberg, A.5
Rechavi, G.6
-
54
-
-
77953752896
-
Sequence based identification of RNA editing sites
-
Eisenberg E, Li JB, Levanon EY. Sequence based identification of RNA editing sites. RNA Biol. 2010;7:248-52.
-
(2010)
RNA Biol
, vol.7
, pp. 248-252
-
-
Eisenberg, E.1
Li, J.B.2
Levanon, E.Y.3
-
55
-
-
84864591239
-
Systematic identification of edited microRNAs in the human brain
-
Alon S, Mor E, Vigneault F, Church GM, Locatelli F, Galeano F, et al. Systematic identification of edited microRNAs in the human brain. Genome Res. 2012;22:1533-40.
-
(2012)
Genome Res
, vol.22
, pp. 1533-1540
-
-
Alon, S.1
Mor, E.2
Vigneault, F.3
Church, G.M.4
Locatelli, F.5
Galeano, F.6
-
56
-
-
84964695622
-
The majority of transcripts in the squid nervous system are extensively recoded by A-to-I RNA editing
-
Alon S, Garrett SC, Levanon EY, Olson S, Graveley BR, Rosenthal JJ, et al. The majority of transcripts in the squid nervous system are extensively recoded by A-to-I RNA editing. Elife. 2015;4: doi: 10.7554/eLife.05198.
-
(2015)
Elife
, vol.4
-
-
Alon, S.1
Garrett, S.C.2
Levanon, E.Y.3
Olson, S.4
Graveley, B.R.5
Rosenthal, J.J.6
-
57
-
-
84894651954
-
Quantifying RNA allelic ratios by microfluidic multiplex PCR and sequencing
-
Zhang R, Li X, Ramaswami G, Smith KS, Turecki G, Montgomery SB, Li JB. Quantifying RNA allelic ratios by microfluidic multiplex PCR and sequencing. Nat Methods. 2014;11:51-4.
-
(2014)
Nat Methods
, vol.11
, pp. 51-54
-
-
Zhang, R.1
Li, X.2
Ramaswami, G.3
Smith, K.S.4
Turecki, G.5
Montgomery, S.B.6
Li, J.B.7
-
58
-
-
85014098829
-
Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing
-
Zhang R, Deng P, Jacobson D, Li JB. Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing. PLoS Genet. 2017;13:e1006563.
-
(2017)
PLoS Genet
, vol.13
-
-
Zhang, R.1
Deng, P.2
Jacobson, D.3
Li, J.B.4
-
59
-
-
77955455395
-
Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates
-
Paz-Yaacov N, Levanon EY, Nevo E, Kinar Y, Harmelin A, Jacob-Hirsch J, et al. Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc Natl Acad Sci U S A. 2010;107:12174-9.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 12174-12179
-
-
Paz-Yaacov, N.1
Levanon, E.Y.2
Nevo, E.3
Kinar, Y.4
Harmelin, A.5
Jacob-Hirsch, J.6
-
60
-
-
85017124956
-
Trade-off between transcriptome plasticity and genome evolution in cephalopods
-
Liscovitch-Brauer N, Alon S, Porath HT, Elstein B, Unger R, Ziv T, et al. Trade-off between transcriptome plasticity and genome evolution in cephalopods. Cell. 2017;169:191-202.e11.
-
(2017)
Cell
, vol.169
, pp. 191-202.e11
-
-
Liscovitch-Brauer, N.1
Alon, S.2
Porath, H.T.3
Elstein, B.4
Unger, R.5
Ziv, T.6
-
61
-
-
34247388679
-
RNA-editing-mediated exon evolution
-
Lev-Maor G, Sorek R, Levanon EY, Paz N, Eisenberg E, Ast G. RNA-editing-mediated exon evolution. Genome Biol. 2007;8:R29.
-
(2007)
Genome Biol
, vol.8
, pp. R29
-
-
Lev-Maor, G.1
Sorek, R.2
Levanon, E.Y.3
Paz, N.4
Eisenberg, E.5
Ast, G.6
-
62
-
-
84980000166
-
ADAR1 deletion induces NFkappaB and interferon signaling dependent liver inflammation and fibrosis
-
Ben-Shoshan SO, Kagan P, Sultan M, Barabash Z, Dor C, Jacob-Hirsch J, et al. ADAR1 deletion induces NFkappaB and interferon signaling dependent liver inflammation and fibrosis. RNA Biol. 2017;14:587-602.
-
(2017)
RNA Biol
, vol.14
, pp. 587-602
-
-
Ben-Shoshan, S.O.1
Kagan, P.2
Sultan, M.3
Barabash, Z.4
Dor, C.5
Jacob-Hirsch, J.6
-
63
-
-
84964780455
-
Editing of cellular self-RNAs by adenosine deaminase ADAR1 suppresses innate immune stress responses
-
George CX, Ramaswami G, Li JB, Samuel CE. Editing of cellular self-RNAs by adenosine deaminase ADAR1 suppresses innate immune stress responses. J Biol Chem. 2016;291:6158-68.
-
(2016)
J Biol Chem
, vol.291
, pp. 6158-6168
-
-
George, C.X.1
Ramaswami, G.2
Li, J.B.3
Samuel, C.E.4
-
64
-
-
84863229628
-
Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome
-
Peng Z, Cheng Y, Tan BC, Kang L, Tian Z, Zhu Y, et al. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol. 2012;30:253-60.
-
(2012)
Nat Biotechnol
, vol.30
, pp. 253-260
-
-
Peng, Z.1
Cheng, Y.2
Tan, B.C.3
Kang, L.4
Tian, Z.5
Zhu, Y.6
-
65
-
-
84875361309
-
Prediction of constitutive A-to-I editing sites from human transcriptomes in the absence of genomic sequences
-
Zhu S, Xiang JF, Chen T, Chen LL, Yang L. Prediction of constitutive A-to-I editing sites from human transcriptomes in the absence of genomic sequences. BMC Genomics. 2013;14:206.
