메뉴 건너뛰기




Volumn 1, Issue 4, 2005, Pages 399-413

Temporal gene expression classification with regularised neural network

Author keywords

generalisation performance; heterogeneous temporal patterns; neural network; regularisation

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; CLUSTER ANALYSIS; GENE EXPRESSION; GENE EXPRESSION PROFILING; SUPPORT VECTOR MACHINE;

EID: 38049053725     PISSN: 17445485     EISSN: 17445493     Source Type: Journal    
DOI: 10.1504/IJBRA.2005.008443     Document Type: Article
Times cited : (17)

References (41)
  • 1
    • 0003535936 scopus 로고
    • John Wiley & Sons INC, Hoboken, New Jersey
    • Agresti, A. (1990) Categorical Data Analysis, John Wiley & Sons INC, Hoboken, New Jersey.
    • (1990) Categorical Data Analysis
    • Agresti, A.1
  • 2
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter, O., Brown, P.O. and Botstein, D. (2000) ‘Singular value decomposition for genome-wide expression data processing and modeling’, Proceeding of National Academy of Science, Vol. 97, No. 18, pp.10101–10106.
    • (2000) Proceeding of National Academy of Science , vol.97 , Issue.18 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 3
    • 0003253640 scopus 로고    scopus 로고
    • Unsupervised neural network for discovery of gene expression patterns in B-cell lymphoma
    • Azuaje, F. (2001) ‘Unsupervised neural network for discovery of gene expression patterns in B-cell lymphoma’, Online Journal of Bioinformatics, Vol. 1, pp.26–41.
    • (2001) Online Journal of Bioinformatics , vol.1 , pp. 26-41
    • Azuaje, F.1
  • 4
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
    • Baldi, P. and Long, A.D. (2001) ‘A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes’, Bioinformatics, Vol. 17, No. 6, pp.509–519.
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 5
    • 84880842521 scopus 로고    scopus 로고
    • Analysis of an associative memory neural network for pattern identification in gene expression data
    • in conjunction with 7th ACM SIGKDD, August, San Francisco, CA, USA
    • Bicciato, S., Pandin, M., Didone, G. and Bello, C. (2001) ‘Analysis of an associative memory neural network for pattern identification in gene expression data’, BIOKDD01, Workshop on Data mining in Bioinformatics, in conjunction with 7th ACM SIGKDD, August, San Francisco, CA, USA.
    • (2001) BIOKDD01, Workshop on Data mining in Bioinformatics
    • Bicciato, S.1    Pandin, M.2    Didone, G.3    Bello, C.4
  • 8
    • 0032561246 scopus 로고    scopus 로고
    • The transcriptional program of sporulation in budding yeast
    • Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D. and Brown, P.O. (1998) ‘The transcriptional program of sporulation in budding yeast’, Science, Vol. 282, pp.699–705.
    • (1998) Science , vol.282 , pp. 699-705
    • Chu, S.1    DeRisi, J.2    Eisen, M.3    Mulholland, J.4    Botstein, D.5    Brown, P.O.6
  • 9
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., Fridlyand, J. and Speed, T. (2002) ‘Comparison of discrimination methods for the classification of tumors using gene expression data’, Journal of American Statistical Association, Vol. 97, No. 457, pp.77–87.
    • (2002) Journal of American Statistical Association , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 11
    • 0346102889 scopus 로고    scopus 로고
    • Penalized discriminant methods for the classification of tumors from microarray experiments
    • Ghosh, D. (2003) ‘Penalized discriminant methods for the classification of tumors from microarray experiments’, Biometrics, Vol. 59, pp.992–1000.
    • (2003) Biometrics , vol.59 , pp. 992-1000
    • Ghosh, D.1
  • 12
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi, F., Jones, M. and Poggio, T. (1995) ‘Regularization theory and neural networks architectures’, Neural Computation, Vol. 7, pp.219–269.
    • (1995) Neural Computation , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 15
    • 0034568109 scopus 로고    scopus 로고
    • Gene shaving’ as a method for identifying distinct sets of genes with similar expression patterns
    • Research
    • Hastiel, T., Tibshirani, R., Eisen, M.B., Alizadeh, A., Levy, R., Staudt, L., Chan, W.C., Botstein, D. and Brown, P.O. (2000) ‘Gene shaving’ as a method for identifying distinct sets of genes with similar expression patterns’, Genome Biology, Research, Vol. 1, No. 2, pp.0003.1–0003.21
