메뉴 건너뛰기




Volumn 246, Issue 2, 2013, Pages 326-334

Autoregressive models for gene regulatory network inference: Sparsity, stability and causality issues

Author keywords

Autoregressive models; Causality; Dynamic Bayesian networks; Gene regulatory network inference; Sparsity; Stability

Indexed keywords

AUTO REGRESSIVE MODELS; CAUSALITY; DYNAMIC BAYESIAN NETWORKS; GENE REGULATORY NETWORKS; SPARSITY;

EID: 84888045025     PISSN: 00255564     EISSN: 18793134     Source Type: Journal    
DOI: 10.1016/j.mbs.2013.10.003     Document Type: Article
Times cited : (94)

References (74)
  • 1
    • 72849106592 scopus 로고    scopus 로고
    • Rna processing and its regulation: global insights into biological networks
    • Licatalosi D., Darnell R.B. Rna processing and its regulation: global insights into biological networks. Nature Reviews Genetics 2010, 75.
    • (2010) Nature Reviews Genetics , pp. 75
    • Licatalosi, D.1    Darnell, R.B.2
  • 2
    • 0037435030 scopus 로고    scopus 로고
    • Mass spectrometry-based proteomics
    • Aebersold R., Mann M. Mass spectrometry-based proteomics. Nature 2003, 198.
    • (2003) Nature , pp. 198
    • Aebersold, R.1    Mann, M.2
  • 5
    • 58149268119 scopus 로고    scopus 로고
    • Modelling metabolic networks using power-laws and s-systems
    • Voit E. Modelling metabolic networks using power-laws and s-systems. Essays Biochemistry 2008, 29.
    • (2008) Essays Biochemistry , pp. 29
    • Voit, E.1
  • 6
    • 80053456365 scopus 로고    scopus 로고
    • Semi-supervised penalized output kernel regression for link prediction
    • Omnipress, L. Getoor, T. Scheffer (Eds.)
    • Brouard C., d'Alché Buc F., Szafranski M. Semi-supervised penalized output kernel regression for link prediction. ICML 2011, 593. Omnipress. L. Getoor, T. Scheffer (Eds.).
    • (2011) ICML , pp. 593
    • Brouard, C.1    d'Alché Buc, F.2    Szafranski, M.3
  • 8
    • 70549083891 scopus 로고    scopus 로고
    • Inference of gene regulatory networks using time-series data: a survey
    • Sima C., Hua J., Jung S. Inference of gene regulatory networks using time-series data: a survey. Current Genomics 2009, 416.
    • (2009) Current Genomics , pp. 416
    • Sima, C.1    Hua, J.2    Jung, S.3
  • 9
    • 65649102679 scopus 로고    scopus 로고
    • Recent developments in parameter estimation and structure identification of biochemical and genomic systems
    • Chou I.C., Voit E.O. Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Mathematical Biosciences 2009, 219:57.
    • (2009) Mathematical Biosciences , vol.219 , pp. 57
    • Chou, I.C.1    Voit, E.O.2
  • 11
    • 41549159731 scopus 로고    scopus 로고
    • Evolutionary approaches for the reverse-engineering of gene regulatory networks: a study on a biologically realistic dataset
    • Auliac C., Frouin V., Gidrol X., d'Alché Buc F. Evolutionary approaches for the reverse-engineering of gene regulatory networks: a study on a biologically realistic dataset. BMC Bioinformatics 2008, 9:91.
    • (2008) BMC Bioinformatics , vol.9 , pp. 91
    • Auliac, C.1    Frouin, V.2    Gidrol, X.3    d'Alché Buc, F.4
  • 12
    • 49549104230 scopus 로고    scopus 로고
    • Sirene: supervised inference of regulatory networks
    • Mordelet F., Vert J.-P. Sirene: supervised inference of regulatory networks. Bioinformatics 2008, 24:i76.