-
(2013)
BMC Genomics
, vol.14
, pp. 206
-
-
Zhu, S.1
Xiang, J.F.2
Chen, T.3
Chen, L.L.4
Yang, L.5
-
66
-
-
84855320189
-
Accurate identification of A-to-I RNA editing in human by transcriptome sequencing
-
Bahn JH, Lee JH, Li G, Greer C, Peng G, Xiao X. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res. 2012;22:142-50.
-
(2012)
Genome Res
, vol.22
, pp. 142-150
-
-
Bahn, J.H.1
Lee, J.H.2
Li, G.3
Greer, C.4
Peng, G.5
Xiao, X.6
-
67
-
-
77954505224
-
DARNED: a DAtabase of RNa EDiting in humans
-
Kiran A, Baranov PV. DARNED: a DAtabase of RNa EDiting in humans. Bioinformatics. 2010;26:1772-6.
-
(2010)
Bioinformatics
, vol.26
, pp. 1772-1776
-
-
Kiran, A.1
Baranov, P.V.2
-
69
-
-
84880213242
-
REDItools: high-throughput RNA editing detection made easy
-
Picardi E, Pesole G. REDItools: high-throughput RNA editing detection made easy. Bioinformatics. 2013;29:1813-4.
-
(2013)
Bioinformatics
, vol.29
, pp. 1813-1814
-
-
Picardi, E.1
Pesole, G.2
-
70
-
-
0034682706
-
A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity
-
Palladino MJ, Keegan LP, O'Connell MA, Reenan RA. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell. 2000;102:437-49.
-
(2000)
Cell
, vol.102
, pp. 437-449
-
-
Palladino, M.J.1
Keegan, L.P.2
O'Connell, M.A.3
Reenan, R.A.4
-
71
-
-
80052460364
-
Functional conservation in human and Drosophila of Metazoan ADAR2 involved in RNA editing: loss of ADAR1 in insects
-
Keegan LP, McGurk L, Palavicini JP, Brindle J, Paro S, Li X, et al. Functional conservation in human and Drosophila of Metazoan ADAR2 involved in RNA editing: loss of ADAR1 in insects. Nucleic Acids Res. 2011;39:7249-62.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 7249-7262
-
-
Keegan, L.P.1
McGurk, L.2
Palavicini, J.P.3
Brindle, J.4
Paro, S.5
Li, X.6
-
72
-
-
84896730394
-
The dsRBP and inactive editor ADR-1 utilizes dsRNA binding to regulate A-to-I RNA editing across the C. elegans transcriptome
-
Washburn MC, Kakaradov B, Sundararaman B, Wheeler E, Hoon S, Yeo GW, et al. The dsRBP and inactive editor ADR-1 utilizes dsRNA binding to regulate A-to-I RNA editing across the C. elegans transcriptome. Cell Rep. 2014;6:599-607.
-
(2014)
Cell Rep
, vol.6
, pp. 599-607
-
-
Washburn, M.C.1
Kakaradov, B.2
Sundararaman, B.3
Wheeler, E.4
Hoon, S.5
Yeo, G.W.6
-
73
-
-
0031569889
-
Cloning of a human RNA editing deaminase (ADARB1) of glutamate receptors that maps to chromosome 21q22.3
-
Mittaz L, Scott HS, Rossier C, Seeburg PH, Higuchi M, Antonarakis SE. Cloning of a human RNA editing deaminase (ADARB1) of glutamate receptors that maps to chromosome 21q22.3. Genomics. 1997;41:210-7.
-
(1997)
Genomics
, vol.41
, pp. 210-217
-
-
Mittaz, L.1
Scott, H.S.2
Rossier, C.3
Seeburg, P.H.4
Higuchi, M.5
Antonarakis, S.E.6
-
74
-
-
0034078399
-
A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains
-
Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K. A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA. 2000;6:755-67.
-
(2000)
RNA
, vol.6
, pp. 755-767
-
-
Chen, C.X.1
Cho, D.S.2
Wang, Q.3
Lai, F.4
Carter, K.C.5
Nishikura, K.6
-
75
-
-
85015280834
-
Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma
-
Oakes E, Anderson A, Cohen-Gadol A, Hundley HA. Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma. J Biol Chem. 2017;292:4326-35.
-
(2017)
J Biol Chem
, vol.292
, pp. 4326-4335
-
-
Oakes, E.1
Anderson, A.2
Cohen-Gadol, A.3
Hundley, H.A.4
-
76
-
-
85031298074
-
Dynamic landscape and regulation of RNA editing in mammals
-
Tan MH, Li Q, Shanmugam R, Piskol R, Kohler J, Young AN, et al. Dynamic landscape and regulation of RNA editing in mammals. Nature. 2017;550:249-54.
-
(2017)
Nature
, vol.550
, pp. 249-254
-
-
Tan, M.H.1
Li, Q.2
Shanmugam, R.3
Piskol, R.4
Kohler, J.5
Young, A.N.6
-
77
-
-
78651092973
-
RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis
-
Ward SV, George CX, Welch MJ, Liou LY, Hahm B, Lewicki H, et al. RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proc Natl Acad Sci U S A. 2011;108:331-6.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 331-336
-
-
Ward, S.V.1
George, C.X.2
Welch, M.J.3
Liou, L.Y.4
Hahm, B.5
Lewicki, H.6
-
78
-
-
84947434056
-
Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development
-
Pestal K, Funk CC, Snyder JM, Price ND, Treuting PM, Stetson DB. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity. 2015;43:933-44.
-
(2015)
Immunity
, vol.43
, pp. 933-944
-
-
Pestal, K.1
Funk, C.C.2
Snyder, J.M.3
Price, N.D.4
Treuting, P.M.5
Stetson, D.B.6
-
79
-
-
0033551050
-
Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible
-
George CX, Samuel CE. Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc Natl Acad Sci U S A. 1999;96:4621-6.
