메뉴 건너뛰기




Volumn 11, Issue 4, 2016, Pages

Modeling dynamic systems with efficient ensembles of process-based models

Author keywords

[No Author keywords available]

Indexed keywords

EXPERIMENTAL MODEL; LAKE ECOSYSTEM; LEARNING ALGORITHM; MODEL; POPULATION DYNAMICS; PREDICTION; SAMPLING; TIME SERIES ANALYSIS; ALGORITHM; ANALYSIS; ANIMAL; BIOLOGICAL MODEL; COMPUTER SIMULATION; ECOSYSTEM; LAKE; MACHINE LEARNING; PREDATION;

EID: 84964318219     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0153507     Document Type: Article
Times cited : (23)

References (54)
  • 1
    • 84455178990 scopus 로고    scopus 로고
    • Parameter estimation in a nonlinear dynamic model of an aquatic ecosystem with meta-heuristic optimization
    • Taškova K, Šilc J, Atanasova N, Džeroski S. Parameter estimation in a nonlinear dynamic model of an aquatic ecosystem with meta-heuristic optimization. Ecological Modelling. 2012;226:36-61. doi:10. 1016/j.ecolmodel.2011.11.029
    • (2012) Ecological Modelling , vol.226 , pp. 36-61
    • Taškova, K.1    Šilc, J.2    Atanasova, N.3    Džeroski, S.4
  • 2
    • 84866040933 scopus 로고    scopus 로고
    • The influence of parameter fitting methods on model structure selection in automated modeling of aquatic ecosystems
    • Čerepnalkoski D, Taškova K, Todorovski L, Atanasova N, Džeroski S. The influence of parameter fitting methods on model structure selection in automated modeling of aquatic ecosystems. Ecological Modelling. 2012;245(0):136-165. doi:10.1016/j.ecolmodel.2012.06.001
    • (2012) Ecological Modelling , vol.245 , pp. 136-165
    • Čerepnalkoski, D.1    Taškova, K.2    Todorovski, L.3    Atanasova, N.4    Džeroski, S.5
  • 3
    • 34247537497 scopus 로고    scopus 로고
    • A method for representing and developing process models
    • Borrett SR, Bridewell W, Langley P, Arrigo KR. A method for representing and developing process models. Ecological Complexity. 2007;4(1-2):1-12. doi:10.1016/j.ecocom.2007.02.017
    • (2007) Ecological Complexity , vol.4 , Issue.1-2 , pp. 1-12
    • Borrett, S.R.1    Bridewell, W.2    Langley, P.3    Arrigo, K.R.4
  • 4
    • 33644681737 scopus 로고    scopus 로고
    • Automated modelling of a food web in Lake Bled using measured data and a library of domain knowledge
    • Atanasova N, Todorovski L, Džeroski S, Remec R, Recknagel F, Kompare B. Automated modelling of a food web in Lake Bled using measured data and a library of domain knowledge. Ecological Modelling. 2006;194(1-3):37-48. doi:10.1016/j.ecolmodel.2005.10.029
    • (2006) Ecological Modelling , vol.194 , Issue.1-3 , pp. 37-48
    • Atanasova, N.1    Todorovski, L.2    Džeroski, S.3    Remec, R.4    Recknagel, F.5    Kompare, B.6
  • 7
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Feb
    • Rokach L. Ensemble-based classifiers. Artificial Intelligence Review. 2010 Feb; 33(1-2):1-39. doi:10. 1007/s10462-009-9124-7
    • (2010) Artificial Intelligence Review , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 8
    • 84929169606 scopus 로고    scopus 로고
    • Learning ensembles of population dynamics models and their application to modelling aquatic ecosystems
    • Simidjievski N, Todorovski L, Džeroski S. Learning ensembles of population dynamics models and their application to modelling aquatic ecosystems. Ecological Modelling. 2015;306:305-317. doi:10. 1016/j.ecolmodel.2014.08.019
    • (2015) Ecological Modelling , vol.306 , pp. 305-317
    • Simidjievski, N.1    Todorovski, L.2    Džeroski, S.3
  • 9
    • 84940461850 scopus 로고    scopus 로고
    • Predicting long-term population dynamics with bagging and boosting of process-based models
    • Simidjievski N, Todorovski L, Džeroski S. Predicting long-term population dynamics with bagging and boosting of process-based models. Expert Systems with Applications. 2015;42(22):8484-8496. doi:10.1016/j.eswa.2015.07.004
    • (2015) Expert Systems with Applications , vol.42 , Issue.22 , pp. 8484-8496
    • Simidjievski, N.1    Todorovski, L.2    Džeroski, S.3
  • 10
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Aug
    • Ho TK. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998 Aug; 20(8):832-844. doi:10.1109/34.709601
