메뉴 건너뛰기




Volumn 10, Issue 1, 2017, Pages

Computational dynamic approaches for temporal omics data with applications to systems medicine

Author keywords

Causal network; Computational dynamic approaches for temporal omics data with applications to systems medicine; Dynamic approaches; Systems medicine; Temporal omics data; Trajectory prediction

Indexed keywords

BIOLOGICAL ACTIVITY; BIOMICS; CELL FUNCTION; COMPUTATIONAL DYNAMIC APPROACH; COMPUTER ANALYSIS; DATA MINING; DATA PROCESSING; DISEASES; GENE FUNCTION; HEALTH STATUS; MEDICINE; METABOLITE; NATURAL SCIENCE; PRIORITY JOURNAL; PROTEIN FUNCTION; REVIEW; SYSTEMS MEDICINE; TEMPORAL OMICS;

EID: 85023744571     PISSN: None     EISSN: 17560381     Source Type: Journal    
DOI: 10.1186/s13040-017-0140-x     Document Type: Review
Times cited : (24)

References (162)
  • 1
    • 85030641836 scopus 로고    scopus 로고
    • Drawing the Map of Life: Inside the Human Genome Project
    • McElheny, V. K. (2010). Drawing the Map of Life: Inside the Human Genome Project. Basic Books. ISBN 978-0-465-03260-0.
    • (2010) Basic Books
    • McElheny, V.K.1
  • 2
    • 79958268165 scopus 로고    scopus 로고
    • Integrating omics data for signaling pathways, interactome reconstruction, and functional analysis. (2011)
    • Tieri P, de la Fuente A, Termanini A, et al. Integrating omics data for signaling pathways, interactome reconstruction, and functional analysis. (2011). Methods Mol Biol. 2011;719:415-33. doi:10.1007/978-1-61779-027-0-19.
    • (2011) Methods Mol Biol , vol.719 , pp. 415-433
    • Tieri, P.1    De La Fuente, A.2    Termanini, A.3
  • 3
    • 84952988434 scopus 로고    scopus 로고
    • The "omics" of human male infertility: Integrating big data in a systems biology approach
    • Carrell DT, Aston KI, Oliva R, et al. The "omics" of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res. 2016;363:295.
    • (2016) Cell Tissue Res , vol.363 , pp. 295
    • Carrell, D.T.1    Aston, K.I.2    Oliva, R.3
  • 4
    • 85016104570 scopus 로고    scopus 로고
    • The BIG Data Center: From deposition to integration to translation
    • BIG Data Center Members. The BIG Data Center: from deposition to integration to translation. Nucleic Acids Res. 2017;45:D18-24.
    • (2017) Nucleic Acids Res , vol.45 , pp. D18-D24
  • 5
    • 84929519805 scopus 로고    scopus 로고
    • Knowledge boosting: A graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction
    • Kim D, Joung JG, Sohn KA, et al. Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction. J Am Med Inform Assoc. 2015;22(1):109-20.
    • (2015) J Am Med Inform Assoc , vol.22 , Issue.1 , pp. 109-120
    • Kim, D.1    Joung, J.G.2    Sohn, K.A.3
  • 6
    • 78650373804 scopus 로고    scopus 로고
    • Network medicine: A network-based approach to human disease
    • Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12:56-68.
    • (2011) Nat Rev Genet , vol.12 , pp. 56-68
    • Barabasi, A.L.1    Gulbahce, N.2    Loscalzo, J.3
  • 8
    • 84955606158 scopus 로고    scopus 로고
    • The new holism: P4 systems medicine and the medicalization of health and life itself
    • Vogt H, Hofmann B, Getz L. The new holism: P4 systems medicine and the medicalization of health and life itself. Med Health Care Philos. 2016;19(2):307-23.
    • (2016) Med Health Care Philos , vol.19 , Issue.2 , pp. 307-323
    • Vogt, H.1    Hofmann, B.2    Getz, L.3
  • 9
    • 85023779212 scopus 로고    scopus 로고
    • Network medicine: New paradigm in the omics Era
    • Guo NL. Network medicine: New paradigm in the omics Era. Anat Physiol. 2011;1(1):1000e106.
    • (2011) Anat Physiol , vol.1 , Issue.1 , pp. 1000e106
    • Guo, N.L.1
  • 10
    • 79958288494 scopus 로고    scopus 로고
    • Network inference from time-dependent omics data
    • Lecca P, Nguyen TP, Priami C, et al. Network inference from time-dependent omics data. Methods Mol Biol. 2011; 719:435-55.
    • (2011) Methods Mol Biol , vol.719 , pp. 435-455
    • Lecca, P.1    Nguyen, T.P.2    Priami, C.3
  • 11
    • 84867843623 scopus 로고    scopus 로고
    • Modeling formalisms in systems biology
    • Machado D, Costa RS, Rocha M, et al. Modeling formalisms in systems biology. AMB Express. 2011;1:45.
    • (2011) AMB Express , vol.1 , pp. 45
    • Machado, D.1    Costa, R.S.2    Rocha, M.3
  • 12
    • 29544434311 scopus 로고    scopus 로고
    • Associating phenotypes with molecular events: Recent statistical advances and challenges underpinning microarray experiments
    • Liang Y, Kelemen A. Associating phenotypes with molecular events: recent statistical advances and challenges underpinning microarray experiments. J Funct Integr Genomics. 2006;6:1-13.
    • (2006) J Funct Integr Genomics , vol.6 , pp. 1-13
    • Liang, Y.1    Kelemen, A.2
  • 13
    • 85023782689 scopus 로고    scopus 로고
    • Big Data Science and its Applications in Health and Medical Research: Challenges and Opportunities
    • Liang, Y., Kelemen, A. (2016). Big Data Science and its Applications in Health and Medical Research: Challenges and Opportunities, Austin Journal of Biometrics & Biostatistics, 7(3). doi: 10.4172/2155-6180.1000307
    • (2016) Austin Journal of Biometrics & Biostatistics , vol.7 , Issue.3
    • Liang, Y.1    Kelemen, A.2
  • 14
    • 38349057585 scopus 로고    scopus 로고
    • Review of Computational Intelligence for Gene-Gene Interactions in Disease Mapping
    • (A. Kelemen, A. Abraham, Y. Chen, Eds.) in the Series in Studies in Computational Intelligence
    • Kelemen, A., Liang, Y., Vasilakos, A. (2008). Review of Computational Intelligence for Gene-Gene Interactions in Disease Mapping, in "Computational Intelligence in Medical Informatics" (A. Kelemen, A. Abraham, Y. Chen, Eds.) in the Series in Studies in Computational Intelligence, 1-16
    • (2008) Computational Intelligence in Medical Informatics , pp. 1-16
    • Kelemen, A.1    Liang, Y.2    Vasilakos, A.3
  • 15
    • 79955879494 scopus 로고    scopus 로고
    • Controllability of complex networks
    • Liu YY, Slotine JJ, Barabasi AL. Controllability of complex networks. Nature. 2011;473(7346):167-73.
    • (2011) Nature , vol.473 , Issue.7346 , pp. 167-173
    • Liu, Y.Y.1    Slotine, J.J.2    Barabasi, A.L.3
  • 18
    • 79958277423 scopus 로고    scopus 로고
    • Analysis of time course omics datasets
    • Grigorov MG. Analysis of time course omics datasets. Methods Mol Biol. 2011;719:153-72.
    • (2011) Methods Mol Biol , vol.719 , pp. 153-172
    • Grigorov, M.G.1
  • 20
    • 84863887694 scopus 로고    scopus 로고
    • Studying and modelling dynamic biological processes using time-series gene expression data
    • Bar-Joseph Z, Gitter A, Simon I. Studying and modelling dynamic biological processes using time-series gene expression data. Nat Rev Genet. 2012;13(8):552-64.
