-
1
-
-
72849106592
-
Rna processing and its regulation: global insights into biological networks
-
Licatalosi D., Darnell R.B. Rna processing and its regulation: global insights into biological networks. Nature Reviews Genetics 2010, 75.
-
(2010)
Nature Reviews Genetics
, pp. 75
-
-
Licatalosi, D.1
Darnell, R.B.2
-
2
-
-
0037435030
-
Mass spectrometry-based proteomics
-
Aebersold R., Mann M. Mass spectrometry-based proteomics. Nature 2003, 198.
-
(2003)
Nature
, pp. 198
-
-
Aebersold, R.1
Mann, M.2
-
5
-
-
58149268119
-
Modelling metabolic networks using power-laws and s-systems
-
Voit E. Modelling metabolic networks using power-laws and s-systems. Essays Biochemistry 2008, 29.
-
(2008)
Essays Biochemistry
, pp. 29
-
-
Voit, E.1
-
6
-
-
80053456365
-
Semi-supervised penalized output kernel regression for link prediction
-
Omnipress, L. Getoor, T. Scheffer (Eds.)
-
Brouard C., d'Alché Buc F., Szafranski M. Semi-supervised penalized output kernel regression for link prediction. ICML 2011, 593. Omnipress. L. Getoor, T. Scheffer (Eds.).
-
(2011)
ICML
, pp. 593
-
-
Brouard, C.1
d'Alché Buc, F.2
Szafranski, M.3
-
7
-
-
84867881743
-
Structure-based prediction of protein-protein interactions on a genome-wide scale
-
Q.C. Zhang, D. Petrey, L. Deng, L. Qiang, Y. Shi, C. Thu, B. Bisikirska, C. Lefebvre, D. Accili, T. Hunter, et al., Structure-based prediction of protein-protein interactions on a genome-wide scale, Nature 490 (2012) 556.
-
(2012)
Nature
, vol.490
, pp. 556
-
-
Zhang, Q.C.1
Petrey, D.2
Deng, L.3
Qiang, L.4
Shi, Y.5
Thu, C.6
Bisikirska, B.7
Lefebvre, C.8
Accili, D.9
Hunter, T.10
-
8
-
-
70549083891
-
Inference of gene regulatory networks using time-series data: a survey
-
Sima C., Hua J., Jung S. Inference of gene regulatory networks using time-series data: a survey. Current Genomics 2009, 416.
-
(2009)
Current Genomics
, pp. 416
-
-
Sima, C.1
Hua, J.2
Jung, S.3
-
9
-
-
65649102679
-
Recent developments in parameter estimation and structure identification of biochemical and genomic systems
-
Chou I.C., Voit E.O. Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Mathematical Biosciences 2009, 219:57.
-
(2009)
Mathematical Biosciences
, vol.219
, pp. 57
-
-
Chou, I.C.1
Voit, E.O.2
-
11
-
-
41549159731
-
Evolutionary approaches for the reverse-engineering of gene regulatory networks: a study on a biologically realistic dataset
-
Auliac C., Frouin V., Gidrol X., d'Alché Buc F. Evolutionary approaches for the reverse-engineering of gene regulatory networks: a study on a biologically realistic dataset. BMC Bioinformatics 2008, 9:91.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 91
-
-
Auliac, C.1
Frouin, V.2
Gidrol, X.3
d'Alché Buc, F.4
-
12
-
-
49549104230
-
Sirene: supervised inference of regulatory networks
-
Mordelet F., Vert J.-P. Sirene: supervised inference of regulatory networks. Bioinformatics 2008, 24:i76.
-
(2008)
Bioinformatics
, vol.24
-
-
Mordelet, F.1
Vert, J.-P.2
-
13
-
-
84888050603
-
-
Learning a markov logic network for supervised inference of a gene regulatory network: application to the id2 regulatory network in human keratinocytes, BMC Bioinformatics, to appear
-
C. Brouard, J. Dubois, C. Vrain, D. Castel, M.-A. Debily, F. d'Alché Buc, Learning a markov logic network for supervised inference of a gene regulatory network: application to the id2 regulatory network in human keratinocytes, BMC Bioinformatics, to appear, 2013.