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, pp. 4621-4626
-
-
George, C.X.1
Samuel, C.E.2
-
80
-
-
85022343994
-
Testicular adenosine to inosine RNA editing in the mouse is mediated by ADARB1
-
Snyder EM, Licht K, Braun RE. Testicular adenosine to inosine RNA editing in the mouse is mediated by ADARB1. Biol Reprod. 2017;96:244-53.
-
(2017)
Biol Reprod
, vol.96
, pp. 244-253
-
-
Snyder, E.M.1
Licht, K.2
Braun, R.E.3
-
81
-
-
0037112823
-
RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans
-
Tonkin LA, Saccomanno L, Morse DP, Brodigan T, Krause M, Bass BL. RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO J. 2002;21:6025-35.
-
(2002)
EMBO J
, vol.21
, pp. 6025-6035
-
-
Tonkin, L.A.1
Saccomanno, L.2
Morse, D.P.3
Brodigan, T.4
Krause, M.5
Bass, B.L.6
-
82
-
-
0344305774
-
Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants
-
Tonkin LA, Bass BL. Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants. Science. 2003;302:1725.
-
(2003)
Science
, vol.302
, pp. 1725
-
-
Tonkin, L.A.1
Bass, B.L.2
-
83
-
-
85032576375
-
The C. elegans neural editome reveals an ADAR target mRNA required for proper chemotaxis
-
Deffit SN, Yee BA, Manning AC, Rajendren S, Vadlamani P, Wheeler EC, et al. The C. elegans neural editome reveals an ADAR target mRNA required for proper chemotaxis. Elife. 2017;6:e28625.
-
(2017)
Elife
, vol.6
-
-
Deffit, S.N.1
Yee, B.A.2
Manning, A.C.3
Rajendren, S.4
Vadlamani, P.5
Wheeler, E.C.6
-
84
-
-
0033943052
-
dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing
-
Palladino MJ, Keegan LP, O'Connell MA, Reenan RA. dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA. 2000;6:1004-18.
-
(2000)
RNA
, vol.6
, pp. 1004-1018
-
-
Palladino, M.J.1
Keegan, L.P.2
O'Connell, M.A.3
Reenan, R.A.4
-
85
-
-
79953130911
-
Engineered alterations in RNA editing modulate complex behavior in Drosophila: regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets
-
Jepson JE, Savva YA, Yokose C, Sugden AU, Sahin A, Reenan RA. Engineered alterations in RNA editing modulate complex behavior in Drosophila: regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J Biol Chem. 2011;286:8325-37.
-
(2011)
J Biol Chem
, vol.286
, pp. 8325-8337
-
-
Jepson, J.E.1
Savva, Y.A.2
Yokose, C.3
Sugden, A.U.4
Sahin, A.5
Reenan, R.A.6
-
86
-
-
84955512477
-
ADAR-mediated RNA editing suppresses sleep by acting as a brake on glutamatergic synaptic plasticity
-
Robinson JE, Paluch J, Dickman DK, Joiner WJ. ADAR-mediated RNA editing suppresses sleep by acting as a brake on glutamatergic synaptic plasticity. Nat Commun. 2016;7:10512.
-
(2016)
Nat Commun
, vol.7
, pp. 10512
-
-
Robinson, J.E.1
Paluch, J.2
Dickman, D.K.3
Joiner, W.J.4
-
87
-
-
84997693827
-
ADARB1 catalyzes circadian A-to-I editing and regulates RNA rhythm
-
Terajima H, Yoshitane H, Ozaki H, Suzuki Y, Shimba S, Kuroda S, et al. ADARB1 catalyzes circadian A-to-I editing and regulates RNA rhythm. Nat Genet. 2017;49:146-51.
-
(2017)
Nat Genet
, vol.49
, pp. 146-151
-
-
Terajima, H.1
Yoshitane, H.2
Ozaki, H.3
Suzuki, Y.4
Shimba, S.5
Kuroda, S.6
-
88
-
-
85027574125
-
ADAR RNA editing below the backbone
-
Keegan LP, Khan A, Vukic D, O'Connell MA. ADAR RNA editing below the backbone. RNA. 2017;23(9):1317-28. doi: 10.1261/rna.060921.117.
-
(2017)
RNA
, vol.23
, Issue.9
, pp. 1317-1328
-
-
Keegan, L.P.1
Khan, A.2
Vukic, D.3
O'Connell, M.A.4
-
89
-
-
79956313243
-
Requirement of the RNA-editing enzyme ADAR2 for normal physiology in mice
-
Horsch M, Seeburg PH, Adler T, Aguilar-Pimentel JA, Becker L, Calzada-Wack J, et al. Requirement of the RNA-editing enzyme ADAR2 for normal physiology in mice. J Biol Chem. 2011;286:18614-22.
-
(2011)
J Biol Chem
, vol.286
, pp. 18614-18622
-
-
Horsch, M.1
Seeburg, P.H.2
Adler, T.3
Aguilar-Pimentel, J.A.4
Becker, L.5
Calzada-Wack, J.6
-
90
-
-
1042289736
-
Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene
-
Wang Q, Miyakoda M, Yang W, Khillan J, Stachura DL, Weiss MJ, et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem. 2004;279:4952-61.
-
(2004)
J Biol Chem
, vol.279
, pp. 4952-4961
-
-
Wang, Q.1
Miyakoda, M.2
Yang, W.3
Khillan, J.4
Stachura, D.L.5
Weiss, M.J.6
-
91
-
-
57849136005
-
ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling
-
Hartner JC, Walkley CR, Lu J, Orkin SH. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol. 2009;10:109-15.