    • (2012) Nat Rev Genet , vol.13 , Issue.8 , pp. 552-564
    • Bar-Joseph, Z.1    Gitter, A.2    Simon, I.3
  • 21
    • 0041346457 scopus 로고    scopus 로고
    • Continuous representations of time-series gene expression data
    • Bar-Joseph Z, Gerber GK, Gifford DK, et al. Continuous representations of time-series gene expression data. J Comput Biol. 2004;10(3-4):341-56.
    • (2004) J Comput Biol , vol.10 , Issue.3-4 , pp. 341-356
    • Bar-Joseph, Z.1    Gerber, G.K.2    Gifford, D.K.3
  • 23
    • 43849093137 scopus 로고    scopus 로고
    • Search for steady states of piecewise-linear differential equation models of genetic regulatory networks
    • de Jong H, Page M. Search for steady states of piecewise-linear differential equation models of genetic regulatory networks. IEEE/ACM Trans Comput Biol Bioinform. 2008;5(2):208-22.
    • (2008) IEEE/ACM Trans Comput Biol Bioinform , vol.5 , Issue.2 , pp. 208-222
    • De Jong, H.1    Page, M.2
  • 24
    • 55549143637 scopus 로고    scopus 로고
    • The transition from differential equations to Boolean networks: A case study in simplifying a regulatory network model
    • Davidich M, Bornholdt S. The transition from differential equations to Boolean networks: a case study in simplifying a regulatory network model. J Theor Biol. 2008;255(3):269-77.
    • (2008) J Theor Biol , vol.255 , Issue.3 , pp. 269-277
    • Davidich, M.1    Bornholdt, S.2
  • 25
    • 84923687677 scopus 로고    scopus 로고
    • Quantitative and logic modelling of molecular and gene networks
    • Le Novere N. Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet. 2015;16:146-58.
    • (2015) Nat Rev Genet , vol.16 , pp. 146-158
    • Le Novere, N.1
  • 27
    • 77952851181 scopus 로고    scopus 로고
    • BoolNet-an R package for generation, reconstruction and analysis of Boolean networks
    • Mussel C, Hopfensitz M, Kestler HA. BoolNet-an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics. 2010;26(10):1378-80.
    • (2010) Bioinformatics , vol.26 , Issue.10 , pp. 1378-1380
    • Mussel, C.1    Hopfensitz, M.2    Kestler, H.A.3
  • 28
    • 49549083532 scopus 로고    scopus 로고
    • Temporal logic patterns for querying dynamic models of cellular interaction networks
    • Monteiro PT, Ropers D, Mateescu R, et al. Temporal logic patterns for querying dynamic models of cellular interaction networks. Bioinformatics. 2008;24(16):i227-33.
    • (2008) Bioinformatics , vol.24 , Issue.16 , pp. i227-i233
    • Monteiro, P.T.1    Ropers, D.2    Mateescu, R.3
  • 29
    • 79959362223 scopus 로고    scopus 로고
    • Asymptotic Conditional Singular Value Decomposition for High-Dimensional
    • Leek J, (2011) Asymptotic Conditional Singular Value Decomposition for High-Dimensional Genomic Data Biometrics. 67 (2), pp. 344-52.
    • (2011) Genomic Data Biometrics , vol.67 , Issue.2 , pp. 344-352
    • Leek, J.1
  • 30
    • 62549125109 scopus 로고    scopus 로고
    • High-dimensional sparse factor modelling: Applications in gene expression genomics
    • Carvalho CM, Chang J, Lucas JE, et al. High-dimensional sparse factor modelling: applications in gene expression genomics. J Am Stat Assoc. 2008;103(484):1438-56.
    • (2008) J Am Stat Assoc , vol.103 , Issue.484 , pp. 1438-1456
    • Carvalho, C.M.1    Chang, J.2    Lucas, J.E.3
  • 31
    • 34548527584 scopus 로고    scopus 로고
    • Dynamic matrix-variate graphical models
    • Carvalho CM, West M. Dynamic matrix-variate graphical models. Bayesian Anal. 2007;2(1):69-97.
    • (2007) Bayesian Anal , vol.2 , Issue.1 , pp. 69-97
    • Carvalho, C.M.1    West, M.2
  • 33
    • 84928251304 scopus 로고    scopus 로고
    • Bayesian inference of multiple Gaussian graphical models
    • Peterson C, Stingo F, Vannucci M. Bayesian inference of multiple Gaussian graphical models. J Am Stat Assoc. 2014;110(509):159-74.
    • (2014) J Am Stat Assoc , vol.110 , Issue.509 , pp. 159-174
    • Peterson, C.1    Stingo, F.2    Vannucci, M.3
  • 34
    • 84946916866 scopus 로고    scopus 로고
    • An equivalent measure of partial correlation coefficients for high dimensional Gaussian graphical models
    • Liang F, Song Q, Qiu P. An equivalent measure of partial correlation coefficients for high dimensional Gaussian graphical models. J Am Stat Assoc. 2015;110:1248.
    • (2015) J Am Stat Assoc , vol.110 , pp. 1248
    • Liang, F.1    Song, Q.2    Qiu, P.3
  • 35
    • 71549152223 scopus 로고    scopus 로고
    • Matrix factorization for recovery of biological processes from microarray data
    • Kossenkov AV, Ochs MF. Matrix factorization for recovery of biological processes from microarray data. Methods Enzymol. 2009;467:59-77.
    • (2009) Methods Enzymol , vol.467 , pp. 59-77
    • Kossenkov, A.V.1    Ochs, M.F.2
  • 36
    • 17644372713 scopus 로고    scopus 로고
    • Dizzy: Stochastic simulation of large-scale genetic regulatory networks
    • Ramsey S, Orrell D, Bolouri H. Dizzy: stochastic simulation of large-scale genetic regulatory networks. J Bioinform Comput Biol. 2005;3(2):415-36.
    • (2005) J Bioinform Comput Biol , vol.3 , Issue.2 , pp. 415-436
    • Ramsey, S.1    Orrell, D.2    Bolouri, H.3
  • 37
    • 84941993775 scopus 로고    scopus 로고
    • Stochastic S-system modeling of gene regulatory network
    • Chowdhury AR, Chetty M, Evans R. Stochastic S-system modeling of gene regulatory network. Cogn Neurodyn. 2015;9(5):535-47.
    • (2015) Cogn Neurodyn , vol.9 , Issue.5 , pp. 535-547
    • Chowdhury, A.R.1    Chetty, M.2    Evans, R.3
  • 38
    • 84962339458 scopus 로고    scopus 로고
    • Learning stochastic process-based models of dynamical systems from knowledge and data
    • Tanevski J, Todorovski L, Dzeroski S. Learning stochastic process-based models of dynamical systems from knowledge and data. BMC Syst Biol. 2016;22:10-30.
    • (2016) BMC Syst Biol , vol.22 , pp. 10-30
    • Tanevski, J.1    Todorovski, L.2    Dzeroski, S.3
  • 39
    • 20844452570 scopus 로고    scopus 로고
    • A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
    • Chen KC, Wang TY, Tseng HH, et al. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics. 2005;21(12):2883-90.
    • (2005) Bioinformatics , vol.21 , Issue.12 , pp. 2883-2890
    • Chen, K.C.1    Wang, T.Y.2    Tseng, H.H.3
  • 40
    • 77956481623 scopus 로고    scopus 로고
    • Comparative study of three commonly used continuous deterministic methods for modeling gene regulation networks
    • Swain MT, Mandel JJ, Dubitzky W. Comparative study of three commonly used continuous deterministic methods for modeling gene regulation networks. BMC Bioinform. 2010;11:459.