    • (2000) Genome Biology , vol.1 , Issue.2 , pp. 0003.1-0003.21
    • Hastiel, T.1    Tibshirani, R.2    Eisen, M.B.3    Alizadeh, A.4    Levy, R.5    Staudt, L.6    Chan, W.C.7    Botstein, D.8    Brown, P.O.9
  • 16
    • 0004063090 scopus 로고    scopus 로고
    • 2nd ed. Prentice-Hall Inc., Upper Saddle River, New Jersey
    • Haykin, S. (1999) Neural Networks, 2nd ed., Prentice-Hall Inc., Upper Saddle River, New Jersey.
    • (1999) Neural Networks
    • Haykin, S.1
  • 17
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • Herrero, J., Valencia A. and Dopazo, J.A. (2001) ‘A hierarchical unsupervised growing neural network for clustering gene expression patterns’, Bioinformatics, Vol. 17, pp.126–136.
    • (2001) Bioinformatics , vol.17 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.A.3
  • 20
    • 2342442343 scopus 로고    scopus 로고
    • Modeling the relationship between LVAD support time and gene expression changes in the human heart by penalized partial least squares
    • Huang, X., Pan, W., Park, S., Han, X., Miller, L.W. and Hall, J. (2004) ‘Modeling the relationship between LVAD support time and gene expression changes in the human heart by penalized partial least squares’, Bioinformatics, Vol. 20, pp.888–894.
    • (2004) Bioinformatics , vol.20 , pp. 888-894
    • Huang, X.1    Pan, W.2    Park, S.3    Han, X.4    Miller, L.W.5    Hall, J.6
  • 22
    • 0034653294 scopus 로고    scopus 로고
    • Analysis of the yeast transcriptome with structural and functional categories: characterizing highly expressed proteins
    • Jansen, R. and Gerstein, M. (2000) ‘Analysis of the yeast transcriptome with structural and functional categories: characterizing highly expressed proteins’, Nucleic Acids Research, Vol. 28, No. 6, pp.1481–1488.
    • (2000) Nucleic Acids Research , vol.28 , Issue.6 , pp. 1481-1488
    • Jansen, R.1    Gerstein, M.2
  • 23
    • 0035979259 scopus 로고    scopus 로고
    • Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments
    • Kerr, M. and Churchill, G. (2001) ‘Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments’, Proceeding of National Academy of Science, Vol. 97, pp.8961–8965.
    • (2001) Proceeding of National Academy of Science , vol.97 , pp. 8961-8965
    • Kerr, M.1    Churchill, G.2
  • 25
    • 18744398140 scopus 로고    scopus 로고
    • Hierarchical Bayesian neural network for gene expression temporal patterns
    • Article. 20
    • Liang, Y. and Kelemen, A. (2004) ‘Hierarchical Bayesian neural network for gene expression temporal patterns’, Statistical Applications in Genetics and Molecular Biology, Vol. 3, No. 1, Article. 20, http://www.bepress.com/sagmb/vol3/iss1/art20.
    • (2004) Statistical Applications in Genetics and Molecular Biology , vol.3 , Issue.1
    • Liang, Y.1    Kelemen, A.2
  • 26
    • 0036852181 scopus 로고    scopus 로고
    • Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons
    • Mateos, A., Dopazo, J., Jansen, R., Tu, Y., Gerstein, M. and Stolovitzky, G. (2002) ‘Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons’, Genome Res., Vol. 12, November, pp.1703–1715.
    • (2002) Genome Res. , vol.12 , Issue.November , pp. 1703-1715
    • Mateos, A.1    Dopazo, J.2    Jansen, R.3    Tu, Y.4    Gerstein, M.5    Stolovitzky, G.6
  • 27
    • 0036856374 scopus 로고    scopus 로고
    • Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data
    • McShane, L.M., Radmacher, M.D., Friedlin, B., Yu, R., Li, M.C. and Simon, R. (2002) ‘Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data’, Bioinformatics, Vol. 18, pp.1462–1469.
    • (2002) Bioinformatics , vol.18 , pp. 1462-1469
    • McShane, L.M.1    Radmacher, M.D.2    Friedlin, B.3    Yu, R.4    Li, M.C.5    Simon, R.6
  • 28
    • 0001854616 scopus 로고    scopus 로고
    • Assessing relevance determination methods using DELVE
    • Bishop, C.M. (Ed.): Springer-Verlag, New York
    • Neal, R.M. (1998) ‘Assessing relevance determination methods using DELVE’, in Bishop, C.M. (Ed.): Neural Networks and Machine Learning, Springer-Verlag, New York, pp.97–129.
    • (1998) Neural Networks and Machine Learning , pp. 97-129
    • Neal, R.M.1
  • 31
    • 0035999977 scopus 로고    scopus 로고
    • A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments
    • Pan, W. (2002) ‘A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments’, Bioinformatics, Vol. 18, No. 4, pp.546–549.
    • (2002) Bioinformatics , vol.18 , Issue.4 , pp. 546-549
    • Pan, W.1
  • 32
    • 0037447386 scopus 로고    scopus 로고
    • Pattern recognition in gene expression profiling using DNA array: a comparative study of different statistical methods applied to cancer classification
    • Romualdi, C., Campanaro, S., Campagna, D., Celegato, B., Cannata, N., Toppo, S., Valle, G. and Lanfranchi, G. (2003) ‘Pattern recognition in gene expression profiling using DNA array: a comparative study of different statistical methods applied to cancer classification’, Human Molecular Genetics, Vol. 12, No. 8, pp.823–836.
    • (2003) Human Molecular Genetics , vol.12 , Issue.8 , pp. 823-836
    • Romualdi, C.1    Campanaro, S.2    Campagna, D.3    Celegato, B.4    Cannata, N.5    Toppo, S.6    Valle, G.7    Lanfranchi, G.8
  • 33
    • 0037245343 scopus 로고    scopus 로고
    • Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification
    • Simon, R., Radmacher, M.D., Dobbin, K. and McShane, L.M. (2003) ‘Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification’, Journal of National Cancer Institute, Vol. 95, No. 1, pp.14–18.
    • (2003) Journal of National Cancer Institute , vol.95 , Issue.1 , pp. 14-18
    • Simon, R.1    Radmacher, M.D.2    Dobbin, K.3    McShane, L.M.4
  • 34
    • 0036899286 scopus 로고    scopus 로고
    • From patterns to pathways: gene expression data analysis comes of age
    • Slonim, D.K. (2002) ‘From patterns to pathways: gene expression data analysis comes of age’, Nature Genetics Supplement, Vol. 32, pp.502–508.
    • (2002) Nature Genetics Supplement , vol.32 , pp. 502-508
    • Slonim, D.K.1
  • 35
    • 14644409581 scopus 로고    scopus 로고
    • Time series analysis of yeast S. cerevisiae cell cycle expression data
    • Bronberg-Bauer, E., de Beucklaer, A., Kummer, U. and Rost, U. (Eds.): Heidelberg Germany
    • Socci, N.D. and Mitra, P. (1999) ‘Time series analysis of yeast S. cerevisiae cell cycle expression data’, in Bronberg-Bauer, E., de Beucklaer, A., Kummer, U. and Rost, U. (Eds.): Proceedings of Workshop on Computation of Biochemical Pathways and Genetic Networks, Heidelberg Germany.
    • (1999) Proceedings of Workshop on Computation of Biochemical Pathways and Genetic Networks
    • Socci, N.D.1    Mitra, P.2
  • 36
    • 0042424602 scopus 로고    scopus 로고
    • Statistical significance for genomewide studies
    • Storey, J.D. and Tibshirani, R. (2003) ‘Statistical significance for genomewide studies’, Proceeding of National Academy of Science, Vol. 100, No. 16, pp.9440–9445.
    • (2003) Proceeding of National Academy of Science , vol.100 , Issue.16 , pp. 9440-9445
    • Storey, J.D.1    Tibshirani, R.2
  • 37
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002) ‘Diagnosis of multiple cancer types by shrunken centroids of gene expression’, Proceeding of National Academy of Science, Vol. 99, No. 10, pp.6567–6572.
    • (2002) Proceeding of National Academy of Science , vol.99 , Issue.10 , pp. 6567-6572
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 38
    • 0035875553 scopus 로고    scopus 로고
    • Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects
    • Tseng, G.C., Oh, M.K., Rohlin, L., Liao, J.C. and Wong, W.H. (2001) ‘Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects’, Nucleic Acids Research, Vol. 29, pp.2549–2557.
    • (2001) Nucleic Acids Research , vol.29 , pp. 2549-2557
    • Tseng, G.C.1    Oh, M.K.2    Rohlin, L.3    Liao, J.C.4    Wong, W.H.5
  • 39
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher, V.G., Tibshirani, R. and Chu, G. (2001) ‘Significance analysis of microarrays applied to the ionizing radiation response’, Proceeding of National Academy of Science, Vol. 98, No. 9, pp.5116–5121.
    • (2001) Proceeding of National Academy of Science , vol.98 , Issue.9 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 41
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • Yeung, K.Y. and Ruzzo, W.L. (2001) ‘Principal component analysis for clustering gene expression data’, Bioinformatics, Vol. 17, pp.763–774.
    • (2001) Bioinformatics , vol.17 , pp. 763-774
    • Yeung, K.Y.1    Ruzzo, W.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.