-
(2013)
-
-
Brouard, C.1
Dubois, J.2
Vrain, C.3
Castel, D.4
Debily, M.-A.5
d'Alché Buc, F.6
-
14
-
-
4143058645
-
Gene networks inference using dynamic bayesian networks
-
Perrin B.-E., Ralaivola L., Mazurie A., Bottani S., Mallet J., d'Alché Buc F. Gene networks inference using dynamic bayesian networks. Bioinformatics 2003, 19:38.
-
(2003)
Bioinformatics
, vol.19
, pp. 38
-
-
Perrin, B.-E.1
Ralaivola, L.2
Mazurie, A.3
Bottani, S.4
Mallet, J.5
d'Alché Buc, F.6
-
15
-
-
22844441552
-
Reverse engineering gene regulatory networks
-
Hartemink A. Reverse engineering gene regulatory networks. Nature Biotechnology 2005, 23:554.
-
(2005)
Nature Biotechnology
, vol.23
, pp. 554
-
-
Hartemink, A.1
-
16
-
-
33645307955
-
Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
-
Bansal M., Della Gatta G., di Bernardo D. Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 2006, 22:815.
-
(2006)
Bioinformatics
, vol.22
, pp. 815
-
-
Bansal, M.1
Della Gatta, G.2
di Bernardo, D.3
-
17
-
-
35748964479
-
-
Modeling gene expression regulatory networks with the sparse vector autoregressive model, BMC Systems Biology 1, Article 39.
-
A. Fujita, J. Sato, H. Garay-Malpartida, R. Yamaguchi, S. Miyano, M. Sogayar, C.E. Ferreira, Modeling gene expression regulatory networks with the sparse vector autoregressive model, BMC Systems Biology 1 (2007), Article 39.
-
(2007)
-
-
Fujita, A.1
Sato, J.2
Garay-Malpartida, H.3
Yamaguchi, R.4
Miyano, S.5
Sogayar, M.6
Ferreira, C.E.7
-
18
-
-
77953107844
-
Penalized likelihood methods for estimation of sparse high dimensional directed acyclic graphs
-
Shojaie A., Michailidis G. Penalized likelihood methods for estimation of sparse high dimensional directed acyclic graphs. Biometrika 2010, 97(3):519.
-
(2010)
Biometrika
, vol.97
, Issue.3
, pp. 519
-
-
Shojaie, A.1
Michailidis, G.2
-
19
-
-
84888048092
-
-
Network granger causality with inherent grouping structure, 1. ArXiv:1210.3711v3.
-
S. Basu, A. Shojaie, G. Michailidis, Network granger causality with inherent grouping structure, 2012, 1. ArXiv:1210.3711v3.
-
(2012)
-
-
Basu, S.1
Shojaie, A.2
Michailidis, G.3
-
20
-
-
84878285220
-
Okvar-boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks
-
Lim N., Senbabaoglu Y., Michailidis G., d'Alché Buc F. Okvar-boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks. Bioinformatics 2013, 29:1416.
-
(2013)
Bioinformatics
, vol.29
, pp. 1416
-
-
Lim, N.1
Senbabaoglu, Y.2
Michailidis, G.3
d'Alché Buc, F.4
-
21
-
-
33947305781
-
Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
-
Margolin A.A., Nemenman I., Basso K., Wiggins C., Stolovitzky G., Favera R., Califano A. Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 2006, 7:S7.
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Margolin, A.A.1
Nemenman, I.2
Basso, K.3
Wiggins, C.4
Stolovitzky, G.5
Favera, R.6
Califano, A.7
-
22
-
-
77952663448
-
Timedelay-aracne: reverse engineering of gene networks from time-course data by an information theoretic approach
-
Zoppoli P., Morganella S., Ceccarelli M. Timedelay-aracne: reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics 2010, 11:154.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 154
-
-
Zoppoli, P.1
Morganella, S.2
Ceccarelli, M.3
-
24
-
-
77958570788
-
Inferring regulatory networks from expression data using tree-based methods
-
V.A. Huynh-Thu, A. Irrthum, L. Wehenkel, P. Geurts, Inferring regulatory networks from expression data using tree-based methods, PLos ONE 5 (2010) e12776.