    • (2010) BMC Bioinform , vol.11 , pp. 459
    • Swain, M.T.1    Mandel, J.J.2    Dubitzky, W.3
  • 41
    • 3142744689 scopus 로고    scopus 로고
    • Modeling T-cell activation using gene expression profiling and state-space models
    • Rangel C, Angus J, Ghahramani Z, et al. Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics. 2004;20(9):1361-72.
    • (2004) Bioinformatics , vol.20 , Issue.9 , pp. 1361-1372
    • Rangel, C.1    Angus, J.2    Ghahramani, Z.3
  • 42
    • 33846036999 scopus 로고    scopus 로고
    • Hidden Markov models for microarray time course data in multiple biological conditions
    • Yuan M, Kendziorski C. Hidden Markov models for microarray time course data in multiple biological conditions. J Am Stat Assoc. 2006;101(476):1323-32.
    • (2006) J Am Stat Assoc , vol.101 , Issue.476 , pp. 1323-1332
    • Yuan, M.1    Kendziorski, C.2
  • 43
    • 4143058645 scopus 로고    scopus 로고
    • Gene networks inference using dynamic Bayesian networks
    • Perrin BE, Ralaivola L, Mazurie A, et al. Gene networks inference using dynamic Bayesian networks. Bioinformatics. 2003;19 Suppl 2:ii138-48.
    • (2003) Bioinformatics , vol.19 , pp. ii138-ii148
    • Perrin, B.E.1    Ralaivola, L.2    Mazurie, A.3
  • 44
    • 0034354798 scopus 로고    scopus 로고
    • Time series analysis for non-Gaussian observations based on state space models from both classical and Bayesian perspectives (with discussion)
    • Durbin J, Koopman SJ. Time series analysis for non-Gaussian observations based on state space models from both classical and Bayesian perspectives (with discussion), J. R Stat Soc, Series B. 2000;62:3-56.
    • (2000) J. R Stat Soc, Series B , vol.62 , pp. 3-56
    • Durbin, J.1    Koopman, S.J.2
  • 45
    • 0035687554 scopus 로고    scopus 로고
    • Assessing gene significance from cDNA microarray expression data via mixed models
    • Wolfinger RD, Gibson G, Wolfinger ED, et al. Assessing gene significance from cDNA microarray expression data via mixed models. J Comp Biol. 2001;8(6):625-37.
    • (2001) J Comp Biol , vol.8 , Issue.6 , pp. 625-637
    • Wolfinger, R.D.1    Gibson, G.2    Wolfinger, E.D.3
  • 47
    • 28644452470 scopus 로고    scopus 로고
    • Clustering short time series gene expression data
    • Ernst J, Nau GJ, Bar-Joseph Z. Clustering short time series gene expression data. Bioinformatics. 2005;21 suppl 1:i159-68.
    • (2005) Bioinformatics , vol.21 , pp. i159-i168
    • Ernst, J.1    Nau, G.J.2    Bar-Joseph, Z.3
  • 48
    • 0036855903 scopus 로고    scopus 로고
    • Statistical analysis of a small set of time-ordered gene expression data using linear splines
    • de Hoon MJL, Imoto S, Miyano S. Statistical analysis of a small set of time-ordered gene expression data using linear splines. Bioinformatics. 2002;18(11):1477-85.
    • (2002) Bioinformatics , vol.18 , Issue.11 , pp. 1477-1485
    • De Hoon, M.J.L.1    Imoto, S.2    Miyano, S.3
  • 49
    • 79958115655 scopus 로고    scopus 로고
    • Analyzing time-course microarray data using functional data analysis - A review
    • Coffey N, Hinde J. Analyzing time-course microarray data using functional data analysis - a review. Stat Appl Genet Mol Biol. 2011;10:1544-6115.
    • (2011) Stat Appl Genet Mol Biol , vol.10 , pp. 1544-6115
    • Coffey, N.1    Hinde, J.2
  • 50
    • 84878252678 scopus 로고    scopus 로고
    • A Bayesian graphical model for chip-seq data on histone modifications
    • Mitra R, Müller P, Liang S, et al. A Bayesian graphical model for chip-seq data on histone modifications. J Am Stat Assoc. 2013;108:69-90.
    • (2013) J Am Stat Assoc , vol.108 , pp. 69-90
    • Mitra, R.1    Müller, P.2    Liang, S.3
  • 51
    • 34547788797 scopus 로고    scopus 로고
    • Bayesian approaches to reverse engineer cellular systems: A simulation study on nonlinear Gaussian networks
    • Ferrazzi F, Sebastiani P, Ramoni MF, et al. Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks. BMC Bioinform. 2007;8 Suppl 5:S2. doi:10.1186/1471-2105-8-S5-S2.
    • (2007) BMC Bioinform , vol.8 , pp. S2
    • Ferrazzi, F.1    Sebastiani, P.2    Ramoni, M.F.3
  • 52
    • 0038492417 scopus 로고    scopus 로고
    • A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae)
    • Troyanskaya OG, Dolinski K, Owen AB, et al. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci U S A. 2003;100(14):8348-53.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , Issue.14 , pp. 8348-8353
    • Troyanskaya, O.G.1    Dolinski, K.2    Owen, A.B.3
  • 53
    • 60849117796 scopus 로고    scopus 로고
    • Bayesian finite Markov mixture model for temporal multi-tissue polygenic patterns
    • Liang Y, Kelemen A. Bayesian finite Markov mixture model for temporal multi-tissue polygenic patterns. Biom J. 2009;51(1):56-69.
    • (2009) Biom J , vol.51 , Issue.1 , pp. 56-69
    • Liang, Y.1    Kelemen, A.2
  • 54
    • 55449121996 scopus 로고    scopus 로고
    • Bayesian models and meta analysis for multiple tissue gene expression data following corticosteriod administration
    • Liang Y, Kelemen A. Bayesian models and meta analysis for multiple tissue gene expression data following corticosteriod administration. BMC Bioinform. 2008;9:354.
    • (2008) BMC Bioinform , vol.9 , pp. 354
    • Liang, Y.1    Kelemen, A.2
  • 55
    • 38049166170 scopus 로고    scopus 로고
    • Bayesian state space models for inferring and predicting temporal gene expression profiles
    • Liang Y, Kelemen A. Bayesian state space models for inferring and predicting temporal gene expression profiles. Biom J. 2007;49(6):801-14.
    • (2007) Biom J , vol.49 , Issue.6 , pp. 801-814
    • Liang, Y.1    Kelemen, A.2
  • 56
    • 84979781294 scopus 로고    scopus 로고
    • Bayesian state space models for dynamic genetic network construction across multiple tissues
    • Liang Y, Kelemen A. Bayesian state space models for dynamic genetic network construction across multiple tissues. J Stat Appl Genet Mol Biol. 2016;15(4):273-90.
    • (2016) J Stat Appl Genet Mol Biol , vol.15 , Issue.4 , pp. 273-290
    • Liang, Y.1    Kelemen, A.2
  • 58
    • 0037057374 scopus 로고    scopus 로고
    • Exploring the conditional coregulation of yeast gene expression through fuzzy kmeans clustering
    • Gasch, A. P., Eisen, M. B. (2002). Exploring the conditional coregulation of yeast gene expression through fuzzy kmeans clustering. Genome Biology 3(11).
    • (2002) Genome Biology , vol.3 , Issue.11
    • Gasch, A.P.1    Eisen, M.B.2
  • 59
    • 41649108679 scopus 로고    scopus 로고
    • Clustering analysis of SAGE transcription profiles using a Poisson approach
    • ed. K. L. Nielsen, Humana Press Inc
    • Huang, H., Cai, L., Wong, W. H. (2008). Clustering analysis of SAGE transcription profiles using a Poisson approach. in SAGE: Methods and Protocols, ed. K. L. Nielsen, Humana Press Inc.