    • (1998) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 15
    • 38149023419 scopus 로고    scopus 로고
    • Integrating domain knowledge in equation discovery
    • Džeroski S, Todorovski L, editors, Springer
    • Todorovski L, Džeroski S. Integrating Domain Knowledge in Equation Discovery. In: Džeroski S, Todorovski L, editors. Computational Discovery of Scientific Knowledge. vol. 4660. Springer; 2007. p. 69-97.
    • (2007) Computational Discovery of Scientific Knowledge , vol.4660 , pp. 69-97
    • Todorovski, L.1    Džeroski, S.2
  • 16
    • 84880692988 scopus 로고    scopus 로고
    • Habitat modeling with single- and multi-target trees and ensembles
    • Kocev D, Džeroski S. Habitat modeling with single- and multi-target trees and ensembles. Ecological Informatics. 2013;18:79-92. doi:10.1016/j.ecoinf.2013.06.003
    • (2013) Ecological Informatics , vol.18 , pp. 79-92
    • Kocev, D.1    Džeroski, S.2
  • 17
    • 0032069371 scopus 로고    scopus 로고
    • Top-down induction of first-order logical decision trees
    • Blockeel H, Raedt LD. Top-down induction of first-order logical decision trees. Artificial Intelligence. 1998;101(1-2):285-297. doi:10.1016/S0004-3702 (98) 00034-4
    • (1998) Artificial Intelligence , vol.101 , Issue.1-2 , pp. 285-297
    • Blockeel, H.1    Raedt, L.D.2
  • 18
    • 72049107449 scopus 로고    scopus 로고
    • New approaches to modelling fish-habitat relationships
    • Feb
    • Knudby A, Brenning A, Le Drew E. New approaches to modelling fish-habitat relationships. Ecological Modelling. 2010 Feb; 221(3):503-511. doi:10.1016/j.ecolmodel.2009.11.008
    • (2010) Ecological Modelling , vol.221 , Issue.3 , pp. 503-511
    • Knudby, A.1    Brenning, A.2    Le Drew, E.3
  • 20
    • 79960890945 scopus 로고    scopus 로고
    • Jmetal: A Java framework for multi-objective optimization
    • Durillo JJ, Nebro AJ. jMetal: A Java framework for multi-objective optimization. Advances in Engineering Software. 2011;42:760-771. doi:10.1016/j.advengsoft.2011.05.014
    • (2011) Advances in Engineering Software , vol.42 , pp. 760-771
    • Durillo, J.J.1    Nebro, A.J.2
  • 21
    • 0030105583 scopus 로고    scopus 로고
    • CVODE, a stiff/nonstiff ODE solver in C
    • Mar
    • Cohen SD, Hindmarsh AC. CVODE, a stiff/nonstiff ODE solver in C. Computers in Physics. 1996 Mar; 10(2):138-143. doi:10.1063/1.4822377
    • (1996) Computers in Physics , vol.10 , Issue.2 , pp. 138-143
    • Cohen, S.D.1    Hindmarsh, A.C.2
  • 24
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert DH. Stacked Generalization. Neural Networks. 1992;5:241-259. doi:10.1016/S0893-6080 (05) 80023-1
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 25
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning. 1996a; 24(2):123-140. doi:10.1023/A:1018054314350
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 26
    • 84979692409 scopus 로고    scopus 로고
    • The boosting approach to machine learning: An overview
    • Denison DD, Hansen MH, Holmes CC, Mallick B, Yu B, editors, LNCS. Springer
    • Schapire RE. The boosting approach to machine learning: An overview. In: Denison DD, Hansen MH, Holmes CC, Mallick B, Yu B, editors. Nonlinear Estimation and Classification. LNCS. Springer; 2003. p. 149-173.
    • (2003) Nonlinear Estimation and Classification , pp. 149-173
    • Schapire, R.E.1
  • 29
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E, Kohavi R. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning. 1999;36(1-2):105-139. doi:10.1023/A:1007515423169
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 31
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y, Schapire RE. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences. 1997;55(1):119-139. doi:10.1006/jcss.1997. 1504
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 32
    • 84867095498 scopus 로고    scopus 로고
    • Complexity of classification problems and comparative advantages of combined classifiers
    • of, Springer
    • Ho T. Complexity of Classification Problems and Comparative Advantages of Combined Classifiers. In: 1st International Workshop on Multiple Classifier Systems. vol. 1857 of LNCS. Springer; 2000. p. 97-106.
    • (2000) 1st International Workshop on Multiple Classifier Systems , vol.1857 LNCS , pp. 97-106