-
(2010)
PLos ONE
, vol.5
-
-
Huynh-Thu, V.A.1
Irrthum, A.2
Wehenkel, L.3
Geurts, P.4
-
25
-
-
84869882656
-
Tigress: Trustful inference of gene regulation using stability selection
-
Article 145.
-
A.-C. Haury, F. Mordelet, P. Vera-Licona, J.-P. Vert, Tigress: Trustful inference of gene regulation using stability selection, BMC Systems Biology 6 (2012), Article 145.
-
(2012)
BMC Systems Biology
, vol.6
-
-
Haury, A.-C.1
Mordelet, F.2
Vera-Licona, P.3
Vert, J.-P.4
-
28
-
-
0038048325
-
Inferring genetic networks and identifying compound mode of action via expression profiling
-
Gardner T.S., di Bernardo D., Lorenz D., Collins J.J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301:102.
-
(2003)
Science
, vol.301
, pp. 102
-
-
Gardner, T.S.1
di Bernardo, D.2
Lorenz, D.3
Collins, J.J.4
-
29
-
-
0037687416
-
Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling
-
Tegner J., Yeung M.K., Hasty J., Collins J.J. Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proceedings of the National Academy of Sciences USA 2003, 100:5944.
-
(2003)
Proceedings of the National Academy of Sciences USA
, vol.100
, pp. 5944
-
-
Tegner, J.1
Yeung, M.K.2
Hasty, J.3
Collins, J.J.4
-
30
-
-
0000351727
-
Investigating causal relations by econometric models and cross-spectral methods
-
Granger C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37:424.
-
(1969)
Econometrica
, vol.37
, pp. 424
-
-
Granger, C.W.J.1
-
32
-
-
84860513120
-
Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in escherichia coli
-
Batt G., Ropers D., Jong H.D., Geiselmann J., Mateescu R., Schneider D. Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in escherichia coli. Bioinformatics 2005, 21:19.
-
(2005)
Bioinformatics
, vol.21
, pp. 19
-
-
Batt, G.1
Ropers, D.2
Jong, H.D.3
Geiselmann, J.4
Mateescu, R.5
Schneider, D.6
-
33
-
-
0001622717
-
Power-law approach to modeling biological systems; iii. methods of analysis
-
Voit E., Savageau M. Power-law approach to modeling biological systems; iii. methods of analysis. Journal of Fermentation Technology 1982, 60:233.
-
(1982)
Journal of Fermentation Technology
, vol.60
, pp. 233
-
-
Voit, E.1
Savageau, M.2
-
35
-
-
42649134526
-
Parameter optimization in s-system models
-
Vilela M., Chou I.-C., Vinga S., Vasconcelos A., Voit E., Almeida J. Parameter optimization in s-system models. BMC Systems Biology 2008, 2:35.
-
(2008)
BMC Systems Biology
, vol.2
, pp. 35
-
-
Vilela, M.1
Chou, I.-C.2
Vinga, S.3
Vasconcelos, A.4
Voit, E.5
Almeida, J.6
-
36
-
-
77956514067
-
Discovering graphical granger causality using a truncating lasso penalty
-
Shojaie A., Michailidis G. Discovering graphical granger causality using a truncating lasso penalty. Bioinformatics 2010, 26(18):i517.
-
(2010)
Bioinformatics
, vol.26
, Issue.18
-
-
Shojaie, A.1
Michailidis, G.2
-
37
-
-
66349115724
-
Grouped graphical granger modeling for gene expression regulatory networks discovery
-
Lozano A.C., Abe N., Liu Y., Rosset S. Grouped graphical granger modeling for gene expression regulatory networks discovery. Bioinformatics 2009, 25:i110.
-
(2009)
Bioinformatics
, vol.25
-
-
Lozano, A.C.1
Abe, N.2
Liu, Y.3
Rosset, S.4
-
39
-
-
33847348163
-
Causality and pathway search in microarray time series experiment
-
Mukhopadhyay N., Chatterjee S. Causality and pathway search in microarray time series experiment. Bioinformatics 2007, 23:442.
-
(2007)
Bioinformatics
, vol.23
, pp. 442
-
-
Mukhopadhyay, N.1
Chatterjee, S.2
-
41
-
-
0038483826
-
Emergence of scaling in random networks
-
Barabasi A.-L., Albert R. Emergence of scaling in random networks. Science 1999, 286:11.