    • (2008) SAGE: Methods and Protocols
    • Huang, H.1    Cai, L.2    Wong, W.H.3
  • 60
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci. 1998;95(25):14863-8.
    • (1998) Proc Natl Acad Sci , vol.95 , Issue.25 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3    Botstein, D.4
  • 61
    • 28644449917 scopus 로고    scopus 로고
    • How does gene expression clustering work?
    • D'haeseleer P. How does gene expression clustering work? Nat Biotechnol. 2005;23:1499-501.
    • (2005) Nat Biotechnol , vol.23 , pp. 1499-1501
    • D'Haeseleer, P.1
  • 62
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • Yeung KY, Ruzzo WL. Principal component analysis for clustering gene expression data. Bioinformatics. 2001;17(9):763-74.
    • (2001) Bioinformatics , vol.17 , Issue.9 , pp. 763-774
    • Yeung, K.Y.1    Ruzzo, W.L.2
  • 63
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
    • Tamayo P, Slonim D, Mesirov J, et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A. 1999;6:2907-12.
    • (1999) Proc Natl Acad Sci U S A , vol.6 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3
  • 65
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co expression clustering to reverse engineering
    • D'haeseleer P, Liang S, Somogyi R. Genetic network inference: from co expression clustering to reverse engineering. Bioinformatics. 2000;16:707-26.
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'Haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 66
    • 0037709918 scopus 로고    scopus 로고
    • Supervised clustering of genes
    • research0069.1-0069.15
    • Dettleing, M. and Bühlmann, P. (2002). Supervised clustering of genes. Genome Biology. 3:research0069.1-0069.15.
    • (2002) Genome Biology , vol.3
    • Dettleing, M.1    Bühlmann, P.2
  • 67
    • 84871203254 scopus 로고    scopus 로고
    • Classification of patients from time-course gene expression
    • Zhang Y, Tibshirani R, Davis R. Classification of patients from time-course gene expression. Biostatistics. 2013;14(1):87-98.
    • (2013) Biostatistics , vol.14 , Issue.1 , pp. 87-98
    • Zhang, Y.1    Tibshirani, R.2    Davis, R.3
  • 68
    • 14644441659 scopus 로고    scopus 로고
    • Multidimensional support vector machines for visualization of gene expression data
    • Komura D, Nakamura H, Tsutsumi S, et al. Multidimensional support vector machines for visualization of gene expression data. Bioinformatics. 2005;21(4):439-44.
    • (2005) Bioinformatics , vol.21 , Issue.4 , pp. 439-444
    • Komura, D.1    Nakamura, H.2    Tsutsumi, S.3
  • 69
    • 77950379751 scopus 로고    scopus 로고
    • Time lagged recurrent neural network for temporal gene expression classification
    • Liang Y, Kelemen A. Time lagged recurrent neural network for temporal gene expression classification. Int J Comput Intell Bioinform Syst Biol. 2009;1(1):91-102.
    • (2009) Int J Comput Intell Bioinform Syst Biol , vol.1 , Issue.1 , pp. 91-102
    • Liang, Y.1    Kelemen, A.2
  • 70
    • 38049053725 scopus 로고    scopus 로고
    • Temporal gene expression classification with regularised neural network
    • Liang Y, Kelemen A. Temporal gene expression classification with regularised neural network. Int J Bioinform Res Appl. 2005;1(4):399-413.
    • (2005) Int J Bioinform Res Appl , vol.1 , Issue.4 , pp. 399-413
    • Liang, Y.1    Kelemen, A.2
  • 71
    • 84901018498 scopus 로고    scopus 로고
    • A semi-supervised pattern-learning approach to extract Pharmacogenomics-specific drug-gene pairs from biomedical literature
    • Xu R, Wang Q. A semi-supervised pattern-learning approach to extract Pharmacogenomics-specific drug-gene pairs from biomedical literature. J Pharmacogenom Pharmacoproteomics. 2013;4:117.
    • (2013) J Pharmacogenom Pharmacoproteomics , vol.4 , pp. 117
    • Xu, R.1    Wang, Q.2
  • 72
    • 80054895643 scopus 로고    scopus 로고
    • Semi-supervised learning improves gene expression-based prediction of cancer recurrence
    • Shi M, Zhang B. Semi-supervised learning improves gene expression-based prediction of cancer recurrence. Bioinformatics. 2011;27(21):3017-23.
    • (2011) Bioinformatics , vol.27 , Issue.21 , pp. 3017-3023
    • Shi, M.1    Zhang, B.2
  • 74
    • 18744398140 scopus 로고    scopus 로고
    • Hierarchical Bayesian neural network for gene expression temporal patterns
    • Liang Y, Kelemen A. Hierarchical Bayesian neural network for gene expression temporal patterns. J Stat Appl Genet Mol Biol. 2004;3(1):1-23.
    • (2004) J Stat Appl Genet Mol Biol , vol.3 , Issue.1 , pp. 1-23
    • Liang, Y.1    Kelemen, A.2
  • 75
    • 84926666920 scopus 로고    scopus 로고
    • Multi-scale compositionality: Identifying the compositional structures of social dynamics using deep learning
    • Peng H-K, Marculescu R. Multi-scale compositionality: identifying the compositional structures of social dynamics using deep learning. PLoS One. 2015;10(4):e0118309.
    • (2015) PLoS One , vol.10 , Issue.4 , pp. e0118309
    • Peng, H.-K.1    Marculescu, R.2
  • 76
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu J, Smith VA, Wang PP, et al. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics. 2004;20(18):3594-603.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3
  • 77
    • 52649087274 scopus 로고    scopus 로고
    • Modelling and analysis of gene regulatory networks
    • Karlebach G, Shamir R. Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol. 2008;9(10):770-80.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , Issue.10 , pp. 770-780
    • Karlebach, G.1    Shamir, R.2
  • 78
    • 84870305264 scopus 로고    scopus 로고
    • Wisdom of crowds for robust gene network inference
    • Marbach D, Costello JC, Küffner R, et al. Wisdom of crowds for robust gene network inference. Nat Methods. 2012; 9(8):796-804.
    • (2012) Nat Methods , vol.9 , Issue.8 , pp. 796-804
    • Marbach, D.1    Costello, J.C.2    Küffner, R.3
  • 79
    • 70349570737 scopus 로고    scopus 로고
    • Weighted gene co-expression network analysis of the peripheral blood from amyotrophic lateral sclerosis patients
    • Saris CGJ, Horvath S, van Vught PWJ, et al. Weighted gene co-expression network analysis of the peripheral blood from amyotrophic lateral sclerosis patients. BMC Genomics. 2009;10(1):405.
    • (2009) BMC Genomics , vol.10 , Issue.1 , pp. 405
    • Saris, C.G.J.1    Horvath, S.2    Van Vught, P.W.J.3
  • 80
    • 84255194439 scopus 로고    scopus 로고
    • Bayesian parameter estimation for nonlinear modeling of biological pathways
    • Ghasemi O, Lindsey ML, Yang T, et al. Bayesian parameter estimation for nonlinear modeling of biological pathways. BMC Syst Biol. 2011;5 Suppl 3:S9.
    • (2011) BMC Syst Biol , vol.5 , pp. S9
    • Ghasemi, O.1    Lindsey, M.L.2    Yang, T.3
  • 81
    • 84941344454 scopus 로고    scopus 로고
    • Causal biological network database: A comprehensive platform of causal biological network models focused on the pulmonary and vascular systems
    • Boué, S., Talikka, M., Westra, J. W., et al. (2015). Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems. Database. Article ID bav030.