-
(2009)
Nat Immunol
, vol.10
, pp. 109-115
-
-
Hartner, J.C.1
Walkley, C.R.2
Lu, J.3
Orkin, S.H.4
-
92
-
-
84912098781
-
The RNA-editing enzyme ADAR1 controls innate immune responses to RNA
-
Mannion NM, Greenwood SM, Young R, Cox S, Brindle J, Read D, et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 2014;9:1482-94.
-
(2014)
Cell Rep
, vol.9
, pp. 1482-1494
-
-
Mannion, N.M.1
Greenwood, S.M.2
Young, R.3
Cox, S.4
Brindle, J.5
Read, D.6
-
93
-
-
85018263220
-
Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line
-
Li Y, Banerjee S, Goldstein SA, Dong B, Gaughan C, Rath S, et al. Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. Elife. 2017;6:e25687.
-
(2017)
Elife
, vol.6
-
-
Li, Y.1
Banerjee, S.2
Goldstein, S.A.3
Dong, B.4
Gaughan, C.5
Rath, S.6
-
94
-
-
84876892072
-
ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing
-
Ota H, Sakurai M, Gupta R, Valente L, Wulff BE, Ariyoshi K, et al. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell. 2013;153:575-89.
-
(2013)
Cell
, vol.153
, pp. 575-589
-
-
Ota, H.1
Sakurai, M.2
Gupta, R.3
Valente, L.4
Wulff, B.E.5
Ariyoshi, K.6
-
95
-
-
84990898357
-
ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis
-
Zipeto MA, Court AC, Sadarangani A, Delos Santos NP, Balaian L, et al. ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis. Cell Stem Cell. 2016;19:177-91.
-
(2016)
Cell Stem Cell
, vol.19
, pp. 177-191
-
-
Zipeto, M.A.1
Court, A.C.2
Sadarangani, A.3
Delos Santos, N.P.4
Balaian, L.5
-
96
-
-
84926520652
-
ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner
-
Chen T, Xiang JF, Zhu S, Chen S, Yin QF, Zhang XO, et al. ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner. Cell Res. 2015;25:459-76.
-
(2015)
Cell Res
, vol.25
, pp. 459-476
-
-
Chen, T.1
Xiang, J.F.2
Zhu, S.3
Chen, S.4
Yin, Q.F.5
Zhang, X.O.6
-
97
-
-
84924352056
-
Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways
-
Bahn JH, Ahn J, Lin X, Zhang Q, Lee JH, Civelek M, et al. Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways. Nat Commun. 2015;6:6355.
-
(2015)
Nat Commun
, vol.6
, pp. 6355
-
-
Bahn, J.H.1
Ahn, J.2
Lin, X.3
Zhang, Q.4
Lee, J.H.5
Civelek, M.6
-
98
-
-
30044443191
-
Modulation of microRNA processing and expression through RNA editing by ADAR deaminases
-
Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol. 2006;13:13-21.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 13-21
-
-
Yang, W.1
Chendrimada, T.P.2
Wang, Q.3
Higuchi, M.4
Seeburg, P.H.5
Shiekhattar, R.6
-
99
-
-
33847317017
-
Redirection of silencing targets by adenosine-to-inosine editing of miRNAs
-
Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science. 2007;315:1137-40.
-
(2007)
Science
, vol.315
, pp. 1137-1140
-
-
Kawahara, Y.1
Zinshteyn, B.2
Sethupathy, P.3
Iizasa, H.4
Hatzigeorgiou, A.G.5
Nishikura, K.6
-
100
-
-
85032511805
-
An RNA editing/dsRNA binding-independent gene regulatory mechanism of ADARs and its clinical implication in cancer
-
Qi L, Song Y, Chan THM, Yang H, Lin CH, Tay DJT, et al. An RNA editing/dsRNA binding-independent gene regulatory mechanism of ADARs and its clinical implication in cancer. Nucleic Acids Res. 2017. doi: 10.1093/nar/gkx667.
-
(2017)
Nucleic Acids Res
-
-
Qi, L.1
Song, Y.2
Chan, T.H.M.3
Yang, H.4
Lin, C.H.5
Tay, D.J.T.6
-
101
-
-
84987648062
-
Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation
-
Stellos K, Gatsiou A, Stamatelopoulos K, Perisic Matic L, John D, Lunella FF, et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat Med. 2016;22:1140-50.
-
(2016)
Nat Med
, vol.22
, pp. 1140-1150
-
-
Stellos, K.1
Gatsiou, A.2
Stamatelopoulos, K.3
Perisic Matic, L.4
John, D.5
Lunella, F.F.6
-
102
-
-
84886060209
-
ADAR1 regulates ARHGAP26 gene expression through RNA editing by disrupting miR-30b-3p and miR-573 binding
-
Wang Q, Hui H, Guo Z, Zhang W, Hu Y, He T, et al. ADAR1 regulates ARHGAP26 gene expression through RNA editing by disrupting miR-30b-3p and miR-573 binding. RNA. 2013;19:1525-36.
-
(2013)
RNA
, vol.19
, pp. 1525-1536
-
-
Wang, Q.1
Hui, H.2
Guo, Z.3
Zhang, W.4
Hu, Y.5
He, T.6
-
103
-
-
0033529064
-
Regulation of alternative splicing by RNA editing
-
Rueter SM, Dawson TR, Emeson RB. Regulation of alternative splicing by RNA editing. Nature. 1999;399:75-80.
-
(1999)
Nature
, vol.399
, pp. 75-80
-
-
Rueter, S.M.1
Dawson, T.R.2
Emeson, R.B.3
-
104
-
-
34547121502
-
Regulation of glutamate receptor B pre-mRNA splicing by RNA editing
-
Schoft VK, Schopoff S, Jantsch MF. Regulation of glutamate receptor B pre-mRNA splicing by RNA editing. Nucleic Acids Res. 2007;35:3723-32.