    • (2008) Bioinformatics , vol.24
    • Mordelet, F.1    Vert, J.-P.2
  • 13
    • 84888050603 scopus 로고    scopus 로고
    • Learning a markov logic network for supervised inference of a gene regulatory network: application to the id2 regulatory network in human keratinocytes, BMC Bioinformatics, to appear
    • C. Brouard, J. Dubois, C. Vrain, D. Castel, M.-A. Debily, F. d'Alché Buc, Learning a markov logic network for supervised inference of a gene regulatory network: application to the id2 regulatory network in human keratinocytes, BMC Bioinformatics, to appear, 2013.
    • (2013)
    • Brouard, C.1    Dubois, J.2    Vrain, C.3    Castel, D.4    Debily, M.-A.5    d'Alché Buc, F.6
  • 15
    • 22844441552 scopus 로고    scopus 로고
    • Reverse engineering gene regulatory networks
    • Hartemink A. Reverse engineering gene regulatory networks. Nature Biotechnology 2005, 23:554.
    • (2005) Nature Biotechnology , vol.23 , pp. 554
    • Hartemink, A.1
  • 16
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal M., Della Gatta G., di Bernardo D. Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 2006, 22:815.
    • (2006) Bioinformatics , vol.22 , pp. 815
    • Bansal, M.1    Della Gatta, G.2    di Bernardo, D.3
  • 17
    • 35748964479 scopus 로고    scopus 로고
    • Modeling gene expression regulatory networks with the sparse vector autoregressive model, BMC Systems Biology 1, Article 39.
    • A. Fujita, J. Sato, H. Garay-Malpartida, R. Yamaguchi, S. Miyano, M. Sogayar, C.E. Ferreira, Modeling gene expression regulatory networks with the sparse vector autoregressive model, BMC Systems Biology 1 (2007), Article 39.
    • (2007)
    • Fujita, A.1    Sato, J.2    Garay-Malpartida, H.3    Yamaguchi, R.4    Miyano, S.5    Sogayar, M.6    Ferreira, C.E.7
  • 18
    • 77953107844 scopus 로고    scopus 로고
    • Penalized likelihood methods for estimation of sparse high dimensional directed acyclic graphs
    • Shojaie A., Michailidis G. Penalized likelihood methods for estimation of sparse high dimensional directed acyclic graphs. Biometrika 2010, 97(3):519.
    • (2010) Biometrika , vol.97 , Issue.3 , pp. 519
    • Shojaie, A.1    Michailidis, G.2
  • 19
    • 84888048092 scopus 로고    scopus 로고
    • Network granger causality with inherent grouping structure, 1. ArXiv:1210.3711v3.
    • S. Basu, A. Shojaie, G. Michailidis, Network granger causality with inherent grouping structure, 2012, 1. ArXiv:1210.3711v3.
    • (2012)
    • Basu, S.1    Shojaie, A.2    Michailidis, G.3
  • 20
    • 84878285220 scopus 로고    scopus 로고
    • Okvar-boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks
    • Lim N., Senbabaoglu Y., Michailidis G., d'Alché Buc F. Okvar-boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks. Bioinformatics 2013, 29:1416.
    • (2013) Bioinformatics , vol.29 , pp. 1416
    • Lim, N.1    Senbabaoglu, Y.2    Michailidis, G.3    d'Alché Buc, F.4
  • 22
    • 77952663448 scopus 로고    scopus 로고
    • Timedelay-aracne: reverse engineering of gene networks from time-course data by an information theoretic approach
    • Zoppoli P., Morganella S., Ceccarelli M. Timedelay-aracne: reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics 2010, 11:154.
    • (2010) BMC Bioinformatics , vol.11 , pp. 154
    • Zoppoli, P.1    Morganella, S.2    Ceccarelli, M.3
  • 24
    • 77958570788 scopus 로고    scopus 로고
    • Inferring regulatory networks from expression data using tree-based methods
    • V.A. Huynh-Thu, A. Irrthum, L. Wehenkel, P. Geurts, Inferring regulatory networks from expression data using tree-based methods, PLos ONE 5 (2010) e12776.