    • (2015) Database
    • Boué, S.1    Talikka, M.2    Westra, J.W.3
  • 82
    • 77949446630 scopus 로고    scopus 로고
    • Automated network analysis identifies core pathways in glioblastoma
    • Cerami E, Demir E, Schultz N, et al. Automated network analysis identifies core pathways in glioblastoma. PLoS One. 2010;5(2):e8918.
    • (2010) PLoS One , vol.5 , Issue.2 , pp. e8918
    • Cerami, E.1    Demir, E.2    Schultz, N.3
  • 83
    • 84962784481 scopus 로고    scopus 로고
    • MONGKIE: An integrated tool for network analysis and visualization for multi-omics data
    • Jang Y, Yu N, Seo J, et al. MONGKIE: an integrated tool for network analysis and visualization for multi-omics data. Biol Direct. 2016;11:10.
    • (2016) Biol Direct , vol.11 , pp. 10
    • Jang, Y.1    Yu, N.2    Seo, J.3
  • 84
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models-a review
    • Hecker M, Lambeck S, Toepfer S, et al. Gene regulatory network inference: data integration in dynamic models-a review. Biosystems. 2009;96(1):86-103.
    • (2009) Biosystems , vol.96 , Issue.1 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3
  • 85
    • 33645241830 scopus 로고    scopus 로고
    • VANTED: A system for advanced data analysis and visualization in the context of biological networks
    • Junker BH, Klukas C, Schreiber F. VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinforma. 2006;7:109. doi:10.1186/1471-2105-7-109.
    • (2006) BMC Bioinforma , vol.7 , pp. 109
    • Junker, B.H.1    Klukas, C.2    Schreiber, F.3
  • 86
    • 84978888838 scopus 로고    scopus 로고
    • A Crowdsourcing approach to developing and assessing prediction algorithms for AML prognosis
    • Noren DP, Long BL, Norel R, Rrhissorrakrai K, Hess K, et al. A Crowdsourcing approach to developing and assessing prediction algorithms for AML prognosis. PLoS Comput Biol. 2016;12(6):e1004890.
    • (2016) PLoS Comput Biol , vol.12 , Issue.6 , pp. e1004890
    • Noren, D.P.1    Long, B.L.2    Norel, R.3    Rrhissorrakrai, K.4    Hess, K.5
  • 89
    • 66149119826 scopus 로고    scopus 로고
    • Modularity and interactions in the genetics of gene expression
    • Litvin O, Causton H, Chen BJ, Pe'er D. Modularity and interactions in the genetics of gene expression. Proc Natl Acad Sci. 2009;106:6441-6.
    • (2009) Proc Natl Acad Sci , vol.106 , pp. 6441-6446
    • Litvin, O.1    Causton, H.2    Chen, B.J.3    Pe'Er, D.4
  • 90
    • 59649110273 scopus 로고    scopus 로고
    • Generating realistic in silico gene networks for performance assessment of reverse engineering methods
    • Marbach D, Schaffter T, Mattiussi C, et al. Generating realistic in silico gene networks for performance assessment of reverse engineering methods. J Comput Biol. 2009;16(2):229-39.
    • (2009) J Comput Biol , vol.16 , Issue.2 , pp. 229-239
    • Marbach, D.1    Schaffter, T.2    Mattiussi, C.3
  • 92
    • 59649110273 scopus 로고    scopus 로고
    • In silico" gene networks for performance assessment of reverse engineering methods
    • Marbach D, Schaffter T, Mattiussi C, Floreano D. Generating realistic "in silico" gene networks for performance assessment of reverse engineering methods. J Comput Biol. 2009;16(2):229-39.
    • (2009) J Comput Biol , vol.16 , Issue.2 , pp. 229-239
    • Marbach, D.1    Schaffter, T.2    Mattiussi, C.3    Realistic Generating, F.D.4
  • 93
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E, Shapira M, Regev A, et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet. 2003;34(2):166-76.
    • (2003) Nat Genet , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3
  • 94
    • 84861517244 scopus 로고    scopus 로고
    • Transient dynamics of reduced-order models of genetic regulatory networks
    • Pal R, Bhattacharya S. Transient dynamics of reduced-order models of genetic regulatory networks. IEEE/ACM Trans Comput Biol Bioinform. 2012;9(4):1230-44.
    • (2012) IEEE/ACM Trans Comput Biol Bioinform , vol.9 , Issue.4 , pp. 1230-1244
    • Pal, R.1    Bhattacharya, S.2
  • 95
    • 84881504354 scopus 로고    scopus 로고
    • Integration of steady-state and temporal gene expression data for the inference of gene regulatory networks
    • Wang YK, Hurley DG, Schnell S, et al. Integration of steady-state and temporal gene expression data for the inference of gene regulatory networks. PLoS One. 2013;8(8):e72103.
    • (2013) PLoS One , vol.8 , Issue.8 , pp. e72103
    • Wang, Y.K.1    Hurley, D.G.2    Schnell, S.3
  • 96
    • 84255194444 scopus 로고    scopus 로고
    • Integration of breast cancer gene signature based on graph centrality
    • Wang J, Chen G, Li M, et al. Integration of breast cancer gene signature based on graph centrality. BMC Syst Biol. 2011;5 Suppl 3:S10.
    • (2011) BMC Syst Biol , vol.5 , pp. S10
    • Wang, J.1    Chen, G.2    Li, M.3
  • 97
    • 33644994102 scopus 로고    scopus 로고
    • Network growth models and genetic regulatory networks
    • Foster DV, Kauffman SA, Socolar JES. Network growth models and genetic regulatory networks. Phys Rev E. 2006; 73:031912.
    • (2006) Phys Rev e , vol.73 , pp. 031912
    • Foster, D.V.1    Kauffman, S.A.2    Socolar, J.E.S.3
  • 98
    • 34247622363 scopus 로고    scopus 로고
    • The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics
    • Yu H, Kim PM, Sprecher E, et al. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol. 2007;3(4):e59.
    • (2007) PLoS Comput Biol , vol.3 , Issue.4 , pp. e59
    • Yu, H.1    Kim, P.M.2    Sprecher, E.3
  • 99
    • 84856094560 scopus 로고    scopus 로고
    • Differential network biology
    • Ideker, T., Krogan, N. J. (2012). Differential network biology. Mol Syst Biol. 8(565). doi: 10.1038/msb.2011.99
    • (2012) Mol Syst Biol , vol.8 , pp. 565
    • Ideker, T.1    Krogan, N.J.2
  • 100
    • 78049507393 scopus 로고    scopus 로고
    • Rewiring of transcriptional regulatory networks: Hierarchy, rather than connectivity, better reflects the importance of regulators
    • Bhardwaj N, Kim PM, Gerstein MB. Rewiring of transcriptional regulatory networks: Hierarchy, rather than connectivity, better reflects the importance of regulators. Sci Signal. 2010;3(146):ra79. doi:10.1126/scisignal. 2001014.
    • (2010) Sci Signal , vol.3 , Issue.146 , pp. ra79
    • Bhardwaj, N.1    Kim, P.M.2    Gerstein, M.B.3
  • 101
    • 77949748403 scopus 로고    scopus 로고
    • Bayesian Markov random field analysis for protein function prediction based on network data
    • Kourmpetis YAI, van Dijk ADJ, Bink MCAM, et al. Bayesian Markov random field analysis for protein function prediction based on network data. PLoS One. 2010;5(2):e9293.
    • (2010) PLoS One , vol.5 , Issue.2 , pp. e9293
    • Kourmpetis, Y.A.I.1    Van Dijk, A.D.J.2    Bink, M.C.A.M.3
  • 102
    • 78049507670 scopus 로고    scopus 로고
    • Multi-level reproducibility of signature hubs in human interactome for breast cancer metastasis
    • Yao C, Li H, Zhou C, et al. Multi-level reproducibility of signature hubs in human interactome for breast cancer metastasis. BMC Syst Biol. 2010;4:151.