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 3723-3732
-
-
Schoft, V.K.1
Schopoff, S.2
Jantsch, M.F.3
-
105
-
-
79551631613
-
Alternate rRNA secondary structures as regulators of translation
-
Feng S, Li H, Zhao J, Pervushin K, Lowenhaupt K, Schwartz TU, et al. Alternate rRNA secondary structures as regulators of translation. Nat Struct Mol Biol. 2011;18:169-76.
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 169-176
-
-
Feng, S.1
Li, H.2
Zhao, J.3
Pervushin, K.4
Lowenhaupt, K.5
Schwartz, T.U.6
-
106
-
-
85028945383
-
Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis
-
Heraud-Farlow JE, Chalk AM, Linder SE, Li Q, Taylor S, White JM, et al. Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis. Genome Biol. 2017;18:166.
-
(2017)
Genome Biol
, vol.18
, pp. 166
-
-
Heraud-Farlow, J.E.1
Chalk, A.M.2
Linder, S.E.3
Li, Q.4
Taylor, S.5
White, J.M.6
-
107
-
-
84976319583
-
Dynamic regulation of RNA editing in human brain development and disease
-
Hwang T, Park CK, Leung AK, Gao Y, Hyde TM, Kleinman JE, et al. Dynamic regulation of RNA editing in human brain development and disease. Nat Neurosci. 2016;19:1093-9.
-
(2016)
Nat Neurosci
, vol.19
, pp. 1093-1099
-
-
Hwang, T.1
Park, C.K.2
Leung, A.K.3
Gao, Y.4
Hyde, T.M.5
Kleinman, J.E.6
-
108
-
-
85019894874
-
Single-cell transcriptomics reveals specific RNA editing signatures in the human brain
-
Picardi E, Horner DS, Pesole G. Single-cell transcriptomics reveals specific RNA editing signatures in the human brain. RNA. 2017;23:860-5.
-
(2017)
RNA
, vol.23
, pp. 860-865
-
-
Picardi, E.1
Horner, D.S.2
Pesole, G.3
-
109
-
-
84871436996
-
Evolutionary dynamics of gene and isoform regulation in mammalian tissues
-
Merkin J, Russell C, Chen P, Burge CB. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science. 2012;338:1593-9.
-
(2012)
Science
, vol.338
, pp. 1593-1599
-
-
Merkin, J.1
Russell, C.2
Chen, P.3
Burge, C.B.4
-
110
-
-
84871410405
-
The evolutionary landscape of alternative splicing in vertebrate species
-
Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science. 2012;338:1587-93.
-
(2012)
Science
, vol.338
, pp. 1587-1593
-
-
Barbosa-Morais, N.L.1
Irimia, M.2
Pan, Q.3
Xiong, H.Y.4
Gueroussov, S.5
Lee, L.J.6
-
111
-
-
84933670317
-
Cis regulatory effects on A-to-I RNA editing in related Drosophila species
-
Sapiro AL, Deng P, Zhang R, Li JB. Cis regulatory effects on A-to-I RNA editing in related Drosophila species. Cell Rep. 2015;11:697-703.
-
(2015)
Cell Rep
, vol.11
, pp. 697-703
-
-
Sapiro, A.L.1
Deng, P.2
Zhang, R.3
Li, J.B.4
-
112
-
-
79956271523
-
Predicting sites of ADAR editing in double-stranded RNA
-
Eggington JM, Greene T, Bass BL. Predicting sites of ADAR editing in double-stranded RNA. Nat Commun. 2011;2:319.
-
(2011)
Nat Commun
, vol.2
, pp. 319
-
-
Eggington, J.M.1
Greene, T.2
Bass, B.L.3
-
113
-
-
0034711082
-
Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities
-
Lehmann KA, Bass BL. Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities. Biochemistry. 2000;39:12875-84.
-
(2000)
Biochemistry
, vol.39
, pp. 12875-12884
-
-
Lehmann, K.A.1
Bass, B.L.2
-
114
-
-
84963603761
-
Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity
-
Matthews MM, Thomas JM, Zheng Y, Tran K, Phelps KJ, Scott AI, et al. Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat Struct Mol Biol. 2016;23:426-33.
-
(2016)
Nat Struct Mol Biol
, vol.23
, pp. 426-433
-
-
Matthews, M.M.1
Thomas, J.M.2
Zheng, Y.3
Tran, K.4
Phelps, K.J.5
Scott, A.I.6
-
115
-
-
0344035669
-
The importance of internal loops within RNA substrates of ADAR1
-
Lehmann KA, Bass BL. The importance of internal loops within RNA substrates of ADAR1. J Mol Biol. 1999;291:1-13.
-
(1999)
J Mol Biol
, vol.291
, pp. 1-13
-
-
Lehmann, K.A.1
Bass, B.L.2
-
116
-
-
85026289642
-
Population and allelic variation of A-to-I RNA editing in human transcriptomes
-
Park E, Guo J, Shen S, Demirdjian L, Wu YN, Lin L, et al. Population and allelic variation of A-to-I RNA editing in human transcriptomes. Genome Biol. 2017;18:143.
-
(2017)
Genome Biol
, vol.18
, pp. 143
-
-
Park, E.1
Guo, J.2
Shen, S.3
Demirdjian, L.4
Wu, Y.N.5
Lin, L.6
-
117
-
-
84942033097
-
Genetic mapping uncovers cis-regulatory landscape of RNA editing
-
Ramaswami G, Deng P, Zhang R, Anna Carbone M, Mackay TF, Li JB. Genetic mapping uncovers cis-regulatory landscape of RNA editing. Nat Commun. 2015;6:8194.
-
(2015)
Nat Commun
, vol.6
, pp. 8194
-
-
Ramaswami, G.1
Deng, P.2
Zhang, R.3
Anna Carbone, M.4
Mackay, T.F.5
Li, J.B.6
-
118
-
-
84957937518
-
Genetic determinants of RNA editing levels of ADAR targets in Drosophila melanogaster
-
Kurmangaliyev YZ, Ali S, Nuzhdin SV. Genetic determinants of RNA editing levels of ADAR targets in Drosophila melanogaster. G3 (Bethesda). 2015;6:391-6.