    • Ho, T.1
  • 33
    • 84871021349 scopus 로고    scopus 로고
    • Effects of changes in the driving forces on water quality and plankton dynamics in three Swiss lakes-long-term simulations with BELAMO
    • Dietzel A, Mieleitner J, Kardaetz S, Reichert P. Effects of changes in the driving forces on water quality and plankton dynamics in three Swiss lakes-long-term simulations with BELAMO. Freshwater Biology. 2013;58(1):10-35. doi:10.1111/fwb.12031
    • (2013) Freshwater Biology , vol.58 , Issue.1 , pp. 10-35
    • Dietzel, A.1    Mieleitner, J.2    Kardaetz, S.3    Reichert, P.4
  • 34
    • 79551512215 scopus 로고    scopus 로고
    • Computational assemblage of ordinary differential equations for chlorophyll-a using a lake process equation library and measured data of lake kasumigaura
    • Recknagel F, editor, Springer
    • Atanasova N, Recknagel F, Todorovski L, Džeroski S, Kompare B. Computational Assemblage of Ordinary Differential Equations for Chlorophyll-a Using a Lake Process Equation Library and Measured Data of Lake Kasumigaura. In: Recknagel F, editor. Ecological Informatics. Springer; 2006. p. 409-427.
    • (2006) Ecological Informatics , pp. 409-427
    • Atanasova, N.1    Recknagel, F.2    Todorovski, L.3    Džeroski, S.4    Kompare, B.5
  • 35
    • 33644698096 scopus 로고    scopus 로고
    • Constructing a library of domain knowledge for automated modelling of aquatic ecosystems
    • Atanasova N, Todorovski L, Džeroski S, Kompare B. Constructing a library of domain knowledge for automated modelling of aquatic ecosystems. Ecological Modelling. 2006;194(1-3):14-36. doi:10. 1016/j.ecolmodel.2005.10.002
    • (2006) Ecological Modelling , vol.194 , Issue.1-3 , pp. 14-36
    • Atanasova, N.1    Todorovski, L.2    Džeroski, S.3    Kompare, B.4
  • 36
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces
    • Storn R, Price K. Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization. 1997;11(4):341-359. doi:10.1023/A:1008202821328
    • (1997) Journal of Global Optimization , vol.11 , Issue.4 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 37
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research. 2006;7:1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 38
    • 0001750957 scopus 로고
    • Approximations of the critical region of the Friedman statistic
    • Iman RL, Davenport JM. Approximations of the critical region of the Friedman statistic. Communications in Statistics-Theory and Methods. 1980;9(6):571-595. doi:10.1080/03610928008827904
    • (1980) Communications in Statistics-theory and Methods , vol.9 , Issue.6 , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 39
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman M. A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics. 1940;11(1):86-92. doi:10.1214/aoms/1177731944
    • (1940) The Annals of Mathematical Statistics , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 41
    • 84943987463 scopus 로고
    • Multiple comparisons among means
    • Dunn OJ. Multiple Comparisons Among Means. Journal of the American Statistical Association. 1961;56(293):pp. 52-64. doi:10.1080/01621459.1961.10482090
    • (1961) Journal of the American Statistical Association , vol.56 , Issue.293 , pp. 52-64
    • Dunn, O.J.1
  • 43
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva LI, Whitaker C. Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Machine Learning. 2003;51(2):181-207. doi:10.1023/A: 1022859003006
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.2
  • 44
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • Brown G, Wyatt J, Harris R, Yao X. Diversity creation methods: A survey and categorisation. Journal of Information Fusion. 2005;6(1):5-20. doi:10.1016/j.inffus.2004.04.004
    • (2005) Journal of Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 45
    • 0035669859 scopus 로고    scopus 로고
    • Predicting chlorophyll-a in freshwater lakes by hybridizing process-based models and genetic algorithms
    • Whigham PA, Recknagel F. Predicting chlorophyll-a in freshwater lakes by hybridizing process-based models and genetic algorithms. Ecological Modelling. 2001;146(1-3):243-251. doi:10.1016/S0304-3800 (01) 00310-6