    • (2010) BMC Syst Biol , vol.4 , pp. 151
    • Yao, C.1    Li, H.2    Zhou, C.3
  • 103
    • 77957930628 scopus 로고    scopus 로고
    • Statistical inference of the time-varying structure of gene-regulation networks
    • Sophie Lèbre, Jennifer Becq, Frédéric Devaux, Michael PH Stumpf, Gaëlle Lelandais (2010) Statistical inference of the time-varying structure of gene-regulation networks BMC Systems Biology, 4 (1)
    • (2010) BMC Systems Biology , vol.4 , Issue.1
    • Lèbre, S.1    Becq, J.2    Devaux, F.3    Stumpf, M.Ph.4    Lelandais, G.5
  • 104
    • 5044245707 scopus 로고    scopus 로고
    • Gene co-expression network topology provides a framework for molecular characterization of cellular state
    • Carter SL, Brechbühler CM, Griffin M, et al. Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics. 2004;20(14):2242-50.
    • (2004) Bioinformatics , vol.20 , Issue.14 , pp. 2242-2250
    • Carter, S.L.1    Brechbühler, C.M.2    Griffin, M.3
  • 105
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA: An R package for weighted correlation network analysis
    • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.
    • (2008) BMC Bioinform , vol.9 , pp. 559
    • Langfelder, P.1    Horvath, S.2
  • 106
    • 84880569964 scopus 로고    scopus 로고
    • Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure
    • Dondelinger F, Lèbre S, Husmeier D. Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Mach Learn. 2013;90:191.
    • (2013) Mach Learn , vol.90 , pp. 191
    • Dondelinger, F.1    Lèbre, S.2    Husmeier, D.3
  • 107
    • 33746353952 scopus 로고    scopus 로고
    • Applying dynamic Bayesian networks to perturbed gene expression data
    • Dojer N, Gambin A, Mizera A, et al. Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinform. 2006;7:249.
    • (2006) BMC Bioinform , vol.7 , pp. 249
    • Dojer, N.1    Gambin, A.2    Mizera, A.3
  • 108
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou M, Conzen SD. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics. 2005;21(1):71-9.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 109
    • 38549107133 scopus 로고    scopus 로고
    • Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
    • Li P, Zhang CY, Perkins EJ, et al. Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks. BMC Bioinform. 2007;8 Suppl 7:S13. doi:10.1186/1471-2105-8-S7-S13.
    • (2007) BMC Bioinform , vol.8 , pp. S13
    • Li, P.1    Zhang, C.Y.2    Perkins, E.J.3
  • 110
    • 79958861169 scopus 로고    scopus 로고
    • Non-homogeneous dynamic Bayesian networks for continuous data
    • Grzegorczyk M, Husmeier D. Non-homogeneous dynamic Bayesian networks for continuous data. Mach Learn. 2011;83:355.
    • (2011) Mach Learn , vol.83 , pp. 355
    • Grzegorczyk, M.1    Husmeier, D.2
  • 113
    • 85023753418 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models Carvalho, C. M., West, M. Dynamic matrix-variate graphical models
    • Friedman N, Inferring cellular networks using probabilistic graphical models Carvalho, C. M., West, M. Dynamic matrix-variate graphical models. Bayesian Anal. 2007;2(1):69-97.
    • (2007) Bayesian Anal , vol.2 , Issue.1 , pp. 69-97
    • Friedman, N.1
  • 114
    • 67650927399 scopus 로고    scopus 로고
    • Granger causality vs. Dynamic Bayesian network inference: A comparative study
    • Zou C, Feng H. Granger causality vs. Dynamic Bayesian network inference: a comparative study. BMC Bioinform. 2009;10:122.
    • (2009) BMC Bioinform , vol.10 , pp. 122
    • Zou, C.1    Feng, H.2
  • 115
    • 4644372593 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression model for inferring gene networks
    • Kimm SY, Imoto S, Miyano S. Dynamic Bayesian network and nonparametric regression model for inferring gene networks. Genome Inform. 2002;13:371-2.
    • (2002) Genome Inform , vol.13 , pp. 371-372
    • Kimm, S.Y.1    Imoto, S.2    Miyano, S.3
  • 116
    • 79551497706 scopus 로고    scopus 로고
    • Learning Non-stationary dynamic Bayesian networks
    • Robinson J, Hartemink A. Learning Non-stationary dynamic Bayesian networks. J Mach Learn Res. 2010;11:3647-80.
    • (2010) J Mach Learn Res , vol.11 , pp. 3647-3680
    • Robinson, J.1    Hartemink, A.2
  • 117
    • 84888045025 scopus 로고    scopus 로고
    • Autoregressive models for gene regulatory network inference: Sparsity, stability and causality
    • Michailidis G, d'Alché-Buc F. Autoregressive models for gene regulatory network inference: sparsity, stability and causality. Math Biosci. 2013;246(2):326-34.
    • (2013) Math Biosci , vol.246 , Issue.2 , pp. 326-334
    • Michailidis, G.1    Alché-Buc, F.2
  • 118
    • 84993927170 scopus 로고    scopus 로고
    • Elastic-Net copula granger causality for inference of biological networks
    • Furqan MS, Siyal MY. Elastic-Net copula granger causality for inference of biological networks. PLoS One. 2016; 11(10):e0165612.
    • (2016) PLoS One , vol.11 , Issue.10 , pp. e0165612
    • Furqan, M.S.1    Siyal, M.Y.2
  • 119
    • 84964498737 scopus 로고    scopus 로고
    • Inference of biological networks using Bi-directional random forest granger causality
    • Furqan MS, Siyal MY. Inference of biological networks using Bi-directional random forest granger causality. Springerplus. 2016;5:514.
    • (2016) Springerplus , vol.5 , pp. 514
    • Furqan, M.S.1    Siyal, M.Y.2
  • 120
    • 84893164708 scopus 로고    scopus 로고
    • Gene regulatory network discovery using pairwise granger causality
    • Tam GH, Chang C, Hung YS. Gene regulatory network discovery using pairwise granger causality. ET Syst Biol. 2013;7(5):195-204.
    • (2013) ET Syst Biol , vol.7 , Issue.5 , pp. 195-204
    • Tam, G.H.1    Chang, C.2    Hung, Y.S.3
  • 121
    • 84940042083 scopus 로고    scopus 로고
    • Prior knowledge driven granger causality analysis on gene regulatory network discovery
    • Yao S, Yoo S, Yu D. Prior knowledge driven granger causality analysis on gene regulatory network discovery. BMC Bioinform. 2015;16:273.
    • (2015) BMC Bioinform , vol.16 , pp. 273
    • Yao, S.1    Yoo, S.2    Yu, D.3
  • 122
    • 66349115724 scopus 로고    scopus 로고
    • Grouped graphical granger modeling for gene expression regulatory networks discovery
    • Lozano AC, Abe N, Liu Y, Rosset S. Grouped graphical granger modeling for gene expression regulatory networks discovery. Bioinformatics. 2009;25(12):i110-8.
    • (2009) Bioinformatics , vol.25 , Issue.12 , pp. i110-i118
    • Lozano, A.C.1    Abe, N.2    Liu, Y.3    Rosset, S.4
  • 123
    • 84923918105 scopus 로고    scopus 로고
    • Gene network inference using continuous time Bayesian networks: A comparative study and application to Th17 cell differentiation
    • Acerbi E, Zelante T, Narang V, Stella F. Gene network inference using continuous time Bayesian networks: a comparative study and application to Th17 cell differentiation. BMC Bioinform. 2014;15(387):1471-2105.