-
(2015)
G3 (Bethesda)
, vol.6
, pp. 391-396
-
-
Kurmangaliyev, Y.Z.1
Ali, S.2
Nuzhdin, S.V.3
-
119
-
-
82255179149
-
Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein
-
Bhogal B, Jepson JE, Savva YA, Pepper AS, Reenan RA, Jongens TA. Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein. Nat Neurosci. 2011;14:1517-24.
-
(2011)
Nat Neurosci
, vol.14
, pp. 1517-1524
-
-
Bhogal, B.1
Jepson, J.E.2
Savva, Y.A.3
Pepper, A.S.4
Reenan, R.A.5
Jongens, T.A.6
-
121
-
-
84861441546
-
Deep sequencing the circadian and diurnal transcriptome of Drosophila brain
-
Hughes ME, Grant GR, Paquin C, Qian J, Nitabach MN. Deep sequencing the circadian and diurnal transcriptome of Drosophila brain. Genome Res. 2012;22:1266-81.
-
(2012)
Genome Res
, vol.22
, pp. 1266-1281
-
-
Hughes, M.E.1
Grant, G.R.2
Paquin, C.3
Qian, J.4
Nitabach, M.N.5
-
122
-
-
80054895180
-
Pin1 and WWP2 regulate GluR2 Q/R site RNA editing by ADAR2 with opposing effects
-
Marcucci R, Brindle J, Paro S, Casadio A, Hempel S, Morrice N, et al. Pin1 and WWP2 regulate GluR2 Q/R site RNA editing by ADAR2 with opposing effects. EMBO J. 2011;30:4211-22.
-
(2011)
EMBO J
, vol.30
, pp. 4211-4222
-
-
Marcucci, R.1
Brindle, J.2
Paro, S.3
Casadio, A.4
Hempel, S.5
Morrice, N.6
-
123
-
-
84874618556
-
A high-throughput screen to identify enhancers of ADAR-mediated RNA-editing
-
Garncarz W, Tariq A, Handl C, Pusch O, Jantsch MF. A high-throughput screen to identify enhancers of ADAR-mediated RNA-editing. RNA Biol. 2013;10:192-204.
-
(2013)
RNA Biol
, vol.10
, pp. 192-204
-
-
Garncarz, W.1
Tariq, A.2
Handl, C.3
Pusch, O.4
Jantsch, M.F.5
-
124
-
-
84876362963
-
RNA-interacting proteins act as site-specific repressors of ADAR2-mediated RNA editing and fluctuate upon neuronal stimulation
-
Tariq A, Garncarz W, Handl C, Balik A, Pusch O, Jantsch MF. RNA-interacting proteins act as site-specific repressors of ADAR2-mediated RNA editing and fluctuate upon neuronal stimulation. Nucleic Acids Res. 2013;41:2581-93.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 2581-2593
-
-
Tariq, A.1
Garncarz, W.2
Handl, C.3
Balik, A.4
Pusch, O.5
Jantsch, M.F.6
-
125
-
-
4544284817
-
Seven novel mutations of the ADAR gene in Chinese families and sporadic patients with dyschromatosis symmetrica hereditaria (DSH)
-
Zhang XJ, He PP, Li M, He CD, Yan KL, Cui Y, et al. Seven novel mutations of the ADAR gene in Chinese families and sporadic patients with dyschromatosis symmetrica hereditaria (DSH). Hum Mutat. 2004;23:629-30.
-
(2004)
Hum Mutat
, vol.23
, pp. 629-630
-
-
Zhang, X.J.1
He, P.P.2
Li, M.3
He, C.D.4
Yan, K.L.5
Cui, Y.6
-
126
-
-
0042888576
-
Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria
-
Miyamura Y, Suzuki T, Kono M, Inagaki K, Ito S, Suzuki N, et al. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am J Hum Genet. 2003;73:693-9.
-
(2003)
Am J Hum Genet
, vol.73
, pp. 693-699
-
-
Miyamura, Y.1
Suzuki, T.2
Kono, M.3
Inagaki, K.4
Ito, S.5
Suzuki, N.6
-
127
-
-
84868207785
-
Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature
-
Rice GI, Kasher PR, Forte GM, Mannion NM, Greenwood SM, Szynkiewicz M, et al. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat Genet. 2012;44:1243-8.
-
(2012)
Nat Genet
, vol.44
, pp. 1243-1248
-
-
Rice, G.I.1
Kasher, P.R.2
Forte, G.M.3
Mannion, N.M.4
Greenwood, S.M.5
Szynkiewicz, M.6
-
128
-
-
84908680759
-
Type I, interferonopathies: mendelian type I interferon up-regulation
-
Crow YJ. Type I, interferonopathies: mendelian type I interferon up-regulation. Curr Opin Immunol. 2015;32:7-12.
-
(2015)
Curr Opin Immunol
, vol.32
, pp. 7-12
-
-
Crow, Y.J.1
-
129
-
-
84921417123
-
Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1
-
Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GM, Gornall HL, et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A. 2015;167A:296-312.
-
(2015)
Am J Med Genet A
, vol.167 A
, pp. 296-312
-
-
Crow, Y.J.1
Chase, D.S.2
Lowenstein Schmidt, J.3
Szynkiewicz, M.4
Forte, G.M.5
Gornall, H.L.6
-
130
-
-
85017438586
-
Genetic, Phenotypic, and interferon biomarker status in ADAR1-related neurological disease
-
Rice GI, Kitabayashi N, Barth M, Briggs TA, Burton ACE, Carpanelli ML, et al. Genetic, Phenotypic, and interferon biomarker status in ADAR1-related neurological disease. Neuropediatrics. 2017;48:166-84.