-
(1999)
Science
, vol.286
, pp. 11
-
-
Barabasi, A.-L.1
Albert, R.2
-
42
-
-
66749164082
-
-
Recursive regularization for inferring gene networks from time-course gene expression profiles, BMC Systems Biology
-
T. Shimamura, S. Imoto, R. Yamaguchi, A. Fujita, M. Nagasaki, S. Miyano, Recursive regularization for inferring gene networks from time-course gene expression profiles, BMC Systems Biology, 2009.
-
(2009)
-
-
Shimamura, T.1
Imoto, S.2
Yamaguchi, R.3
Fujita, A.4
Nagasaki, M.5
Miyano, S.6
-
43
-
-
34249862287
-
Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process
-
Opgen-Rhein R., Strimmer K. Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinformatics 2007, 8:S3.
-
(2007)
BMC Bioinformatics
, vol.8
-
-
Opgen-Rhein, R.1
Strimmer, K.2
-
45
-
-
3042738945
-
Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
-
Kim S., Imoto S., Miyano S. Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 2004, 75:57.
-
(2004)
Biosystems
, vol.75
, pp. 57
-
-
Kim, S.1
Imoto, S.2
Miyano, S.3
-
46
-
-
80052699490
-
Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully bayesian spline autoregression
-
Morrissey E.R., Jurez M.A., Denby K.J., Burroughs N.J. Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully bayesian spline autoregression. Biostatistics 2011, 12:682.
-
(2011)
Biostatistics
, vol.12
, pp. 682
-
-
Morrissey, E.R.1
Jurez, M.A.2
Denby, K.J.3
Burroughs, N.J.4
-
47
-
-
84888022174
-
-
Gene regulatory network inference using ensemble of multiple local kernel models, Programme of Seventh International Workshop on Machine Learning in Systems Biology, satellite meeting of ISMB'2013, Uwe Owler and Jean-Philippe Vert, July 19-20
-
A. Fouchet, J.-M. Delosme, F. d'Alché Buc, Gene regulatory network inference using ensemble of multiple local kernel models, Programme of Seventh International Workshop on Machine Learning in Systems Biology, satellite meeting of ISMB'2013, Uwe Owler and Jean-Philippe Vert, July 19-20, 2013.
-
(2013)
-
-
Fouchet, A.1
Delosme, J.-M.2
d'Alché Buc, F.3
-
48
-
-
80052213499
-
Multiple kernel learning algorithms
-
Gonen M., Alpaydyn E. Multiple kernel learning algorithms. JMLR 2011, 12:2211.
-
(2011)
JMLR
, vol.12
, pp. 2211
-
-
Gonen, M.1
Alpaydyn, E.2
-
49
-
-
57249084590
-
Simplemkl
-
Rakotomamonjy A., Bach F., Canu S., Grandvalet Y. Simplemkl. Journal of Machine Learning Research 2008, 9:2491.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2491
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
51
-
-
84865661703
-
Gene regulatory network modeling via global optimization of high-order dynamic bayesian network
-
Xuan N., Chetty M., Coppel R., Wangikar P. Gene regulatory network modeling via global optimization of high-order dynamic bayesian network. BMC Bioinformatics 2012, 13:131.
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 131
-
-
Xuan, N.1
Chetty, M.2
Coppel, R.3
Wangikar, P.4
-
54
-
-
84888072728
-
-
Dynamic Bayesian networks for interventional data, Technical Report, Warwick University, UK
-
S. Spencer, S. Hill, S. Mukherjee, Dynamic Bayesian networks for interventional data, Technical Report, Warwick University, UK, 2012.
-
(2012)
-
-
Spencer, S.1
Hill, S.2
Mukherjee, S.3
-
55
-
-
84871878774
-
Stability of building gene regulatory networks with sparse autoregressive models
-
Rajapakse J.C., Mundra P.A. Stability of building gene regulatory networks with sparse autoregressive models. BMC Bioinformatics 2011, 12:S17.
-
(2011)
BMC Bioinformatics
, vol.12
-
-
Rajapakse, J.C.1
Mundra, P.A.2
-
56
-
-
84859125037
-
Bagging statistical network inference from large-scale gene expression data
-
de Matos Simoes R., Emmert-Streib F. Bagging statistical network inference from large-scale gene expression data. PLoS One 2012, 7:e33624.