    • (2014) BMC Bioinform , vol.15 , Issue.387 , pp. 1471-2105
    • Acerbi, E.1    Zelante, T.2    Narang, V.3    Stella, F.4
  • 124
    • 77349091815 scopus 로고    scopus 로고
    • NetPath: A public resource of curated signal transduction pathways
    • Kandasamy K, Mohan SS, Raju R, et al. NetPath: a public resource of curated signal transduction pathways. Genome Biol. 2010;11:R3.
    • (2010) Genome Biol , vol.11 , pp. R3
    • Kandasamy, K.1    Mohan, S.S.2    Raju, R.3
  • 125
    • 84859498694 scopus 로고    scopus 로고
    • HiPathDB: A human-integrated pathway database with facile visualization
    • Yu N, Seo J, Rho K, et al. hiPathDB: a human-integrated pathway database with facile visualization. Nucleic Acids Res. 2012;40(Database issue):D797-802.
    • (2012) Nucleic Acids Res , vol.40 , pp. D797-D802
    • Yu, N.1    Seo, J.2    Rho, K.3
  • 126
    • 33644873677 scopus 로고    scopus 로고
    • Pathguide: A pathway resource list
    • Bader GD, Cary MP, Sander C. Pathguide: a pathway resource list. Nucleic Acids Res. 2006;34:D504-506. doi:10. 1093/nar/gkj126.
    • (2006) Nucleic Acids Res , vol.34 , pp. D504-D506
    • Bader, G.D.1    Cary, M.P.2    Sander, C.3
  • 127
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources
    • Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc. 2009;4(1):44-57.
    • (2009) Nature Protoc , vol.4 , Issue.1 , pp. 44-57
    • Huang, D.W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 128
    • 58549112996 scopus 로고    scopus 로고
    • Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists
    • Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1-13.
    • (2009) Nucleic Acids Res , vol.37 , Issue.1 , pp. 1-13
    • Huang, D.W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 129
    • 84870453566 scopus 로고    scopus 로고
    • SemMedDB: A PubMed-scale repository of biomedical semantic predications
    • Kilicoglu H, Shin D, Fiszman M, et al. SemMedDB: a PubMed-scale repository of biomedical semantic predications. Bioinformatics. 2012;28(23):3158-60.
    • (2012) Bioinformatics , vol.28 , Issue.23 , pp. 3158-3160
    • Kilicoglu, H.1    Shin, D.2    Fiszman, M.3
  • 130
    • 67849122322 scopus 로고    scopus 로고
    • VisANT 3.5: Multi-scale network visualization, analysis and inference based on the gene ontology
    • Hu Z, Hung JH, Wang Y, Chang YC, Huang CL, Huyck M, DeLisi C. VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res. 2009;37:W115-121. doi:10.1093/nar/ gkp406.
    • (2009) Nucleic Acids Res , vol.37 , pp. W115-W121
    • Hu, Z.1    Hung, J.H.2    Wang, Y.3    Chang, Y.C.4    Huang, C.L.5    Huyck, M.6    Delisi, C.7
  • 132
    • 84906549588 scopus 로고    scopus 로고
    • A community effort to assess and improve drug sensitivity prediction algorithms
    • Costello J, Heiser L, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014;32:1202-12.
    • (2014) Nat Biotechnol , vol.32 , pp. 1202-1212
    • Costello, J.1    Heiser, L.2
  • 133
    • 85004101018 scopus 로고    scopus 로고
    • Analysis of metabolomic data: Tools, current strategies and future challenges for omics data integration
    • Cambiaghi, A., Ferrario, M., Masseroli, M. (2016). Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration. Briefings in Bioinformatics pii: bbw031.
    • (2016) Briefings in Bioinformatics
    • Cambiaghi, A.1    Ferrario, M.2    Masseroli, M.3
  • 134
    • 84863547465 scopus 로고    scopus 로고
    • The human phosphotyrosine signaling network: Evolution and hotspots of hijacking in cancer
    • Lei L, Tibiche C, Fu C, et al. The human phosphotyrosine signaling network: evolution and hotspots of hijacking in cancer. Genome Res. 2012;22(7):1222-30.
    • (2012) Genome Res , vol.22 , Issue.7 , pp. 1222-1230
    • Lei, L.1    Tibiche, C.2    Fu, C.3
  • 135
    • 84959123422 scopus 로고    scopus 로고
    • Trajectories of cell-cycle progression from fixed cell populations
    • Gut G, Tadmor MD, Pe'er D, Pelkmans L, Liberali P. Trajectories of cell-cycle progression from fixed cell populations. Nat Methods. 2015;12(10):951-4.
    • (2015) Nat Methods , vol.12 , Issue.10 , pp. 951-954
    • Gut, G.1    Tadmor, M.D.2    Pe'Er, D.3    Pelkmans, L.4    Liberali, P.5
  • 137
    • 84255175663 scopus 로고    scopus 로고
    • A transcriptional dynamic network during Arabidopsis thaliana pollen development
    • Wang J, Qiu X, Deng Y, et al. A transcriptional dynamic network during Arabidopsis thaliana pollen development. BMC Syst Biol. 2011;5 Suppl 3:S8.
    • (2011) BMC Syst Biol , vol.5 , pp. S8
    • Wang, J.1    Qiu, X.2    Deng, Y.3
  • 138
    • 84255175679 scopus 로고    scopus 로고
    • A comprehensive network and pathway analysis of candidate genes in major depressive disorder
    • Jia P, Kao CF, Kuo PH, et al. A comprehensive network and pathway analysis of candidate genes in major depressive disorder. BMC Syst Biol. 2011;5 Suppl 3:S12. doi:10.1186/1752-0509-5-S3-S12.
    • (2011) BMC Syst Biol , vol.5 , pp. S12
    • Jia, P.1    Kao, C.F.2    Kuo, P.H.3
  • 139
    • 84255194385 scopus 로고    scopus 로고
    • An integrative analysis of DNA methylation and RNA-Seq data for human heart kidney and liver
    • Xie L, Weichel B, Ohm JE, et al. An integrative analysis of DNA methylation and RNA-Seq data for human heart, kidney and liver. BMC Syst Biol. 2011;5 Suppl 3:S4.
    • (2011) BMC Syst Biol , vol.5 , pp. S4
    • Xie, L.1    Weichel, B.2    Ohm, J.E.3
  • 140
    • 84255194431 scopus 로고    scopus 로고
    • Biological network motif detection and evaluation
    • Kim W, Li M, Wang J, et al. Biological network motif detection and evaluation. BMC Syst Biol. 2011;5 Suppl 3:S5.
    • (2011) BMC Syst Biol , vol.5 , pp. S5
    • Kim, W.1    Li, M.2    Wang, J.3
  • 141
    • 84255175681 scopus 로고    scopus 로고
    • Leveraging social networks for understanding the evolution of epidemics
    • Martin G, Marinescu MC, Singh DE, et al. Leveraging social networks for understanding the evolution of epidemics. BMC Syst Biol. 2011;5 Suppl 3:S14.
    • (2011) BMC Syst Biol , vol.5 , pp. S14
    • Martin, G.1    Marinescu, M.C.2    Singh, D.E.3
  • 142
    • 78650572031 scopus 로고    scopus 로고
    • Paintomics a web based tool for the joint visualization of transcriptomics and metabolomics data
    • Garcia-Alcalde F, Garcia-Lopez F, Dopazo J, Conesa A. Paintomics a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics. 2011;27:137-9. doi:10.1093/ bioinformatics/btq594.
    • (2011) Bioinformatics , vol.27 , pp. 137-139
    • Garcia-Alcalde, F.1    Garcia-Lopez, F.2    Dopazo, J.3    Conesa, A.4
  • 143
    • 84933676032 scopus 로고    scopus 로고
    • Applications for single cell trajectory analysis in inner ear development and regeneration
    • Durruthy, R & Heller, S (2015). Applications for single cell trajectory analysis in inner ear development and regeneration. Cell and Tissue Research, 361(1), 49-7. http://doi.org/10.1007/s00441-014-2079-2.