-
(2017)
Neuropediatrics
, vol.48
, pp. 166-184
-
-
Rice, G.I.1
Kitabayashi, N.2
Barth, M.3
Briggs, T.A.4
Burton, A.C.E.5
Carpanelli, M.L.6
-
131
-
-
84933279572
-
Aicardi-Goutières syndrome and the type I interferonopathies
-
Crow YJ, Manel N. Aicardi-Goutières syndrome and the type I interferonopathies. Nat Rev Immunol. 2015;15:429-40.
-
(2015)
Nat Rev Immunol
, vol.15
, pp. 429-440
-
-
Crow, Y.J.1
Manel, N.2
-
132
-
-
84899946185
-
Hippocampus-specific deficiency in RNA editing of GluA2 in Alzheimer's disease
-
Gaisler-Salomon I, Kravitz E, Feiler Y, Safran M, Biegon A, Amariglio N, et al. Hippocampus-specific deficiency in RNA editing of GluA2 in Alzheimer's disease. Neurobiol Aging. 2014;35:1785-91.
-
(2014)
Neurobiol Aging
, vol.35
, pp. 1785-1791
-
-
Gaisler-Salomon, I.1
Kravitz, E.2
Feiler, Y.3
Safran, M.4
Biegon, A.5
Amariglio, N.6
-
133
-
-
84956746574
-
Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer's disease
-
Khermesh K, D'Erchia AM, Barak M, Annese A, Wachtel C, Levanon EY, et al. Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer's disease. RNA. 2016;22:290-302.
-
(2016)
RNA
, vol.22
, pp. 290-302
-
-
Khermesh, K.1
D'Erchia, A.M.2
Barak, M.3
Annese, A.4
Wachtel, C.5
Levanon, E.Y.6
-
134
-
-
15044346521
-
Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis
-
Kwak S, Kawahara Y. Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. J Mol Med. 2005;83:110-20.
-
(2005)
J Mol Med
, vol.83
, pp. 110-120
-
-
Kwak, S.1
Kawahara, Y.2
-
135
-
-
84877908491
-
Differences between RNA and DNA due to RNA editing in temporal lobe epilepsy
-
Krestel H, Raffel S, von Lehe M, Jagella C, Moskau-Hartmann S, Becker A, et al. Differences between RNA and DNA due to RNA editing in temporal lobe epilepsy. Neurobiol Dis. 2013;56:66-73.
-
(2013)
Neurobiol Dis
, vol.56
, pp. 66-73
-
-
Krestel, H.1
Raffel, S.2
Lehe, M.3
Jagella, C.4
Moskau-Hartmann, S.5
Becker, A.6
-
136
-
-
84860692434
-
A-to-I RNA editing: effects on proteins key to neural excitability
-
Rosenthal JJ, Seeburg PH. A-to-I RNA editing: effects on proteins key to neural excitability. Neuron. 2012;74:432-9.
-
(2012)
Neuron
, vol.74
, pp. 432-439
-
-
Rosenthal, J.J.1
Seeburg, P.H.2
-
137
-
-
42749093007
-
Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 editing activity inhibits cell migration and proliferation
-
Cenci C, Barzotti R, Galeano F, Corbelli S, Rota R, Massimi L, et al. Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 editing activity inhibits cell migration and proliferation. J Biol Chem. 2008;283:7251-60.
-
(2008)
J Biol Chem
, vol.283
, pp. 7251-7260
-
-
Cenci, C.1
Barzotti, R.2
Galeano, F.3
Corbelli, S.4
Rota, R.5
Massimi, L.6
-
138
-
-
84874768382
-
ADAR2-editing activity inhibits glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27 axis
-
Galeano F, Rossetti C, Tomaselli S, Cifaldi L, Lezzerini M, Pezzullo M, et al. ADAR2-editing activity inhibits glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27 axis. Oncogene. 2013;32:998-1009.
-
(2013)
Oncogene
, vol.32
, pp. 998-1009
-
-
Galeano, F.1
Rossetti, C.2
Tomaselli, S.3
Cifaldi, L.4
Lezzerini, M.5
Pezzullo, M.6
-
139
-
-
84944062619
-
The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers
-
Han L, Diao L, Yu S, Xu X, Li J, Zhang R, et al. The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell. 2015;28:515-28.
-
(2015)
Cancer Cell
, vol.28
, pp. 515-528
-
-
Han, L.1
Diao, L.2
Yu, S.3
Xu, X.4
Li, J.5
Zhang, R.6
-
140
-
-
84944050455
-
Principles governing A-to-I RNA editing in the breast cancer transcriptome
-
Fumagalli D, Gacquer D, Rothe F, Lefort A, Libert F, Brown D, et al. Principles governing A-to-I RNA editing in the breast cancer transcriptome. Cell Rep. 2015;13:277-89.
-
(2015)
Cell Rep
, vol.13
, pp. 277-289
-
-
Fumagalli, D.1
Gacquer, D.2
Rothe, F.3
Lefort, A.4
Libert, F.5
Brown, D.6
-
141
-
-
84944040819
-
Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors
-
Paz-Yaacov N, Bazak L, Buchumenski I, Porath HT, Danan-Gotthold M, Knisbacher BA, et al. Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors. Cell Rep. 2015;13:267-76.
-
(2015)
Cell Rep
, vol.13
, pp. 267-276
-
-
Paz-Yaacov, N.1
Bazak, L.2
Buchumenski, I.3
Porath, H.T.4
Danan-Gotthold, M.5
Knisbacher, B.A.6
-
142
-
-
70349969478
-
Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution
-
Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature. 2009;461:809-13.
-
(2009)
Nature
, vol.461
, pp. 809-813
-
-
Shah, S.P.1
Morin, R.D.2
Khattra, J.3
Prentice, L.4
Pugh, T.5
Burleigh, A.6
-
143
-
-
84897997022
-
A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma
-
Chan TH, Lin CH, Qi L, Fei J, Li Y, Yong KJ, et al. A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma. Gut. 2014;63:832-43.