-
(2012)
PLoS One
, vol.7
-
-
de Matos Simoes, R.1
Emmert-Streib, F.2
-
57
-
-
84870305264
-
Wisdom of crowds for robust gene network inference
-
Marbach D., Costello J.C., Kuffner R., Vega N.M., Prill R.J., Camacho D.M., Allison K.R., Consortium T.D., Kellis M., Collins J.J., et al. Wisdom of crowds for robust gene network inference. Nature Methods 2012, 9:796.
-
(2012)
Nature Methods
, vol.9
, pp. 796
-
-
Marbach, D.1
Costello, J.C.2
Kuffner, R.3
Vega, N.M.4
Prill, R.J.5
Camacho, D.M.6
Allison, K.R.7
Consortium, T.D.8
Kellis, M.9
Collins, J.J.10
-
58
-
-
27944493925
-
Scale-free networks in cell biology
-
Albert R. Scale-free networks in cell biology. Journal of Cell Science 2005, 118:4947.
-
(2005)
Journal of Cell Science
, vol.118
, pp. 4947
-
-
Albert, R.1
-
59
-
-
50849090969
-
Genome-wide analysis of transcription factor binding sites based on chip-seq data
-
Valouev A., Johnson D., Sundquist A., Medina C., Anton E., Batzoglou S., Myers R., Sidow A. Genome-wide analysis of transcription factor binding sites based on chip-seq data. Nature Methods 2008, 5:829.
-
(2008)
Nature Methods
, vol.5
, pp. 829
-
-
Valouev, A.1
Johnson, D.2
Sundquist, A.3
Medina, C.4
Anton, E.5
Batzoglou, S.6
Myers, R.7
Sidow, A.8
-
60
-
-
46049087782
-
The transfac project as an example of framework technology that supports the analysis of genomic regulation
-
Wingender E. The transfac project as an example of framework technology that supports the analysis of genomic regulation. Briefings in Bioinformatics 2008, 9:326.
-
(2008)
Briefings in Bioinformatics
, vol.9
, pp. 326
-
-
Wingender, E.1
-
61
-
-
84871681271
-
Inference of dynamical gene-regulatory networks based on time-resolved multi-stimuli multi-experiment data applying netgenerator v2.0
-
Weber M., Henkel S., Vlaic S., Guthke R., van Zoelen E., Driesch D. Inference of dynamical gene-regulatory networks based on time-resolved multi-stimuli multi-experiment data applying netgenerator v2.0. BMC Systems Biology 2013, 7:1.
-
(2013)
BMC Systems Biology
, vol.7
, pp. 1
-
-
Weber, M.1
Henkel, S.2
Vlaic, S.3
Guthke, R.4
van Zoelen, E.5
Driesch, D.6
-
62
-
-
80455162593
-
Integration of epigenetic data in bayesian network modeling of gene regulatory network
-
Springer, M. Loog, L.F.A. Wessels, M.J.T. Reinders, D. de Ridder (Eds.) PRIB
-
Zheng J., Chaturvedi I., Rajapakse J.C. Integration of epigenetic data in bayesian network modeling of gene regulatory network. Lecture Notes in Computer Science 2011, 7036:87. Springer. M. Loog, L.F.A. Wessels, M.J.T. Reinders, D. de Ridder (Eds.).
-
(2011)
Lecture Notes in Computer Science
, vol.7036
, pp. 87
-
-
Zheng, J.1
Chaturvedi, I.2
Rajapakse, J.C.3
-
63
-
-
78149429509
-
From knockouts to networks: establishing direct cause-effect relationships through graph analysis
-
Pinna A., Soranzo N., de la Fuente A. From knockouts to networks: establishing direct cause-effect relationships through graph analysis. PLoS ONE 2010, 5:e12912.
-
(2010)
PLoS ONE
, vol.5
-
-
Pinna, A.1
Soranzo, N.2
de la Fuente, A.3
-
64
-
-
84876207916
-
Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks
-
Greenfield A., Hafemeister C., Bonneau R. Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks. Bioinformatics 2013, 29:1060.