    • (2010) PLos ONE , vol.5
    • Huynh-Thu, V.A.1    Irrthum, A.2    Wehenkel, L.3    Geurts, P.4
  • 25
    • 84869882656 scopus 로고    scopus 로고
    • Tigress: Trustful inference of gene regulation using stability selection
    • Article 145.
    • A.-C. Haury, F. Mordelet, P. Vera-Licona, J.-P. Vert, Tigress: Trustful inference of gene regulation using stability selection, BMC Systems Biology 6 (2012), Article 145.
    • (2012) BMC Systems Biology , vol.6
    • Haury, A.-C.1    Mordelet, F.2    Vera-Licona, P.3    Vert, J.-P.4
  • 28
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner T.S., di Bernardo D., Lorenz D., Collins J.J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301:102.
    • (2003) Science , vol.301 , pp. 102
    • Gardner, T.S.1    di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 30
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • Granger C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37:424.
    • (1969) Econometrica , vol.37 , pp. 424
    • Granger, C.W.J.1
  • 32
    • 84860513120 scopus 로고    scopus 로고
    • Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in escherichia coli
    • Batt G., Ropers D., Jong H.D., Geiselmann J., Mateescu R., Schneider D. Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in escherichia coli. Bioinformatics 2005, 21:19.
    • (2005) Bioinformatics , vol.21 , pp. 19
    • Batt, G.1    Ropers, D.2    Jong, H.D.3    Geiselmann, J.4    Mateescu, R.5    Schneider, D.6
  • 33
    • 0001622717 scopus 로고
    • Power-law approach to modeling biological systems; iii. methods of analysis
    • Voit E., Savageau M. Power-law approach to modeling biological systems; iii. methods of analysis. Journal of Fermentation Technology 1982, 60:233.
    • (1982) Journal of Fermentation Technology , vol.60 , pp. 233
    • Voit, E.1    Savageau, M.2
  • 36
    • 77956514067 scopus 로고    scopus 로고
    • Discovering graphical granger causality using a truncating lasso penalty
    • Shojaie A., Michailidis G. Discovering graphical granger causality using a truncating lasso penalty. Bioinformatics 2010, 26(18):i517.
    • (2010) Bioinformatics , vol.26 , Issue.18
    • Shojaie, A.1    Michailidis, G.2
  • 37
    • 66349115724 scopus 로고    scopus 로고
    • Grouped graphical granger modeling for gene expression regulatory networks discovery
    • Lozano A.C., Abe N., Liu Y., Rosset S. Grouped graphical granger modeling for gene expression regulatory networks discovery. Bioinformatics 2009, 25:i110.
    • (2009) Bioinformatics , vol.25
    • Lozano, A.C.1    Abe, N.2    Liu, Y.3    Rosset, S.4
  • 39
    • 33847348163 scopus 로고    scopus 로고
    • Causality and pathway search in microarray time series experiment
    • Mukhopadhyay N., Chatterjee S. Causality and pathway search in microarray time series experiment. Bioinformatics 2007, 23:442.
    • (2007) Bioinformatics , vol.23 , pp. 442
    • Mukhopadhyay, N.1    Chatterjee, S.2
  • 41
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabasi A.-L., Albert R. Emergence of scaling in random networks. Science 1999, 286:11.
    • (1999) Science , vol.286 , pp. 11
    • Barabasi, A.-L.1    Albert, R.2
  • 42
    • 66749164082 scopus 로고    scopus 로고
    • Recursive regularization for inferring gene networks from time-course gene expression profiles, BMC Systems Biology
    • T. Shimamura, S. Imoto, R. Yamaguchi, A. Fujita, M. Nagasaki, S. Miyano, Recursive regularization for inferring gene networks from time-course gene expression profiles, BMC Systems Biology, 2009.