-
(2014)
Gut
, vol.63
, pp. 832-843
-
-
Chan, T.H.1
Lin, C.H.2
Qi, L.3
Fei, J.4
Li, Y.5
Yong, K.J.6
-
144
-
-
84893833808
-
Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma
-
Qin YR, Qiao JJ, Chan TH, Zhu YH, Li FF, Liu H, et al. Adenosine-to-inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma. Cancer Res. 2014;74:840-51.
-
(2014)
Cancer Res
, vol.74
, pp. 840-851
-
-
Qin, Y.R.1
Qiao, J.J.2
Chan, T.H.3
Zhu, Y.H.4
Li, F.F.5
Liu, H.6
-
145
-
-
84989817021
-
ADAR-Mediated RNA editing predicts progression and prognosis of gastric cancer
-
e610.
-
Chan TH, Qamra A, Tan KT, Guo J, Yang H, Qi L, et al. ADAR-Mediated RNA editing predicts progression and prognosis of gastric cancer. Gastroenterology. 2016;151:637-50.e610.
-
(2016)
Gastroenterology
, vol.151
, pp. 637-650
-
-
Chan, T.H.1
Qamra, A.2
Tan, K.T.3
Guo, J.4
Yang, H.5
Qi, L.6
-
146
-
-
84923850254
-
Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis
-
Shoshan E, Mobley AK, Braeuer RR, Kamiya T, Huang L, Vasquez ME, et al. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat Cell Biol. 2015;17:311-21.
-
(2015)
Nat Cell Biol
, vol.17
, pp. 311-321
-
-
Shoshan, E.1
Mobley, A.K.2
Braeuer, R.R.3
Kamiya, T.4
Huang, L.5
Vasquez, M.E.6
-
147
-
-
84878567131
-
MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth
-
Nemlich Y, Greenberg E, Ortenberg R, Besser MJ, Barshack I, Jacob-Hirsch J, et al. MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth. J Clin Invest. 2013;123:2703-18.
-
(2013)
J Clin Invest
, vol.123
, pp. 2703-2718
-
-
Nemlich, Y.1
Greenberg, E.2
Ortenberg, R.3
Besser, M.J.4
Barshack, I.5
Jacob-Hirsch, J.6
-
148
-
-
84860779086
-
Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq
-
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201-6.
-
(2012)
Nature
, vol.485
, pp. 201-206
-
-
Dominissini, D.1
Moshitch-Moshkovitz, S.2
Schwartz, S.3
Salmon-Divon, M.4
Ungar, L.5
Osenberg, S.6
-
149
-
-
0021890204
-
Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing
-
Kane SE, Beemon K. Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol Cell Biol. 1985;5:2298-306.
-
(1985)
Mol Cell Biol.
, vol.5
, pp. 2298-2306
-
-
Kane, S.E.1
Beemon, K.2
-
150
-
-
0021022446
-
Methylations of adenosine residues (m6A) in pre-mRNA are important for formation of late simian virus 40 mRNAs
-
Finkel D, Groner Y. Methylations of adenosine residues (m6A) in pre-mRNA are important for formation of late simian virus 40 mRNAs. Virology. 1983;131:409-25.
-
(1983)
Virology
, vol.131
, pp. 409-425
-
-
Finkel, D.1
Groner, Y.2
-
151
-
-
84922342926
-
Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation
-
Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science. 2015;347:1002-6.
-
(2015)
Science
, vol.347
, pp. 1002-1006
-
-
Geula, S.1
Moshitch-Moshkovitz, S.2
Dominissini, D.3
Mansour, A.A.4
Kol, N.5
Salmon-Divon, M.6
-
152
-
-
85017161112
-
m6A modulates neuronal functions and sex determination in Drosophila
-
Lence T, Akhtar J, Bayer M, Schmid K, Spindler L, Ho CH, et al. m6A modulates neuronal functions and sex determination in Drosophila. Nature. 2016;540:242-7.
-
(2016)
Nature
, vol.540
, pp. 242-247
-
-
Lence, T.1
Akhtar, J.2
Bayer, M.3
Schmid, K.4
Spindler, L.5
Ho, C.H.6
-
153
-
-
85017163153
-
m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination
-
Haussmann IU, Bodi Z, Sanchez-Moran E, Mongan NP, Archer N, Fray RG, et al. m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature. 2016;540:301-4.
-
(2016)
Nature
, vol.540
, pp. 301-304
-
-
Haussmann, I.U.1
Bodi, Z.2
Sanchez-Moran, E.3
Mongan, N.P.4
Archer, N.5
Fray, R.G.6
-
154
-
-
85016037231
-
m6A Demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program
-
Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m6A Demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017;31:591-606.e596.
-
(2017)
Cancer Cell
, vol.31
, pp. 591-606.e596
-
-
Zhang, S.1
Zhao, B.S.2
Zhou, A.3
Lin, K.4
Zheng, S.5
Lu, Z.6
-
155
-
-
85016155621
-
RNA m6A methylation regulates the ultraviolet-induced DNA damage response
-
Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z, Sheng W, et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017;543:573-6.
-
(2017)
Nature
, vol.543
, pp. 573-576
-
-
Xiang, Y.1
Laurent, B.2
Hsu, C.H.3
Nachtergaele, S.4
Lu, Z.5
Sheng, W.6
-
156
-
-
85015194429
-
m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells
-
Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017;18:2622-34.
-
(2017)
Cell Rep
, vol.18
, pp. 2622-2634
-
-
Cui, Q.1
Shi, H.2
Ye, P.3
Li, L.4
Qu, Q.5
Sun, G.6
-
157
-
-
84919390837
-
Genomics and proteomics. roadmap to the epitranscriptome
-
Dominissini D. Genomics and proteomics. roadmap to the epitranscriptome. Science. 2014;346:1192.
-
(2014)
Science
, vol.346
, pp. 1192
-
-
Dominissini, D.1
|