    • (2015) Cell and Tissue Research , vol.361 , Issue.1 , pp. 49-57
    • Durruthy, R.1    Heller, S.2
  • 144
    • 84964318219 scopus 로고    scopus 로고
    • Modeling dynamic systems with efficient ensembles of process-based models
    • Simidjievski N, Todorovski L, Dzeroski S. Modeling dynamic systems with efficient ensembles of process-based models. PLoS One. 2016;11(4):e0153507.
    • (2016) PLoS One , vol.11 , Issue.4 , pp. e0153507
    • Simidjievski, N.1    Todorovski, L.2    Dzeroski, S.3
  • 145
    • 78650572031 scopus 로고    scopus 로고
    • Paintomics: A web based tool for the joint visualization of transcriptomics and metabolomics data
    • Garcia-Alcalde F, Garcia-Lopez F, Dopazo J, Conesa A. Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics. 2011;27:137-9. doi:10.1093/bioinformatics/btq594.
    • (2011) Bioinformatics , vol.27 , pp. 137-139
    • Garcia-Alcalde, F.1    Garcia-Lopez, F.2    Dopazo, J.3    Conesa, A.4
  • 147
    • 85006358697 scopus 로고    scopus 로고
    • Longitudinal omics modeling and integration in clinical metabonomics research: Challenges in childhood metabolic health research
    • Sperisen P, Cominetti O, Martin F-PJ. Longitudinal omics modeling and integration in clinical metabonomics research: challenges in childhood metabolic health research. Front Mol Biosci. 2015;2:44. http://doi.org/10.3389/ fmolb.2015.00044.
    • (2015) Front Mol Biosci , vol.2 , pp. 44
    • Sperisen, P.1    Cominetti, O.2    F-Pj, M.3
  • 151
    • 70350638951 scopus 로고    scopus 로고
    • Interaction techniques for selecting and manipulating subgraphs in network visualizations
    • McGuffin MJ, Jurisica I. Interaction techniques for selecting and manipulating subgraphs in network visualizations. IEEE Trans Vis Comput Graph. 2009;15:937-44.
    • (2009) IEEE Trans Vis Comput Graph , vol.15 , pp. 937-944
    • McGuffin, M.J.1    Jurisica, I.2
  • 152
    • 54949110152 scopus 로고    scopus 로고
    • C. Visualizing multiple experimental conditions on a graph with biological context
    • Barsky A, Munzner T, Gardy J, Kincaid R: C. Visualizing multiple experimental conditions on a graph with biological context. IEEE Trans Vis Comput Graph. 2008;14:1253-60.
    • (2008) IEEE Trans Vis Comput Graph , vol.14 , pp. 1253-1260
    • Barsky, A.1    Munzner, T.2    Gardy, J.3    Kincaid, R.4
  • 153
    • 84989328936 scopus 로고    scopus 로고
    • A method to identify and analyze biological programs through automated reasoning
    • Yordanov, B., Dunn, S. J., Kugler, H., et al. (2016). A method to identify and analyze biological programs through automated reasoning. NP J Systems Biology and Applications. Article number: 16010.
    • (2016) NP J Systems Biology and Applications
    • Yordanov, B.1    Dunn, S.J.2    Kugler, H.3
  • 154
    • 84934444680 scopus 로고    scopus 로고
    • Pattern identification in time-course gene expression data with the CoGAPS matrix factorization
    • Fertig EJ, Stein-O'Brien G, Jaffe A, et al. Pattern identification in time-course gene expression data with the CoGAPS matrix factorization. Methods Mol Biol. 2014;1101:87-112.
    • (2014) Methods Mol Biol , vol.1101 , pp. 87-112
    • Fertig, E.J.1    Stein-O'Brien, G.2    Jaffe, A.3
  • 155
    • 77958479692 scopus 로고    scopus 로고
    • CoGAPS: An R/C++ package to identify patterns and biological process activity in transcriptomic data
    • Fertig EJ, Ding J, Favorov AV, et al. CoGAPS: an R/C++ package to identify patterns and biological process activity in transcriptomic data. Bioinformatics. 2010;26(21):2792-3.
    • (2010) Bioinformatics , vol.26 , Issue.21 , pp. 2792-2793
    • Fertig, E.J.1    Ding, J.2    Favorov, A.V.3
  • 157
    • 84858983547 scopus 로고    scopus 로고
    • KEGG for integration and interpretation of large-scale molecular datasets
    • Kanehisa M, Goto S, Sato Y, et al. KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Res. 2012;40:D109-14. doi:10.1093/nar/gkr988.
    • (2012) Nucleic Acids Res , vol.40 , pp. D109-D114
    • Kanehisa, M.1    Goto, S.2    Sato, Y.3
  • 158
    • 84940758157 scopus 로고    scopus 로고
    • INSPEcT: A computational tool to infer mRNA synthesis, processing and degradation dynamics from RNA- and 4sU-seq time course experiments
    • de Pretis S, Kress T, Morelli MJ, Melloni GE, Rival L, Amati B, Pelizzola M. INSPEcT: a computational tool to infer mRNA synthesis, processing and degradation dynamics from RNA- and 4sU-seq time course experiments. Bioinformatics. 2015;31(17):2829-35.
    • (2015) Bioinformatics , vol.31 , Issue.17 , pp. 2829-2835
    • De Pretis, S.1    Kress, T.2    Morelli, M.J.3    Melloni, G.E.4    Rival, L.5    Amati, B.6    Pelizzola, M.7
  • 159
    • 84855869711 scopus 로고    scopus 로고
    • Genetic network analyzer: A tool for the qualitative modeling and simulation of bacterial regulatory networks
    • van Helden J, Toussaint A, Thieffry D, editors., New York: Humana Press, Springer
    • Batt G, Besson B, Ciron PE, et al. Genetic network analyzer: a tool for the qualitative modeling and simulation of bacterial regulatory networks. In: van Helden J, Toussaint A, Thieffry D, editors. Bacterial molecular networks : methods and protocols, methods in molecular biology. New York: Humana Press, Springer; 2012. p. 439-62.
    • (2012) Bacterial Molecular Networks: Methods and Protocols, Methods in Molecular Biology , pp. 439-462
    • Batt, G.1    Besson, B.2    Ciron, P.E.3
  • 160
    • 84880999420 scopus 로고    scopus 로고
    • BNFinder2: Faster Bayesian network learning and Bayesian classification
    • Dojer N, Bednarz P, Podsiadło A, et al. BNFinder2: faster Bayesian network learning and Bayesian classification. Bioinformatics. 2013;29(16):2068-70.
    • (2013) Bioinformatics , vol.29 , Issue.16 , pp. 2068-2070
    • Dojer, N.1    Bednarz, P.2    Podsiadło, A.3
  • 161
    • 58349093534 scopus 로고    scopus 로고
    • BNFinder: Exact and efficient method for learning Bayesian networks
    • Wilczynski B, Dojer N. BNFinder: exact and efficient method for learning Bayesian networks. Bioinformatics. 2009; 25(2):286-7.
    • (2009) Bioinformatics , vol.25 , Issue.2 , pp. 286-287
    • Wilczynski, B.1    Dojer, N.2
  • 162
    • 84990943503 scopus 로고    scopus 로고
    • Learning continuous time Bayesian networks in Non-stationary domains
    • Villa S, Stella F. Learning continuous time Bayesian networks in Non-stationary domains. J Artif Intel Res. 2016;57: 1-37.
    • (2016) J Artif Intel Res , vol.57 , pp. 1-37
    • Villa, S.1    Stella, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.