-
(2013)
Bioinformatics
, vol.29
, pp. 1060
-
-
Greenfield, A.1
Hafemeister, C.2
Bonneau, R.3
-
65
-
-
84960432692
-
Combining microarrays and biological knowledge for estimating gene networks via bayesian networks
-
IEEE
-
Imoto S., Higuchi T., Goto T., Tashiro K., Kuhara S., Miyano S. Combining microarrays and biological knowledge for estimating gene networks via bayesian networks. Proceedings of the IEEE Computer Society Bioinformatics Conference (CSB 03) 2003, 104. IEEE.
-
(2003)
Proceedings of the IEEE Computer Society Bioinformatics Conference (CSB 03)
, pp. 104
-
-
Imoto, S.1
Higuchi, T.2
Goto, T.3
Tashiro, K.4
Kuhara, S.5
Miyano, S.6
-
66
-
-
34249774309
-
Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge
-
Article 15.
-
A. Werhli, D. Husmeier, Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge, Statistical Applications in Genetics and Molecular Biology 6 (2007), Article 15.
-
(2007)
Statistical Applications in Genetics and Molecular Biology
, vol.6
-
-
Werhli, A.1
Husmeier, D.2
-
67
-
-
84860508659
-
Hub-centered gene network reconstruction using automatic relevance determination
-
Bock M., Ogishima S., Tanaka H., Kramer S., Kaderali L. Hub-centered gene network reconstruction using automatic relevance determination. PLoS ONE 2012, 7:e35077.
-
(2012)
PLoS ONE
, vol.7
-
-
Bock, M.1
Ogishima, S.2
Tanaka, H.3
Kramer, S.4
Kaderali, L.5
-
68
-
-
77950910419
-
Revealing strengths and weaknesses of methods for gene network inference
-
Marbach D., Prill R.J., Schaffter T., Mattiussi C., Floreano D., Stolovitzky G. Revealing strengths and weaknesses of methods for gene network inference. Proceedings of the National Academy of Sciences USA 2010, 107(14):6286.
-
(2010)
Proceedings of the National Academy of Sciences USA
, vol.107
, Issue.14
, pp. 6286
-
-
Marbach, D.1
Prill, R.J.2
Schaffter, T.3
Mattiussi, C.4
Floreano, D.5
Stolovitzky, G.6
-
69
-
-
80052592949
-
Crowdsourcing network inference: the dream predictive signaling network challenge
-
Prill R.J., Saez-Rodriguez J., Alexopoulos L.G., Sorger P.K., Stolovitzky G. Crowdsourcing network inference: the dream predictive signaling network challenge. Science Signaling 2011, 4:mr7.
-
(2011)
Science Signaling
, vol.4
-
-
Prill, R.J.1
Saez-Rodriguez, J.2
Alexopoulos, L.G.3
Sorger, P.K.4
Stolovitzky, G.5
-
70
-
-
79953871120
-
A computational framework for gene regulatory network inference that combines multiple methods and datasets
-
Gupta R., Stincone A., Antczak P., Durant S., Bicknell R., Bikfalvi A., Falciani F. A computational framework for gene regulatory network inference that combines multiple methods and datasets. BMC Systems Biology 2011, 5:52.
-
(2011)
BMC Systems Biology
, vol.5
, pp. 52
-
-
Gupta, R.1
Stincone, A.2
Antczak, P.3
Durant, S.4
Bicknell, R.5
Bikfalvi, A.6
Falciani, F.7
-
73
-
-
0037941585
-
Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data
-
Segal E., Shapira M., Regev A., Pe'er D., Botstein D., Koller D., Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 2003, 34(2):166.
-
(2003)
Nature Genetics
, vol.34
, Issue.2
, pp. 166
-
-
Segal, E.1
Shapira, M.2
Regev, A.3
Pe'er, D.4
Botstein, D.5
Koller, D.6
Friedman, N.7
-
74
-
-
84864000726
-
Experimental design for parameter estimation of gene regulatory networks
-
Steiert B., Raue A., Timmer J., Kreutz C. Experimental design for parameter estimation of gene regulatory networks. PLoS ONE 2012, 7:e40052.
-
(2012)
PLoS ONE
, vol.7
-
-
Steiert, B.1
Raue, A.2
Timmer, J.3
Kreutz, C.4
|