    • (2009)
    • Shimamura, T.1    Imoto, S.2    Yamaguchi, R.3    Fujita, A.4    Nagasaki, M.5    Miyano, S.6
  • 43
    • 34249862287 scopus 로고    scopus 로고
    • Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process
    • Opgen-Rhein R., Strimmer K. Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinformatics 2007, 8:S3.
    • (2007) BMC Bioinformatics , vol.8
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 45
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • Kim S., Imoto S., Miyano S. Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 2004, 75:57.
    • (2004) Biosystems , vol.75 , pp. 57
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 46
    • 80052699490 scopus 로고    scopus 로고
    • Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully bayesian spline autoregression
    • Morrissey E.R., Jurez M.A., Denby K.J., Burroughs N.J. Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully bayesian spline autoregression. Biostatistics 2011, 12:682.
    • (2011) Biostatistics , vol.12 , pp. 682
    • Morrissey, E.R.1    Jurez, M.A.2    Denby, K.J.3    Burroughs, N.J.4
  • 47
    • 84888022174 scopus 로고    scopus 로고
    • Gene regulatory network inference using ensemble of multiple local kernel models, Programme of Seventh International Workshop on Machine Learning in Systems Biology, satellite meeting of ISMB'2013, Uwe Owler and Jean-Philippe Vert, July 19-20
    • A. Fouchet, J.-M. Delosme, F. d'Alché Buc, Gene regulatory network inference using ensemble of multiple local kernel models, Programme of Seventh International Workshop on Machine Learning in Systems Biology, satellite meeting of ISMB'2013, Uwe Owler and Jean-Philippe Vert, July 19-20, 2013.
    • (2013)
    • Fouchet, A.1    Delosme, J.-M.2    d'Alché Buc, F.3
  • 48
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Gonen M., Alpaydyn E. Multiple kernel learning algorithms. JMLR 2011, 12:2211.
    • (2011) JMLR , vol.12 , pp. 2211
    • Gonen, M.1    Alpaydyn, E.2
  • 51
    • 84865661703 scopus 로고    scopus 로고
    • Gene regulatory network modeling via global optimization of high-order dynamic bayesian network
    • Xuan N., Chetty M., Coppel R., Wangikar P. Gene regulatory network modeling via global optimization of high-order dynamic bayesian network. BMC Bioinformatics 2012, 13:131.
    • (2012) BMC Bioinformatics , vol.13 , pp. 131
    • Xuan, N.1    Chetty, M.2    Coppel, R.3    Wangikar, P.4
  • 54
    • 84888072728 scopus 로고    scopus 로고
    • Dynamic Bayesian networks for interventional data, Technical Report, Warwick University, UK
    • S. Spencer, S. Hill, S. Mukherjee, Dynamic Bayesian networks for interventional data, Technical Report, Warwick University, UK, 2012.
    • (2012)
    • Spencer, S.1    Hill, S.2    Mukherjee, S.3
  • 55
    • 84871878774 scopus 로고    scopus 로고
    • Stability of building gene regulatory networks with sparse autoregressive models
    • Rajapakse J.C., Mundra P.A. Stability of building gene regulatory networks with sparse autoregressive models. BMC Bioinformatics 2011, 12:S17.
    • (2011) BMC Bioinformatics , vol.12
    • Rajapakse, J.C.1    Mundra, P.A.2
  • 56
    • 84859125037 scopus 로고    scopus 로고
    • Bagging statistical network inference from large-scale gene expression data
    • de Matos Simoes R., Emmert-Streib F. Bagging statistical network inference from large-scale gene expression data. PLoS One 2012, 7:e33624.
    • (2012) PLoS One , vol.7
    • de Matos Simoes, R.1    Emmert-Streib, F.2
  • 58
    • 27944493925 scopus 로고    scopus 로고
    • Scale-free networks in cell biology
    • Albert R. Scale-free networks in cell biology. Journal of Cell Science 2005, 118:4947.
    • (2005) Journal of Cell Science , vol.118 , pp. 4947
    • Albert, R.1
  • 60
    • 46049087782 scopus 로고    scopus 로고
    • The transfac project as an example of framework technology that supports the analysis of genomic regulation
    • Wingender E. The transfac project as an example of framework technology that supports the analysis of genomic regulation. Briefings in Bioinformatics 2008, 9:326.