    • (2001) Ecological Modelling , vol.146 , Issue.1-3 , pp. 243-251
    • Whigham, P.A.1    Recknagel, F.2
  • 46
    • 44449128824 scopus 로고    scopus 로고
    • Process-based simulation library SALMO-OO for lake ecosystems. Part 2: Multi-objective parameter optimization by evolutionary algorithms
    • Cao H, Recknagel F, Cetin L, Zhang B. Process-based simulation library SALMO-OO for lake ecosystems. Part 2: Multi-objective parameter optimization by evolutionary algorithms. Ecological Informatics. 2008;3(2):181-190. doi:10.1016/j.ecoinf.2008.02.001
    • (2008) Ecological Informatics , vol.3 , Issue.2 , pp. 181-190
    • Cao, H.1    Recknagel, F.2    Cetin, L.3    Zhang, B.4
  • 47
    • 84962339458 scopus 로고    scopus 로고
    • Learning stochastic process-based models of dynamical systems from knowledge and data
    • 27005698
    • Tanevski J, Todorovski L, Džeroski S. Learning stochastic process-based models of dynamical systems from knowledge and data. BMC Systems Biology. 2016;10(1):30. doi:10.1186/s12918-016-0273-4 PMID: 27005698
    • (2016) BMC Systems Biology , vol.10 , Issue.1 , pp. 30
    • Tanevski, J.1    Todorovski, L.2    Džeroski, S.3
  • 48
    • 0347567448 scopus 로고    scopus 로고
    • Using equation discovery to revise an Earth ecosystem model of the carbon net production
    • Todorovski L, D'Ałeroski S, Langley P, Potter C. Using equation discovery to revise an Earth ecosystem model of the carbon net production. Ecological Modelling. 2003;170(2-3):141-154. doi:10.1016/S0304-3800 (03) 00222-9
    • (2003) Ecological Modelling , vol.170 , Issue.2-3 , pp. 141-154
    • Todorovski, L.1    D'Ałeroski, S.2    Langley, P.3    Potter, C.4
  • 49
    • 80053629073 scopus 로고    scopus 로고
    • Parameter estimation with bio-inspired metaheuristic optimization: Modeling the dynamics of endocytosis
    • Taškova K, Korošec P, Šilc J, Todorovski L, Džeroski S. Parameter estimation with bio-inspired metaheuristic optimization: modeling the dynamics of endocytosis. BMC Systems Biology. 2011;5(1):1-26.
    • (2011) BMC Systems Biology , vol.5 , Issue.1 , pp. 1-26
    • Taškova, K.1    Korošec, P.2    Šilc, J.3    Todorovski, L.4    Džeroski, S.5
  • 50
    • 84932107715 scopus 로고    scopus 로고
    • Domain-specific model selection for structural identification of the Rab5-Rab7 dynamics in endocytosis
    • Tanevski J, Todorovski L, Kalaidzidis Y, Džeroski S. Domain-specific model selection for structural identification of the Rab5-Rab7 dynamics in endocytosis. BMC Systems Biology. 2015;9(1):1-17. doi:10.1186/s12918-015-0175-x
    • (2015) BMC Systems Biology , vol.9 , Issue.1 , pp. 1-17
    • Tanevski, J.1    Todorovski, L.2    Kalaidzidis, Y.3    Džeroski, S.4
  • 51
    • 84962263478 scopus 로고    scopus 로고
    • Ienhancer-2L: A two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition
    • 26476782
    • Liu B, Fang L, Long R, Lan X, Chou KC. iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics. 2016;32(3):362-369. doi:10.1093/bioinformatics/btv604 PMID: 26476782
    • (2016) Bioinformatics , vol.32 , Issue.3 , pp. 362-369
    • Liu, B.1    Fang, L.2    Long, R.3    Lan, X.4    Chou, K.C.5
  • 52
    • 84954423740 scopus 로고    scopus 로고
    • Imirna-SSF: Improving the identification of MicroRNA precursors by combining negative sets with different distributions
    • 26753561
    • Chen J, Wang X, Liu B. iMiRNA-SSF: Improving the Identification of MicroRNA Precursors by Combining Negative Sets with Different Distributions. Scientific Reports. 2016;6:19062. doi:10.1038/srep19062 PMID: 26753561
    • (2016) Scientific Reports , vol.6 , pp. 19062
    • Chen, J.1    Wang, X.2    Liu, B.3
  • 53
    • 84864197093 scopus 로고    scopus 로고
    • Teamwork: Improved eQTL mapping using combinations of machine learning methods
    • Ackermann M, Clément-Ziza M, Michaelson JJ, Beyer A. Teamwork: Improved eQTL Mapping Using Combinations of Machine Learning Methods. PLoSONE. 2012;7(7):1-8. doi:10.1371/journal.pone. 0040916
    • (2012) PLoSONE , vol.7 , Issue.7 , pp. 1-8
    • Ackermann, M.1    Clément-Ziza, M.2    Michaelson, J.J.3    Beyer, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.