    • (2008) Briefings in Bioinformatics , vol.9 , pp. 326
    • Wingender, E.1
  • 61
    • 84871681271 scopus 로고    scopus 로고
    • Inference of dynamical gene-regulatory networks based on time-resolved multi-stimuli multi-experiment data applying netgenerator v2.0
    • Weber M., Henkel S., Vlaic S., Guthke R., van Zoelen E., Driesch D. Inference of dynamical gene-regulatory networks based on time-resolved multi-stimuli multi-experiment data applying netgenerator v2.0. BMC Systems Biology 2013, 7:1.
    • (2013) BMC Systems Biology , vol.7 , pp. 1
    • Weber, M.1    Henkel, S.2    Vlaic, S.3    Guthke, R.4    van Zoelen, E.5    Driesch, D.6
  • 62
    • 80455162593 scopus 로고    scopus 로고
    • Integration of epigenetic data in bayesian network modeling of gene regulatory network
    • Springer, M. Loog, L.F.A. Wessels, M.J.T. Reinders, D. de Ridder (Eds.) PRIB
    • Zheng J., Chaturvedi I., Rajapakse J.C. Integration of epigenetic data in bayesian network modeling of gene regulatory network. Lecture Notes in Computer Science 2011, 7036:87. Springer. M. Loog, L.F.A. Wessels, M.J.T. Reinders, D. de Ridder (Eds.).
    • (2011) Lecture Notes in Computer Science , vol.7036 , pp. 87
    • Zheng, J.1    Chaturvedi, I.2    Rajapakse, J.C.3
  • 63
    • 78149429509 scopus 로고    scopus 로고
    • From knockouts to networks: establishing direct cause-effect relationships through graph analysis
    • Pinna A., Soranzo N., de la Fuente A. From knockouts to networks: establishing direct cause-effect relationships through graph analysis. PLoS ONE 2010, 5:e12912.
    • (2010) PLoS ONE , vol.5
    • Pinna, A.1    Soranzo, N.2    de la Fuente, A.3
  • 64
    • 84876207916 scopus 로고    scopus 로고
    • Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks
    • Greenfield A., Hafemeister C., Bonneau R. Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks. Bioinformatics 2013, 29:1060.
    • (2013) Bioinformatics , vol.29 , pp. 1060
    • Greenfield, A.1    Hafemeister, C.2    Bonneau, R.3
  • 66
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge
    • Article 15.
    • A. Werhli, D. Husmeier, Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge, Statistical Applications in Genetics and Molecular Biology 6 (2007), Article 15.
    • (2007) Statistical Applications in Genetics and Molecular Biology , vol.6
    • Werhli, A.1    Husmeier, D.2
  • 67
    • 84860508659 scopus 로고    scopus 로고
    • Hub-centered gene network reconstruction using automatic relevance determination
    • Bock M., Ogishima S., Tanaka H., Kramer S., Kaderali L. Hub-centered gene network reconstruction using automatic relevance determination. PLoS ONE 2012, 7:e35077.
    • (2012) PLoS ONE , vol.7
    • Bock, M.1    Ogishima, S.2    Tanaka, H.3    Kramer, S.4    Kaderali, L.5
  • 73
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E., Shapira M., Regev A., Pe'er D., Botstein D., Koller D., Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 2003, 34(2):166.
    • (2003) Nature Genetics , vol.34 , Issue.2 , pp. 166
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 74
    • 84864000726 scopus 로고    scopus 로고
    • Experimental design for parameter estimation of gene regulatory networks
    • Steiert B., Raue A., Timmer J., Kreutz C. Experimental design for parameter estimation of gene regulatory networks. PLoS ONE 2012, 7:e40052.
    • (2012) PLoS ONE , vol.7
    • Steiert, B.1    Raue, A.2    Timmer, J.3    Kreutz, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.