-
1
-
-
67849135609
-
TESLA: Recovering time-varying networks of dependencies in social and biological studies
-
Amr Ahmed and Eric P. Xing. TESLA: Recovering time-varying networks of dependencies in social and biological studies. Proceedings of the National Academy of Sciences, 106(29):11878-11883, 2009.
-
(2009)
Proceedings of the National Academy of Sciences
, vol.106
, Issue.29
, pp. 11878-11883
-
-
Ahmed, A.1
Xing, E.P.2
-
2
-
-
0037183901
-
Gene expression during the life cycle of Drosophila melanogaster
-
Sep
-
Michelle N. Arbeitman, Eileen E.M. Furlong, Farhad Imam, Eric Johnson, Brian H. Null, Bruce S. Baker, Mark A. Krasnow, Matthew P. Scott, Ronald W. Davis, and Kevin P. White. Gene expression during the life cycle of Drosophila melanogaster. Science, 5590(297):2270-2275, Sep 2002.
-
(2002)
Science
, vol.5590
, Issue.297
, pp. 2270-2275
-
-
Arbeitman, M.N.1
Furlong, E.E.M.2
Imam, F.3
Johnson, E.4
Null, B.H.5
Baker, B.S.6
Krasnow, M.A.7
Scott, M.P.8
Davis, R.W.9
White, K.P.10
-
3
-
-
33750511893
-
Variational Bayesian learning of directed graphical models with hidden variables
-
Matthew J. Beal and Zoubin Ghahramani. Variational Bayesian learning of directed graphical models with hidden variables. Bayesian Analysis, 1(4):793-832, 2006.
-
(2006)
Bayesian Analysis
, vol.1
, Issue.4
, pp. 793-832
-
-
Beal, M.J.1
Ghahramani, Z.2
-
4
-
-
15944361900
-
Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. In
-
World Scientific, Jan
-
Allister Bernard and Alexander J. Hartemink. Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. In Pacific Symposium on Biocomputing, volume 10, pages 459-470. World Scientific, Jan 2005.
-
(2005)
Pacific Symposium on Biocomputing
, vol.10
, pp. 459-470
-
-
Bernard, A.1
Hartemink, A.J.2
-
5
-
-
0030124955
-
A guide to the literature on learning probabilistic networks from data
-
Wray Buntine. A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering, 8(2):195-210, 1996.
-
(1996)
IEEE Transactions on Knowledge and Data Engineering
, vol.8
, Issue.2
, pp. 195-210
-
-
Buntine, W.1
-
6
-
-
34548527584
-
Dynamic matrix-variate graphical models
-
Carlos M. Carvalho and Mike West. Dynamic matrix-variate graphical models. Bayesian Analysis, 2(1):69-98, 2007.
-
(2007)
Bayesian Analysis
, vol.2
, Issue.1
, pp. 69-98
-
-
Carvalho, C.M.1
West, M.2
-
10
-
-
0036856515
-
Ant colony optimization for learning Bayesian networks
-
Nov
-
Luís Miguel de Campos, Juan M. Fernandez-Luna, José Antonio Gámez, and José Miguel Puerta. Ant colony optimization for learning Bayesian networks. International Journal of Approximate Reasoning, 31(3):291-311, Nov 2002.
-
(2002)
International Journal of Approximate Reasoning
, vol.31
, Issue.3
, pp. 291-311
-
-
De Campos, L.M.1
Fernandez-Luna, J.M.2
Gámez, J.A.3
Puerta, J.M.4
-
11
-
-
38949159281
-
Mef2 activity levels differentially affect gene expression during Drosophila muscle development
-
Jan
-
Stuart J. Elgar, Jun Han, and Michael V. Taylor. mef2 activity levels differentially affect gene expression during Drosophila muscle development. Proceedings of the National Academy of Sciences, 105(3):918-923, Jan 2008.
-
(2008)
Proceedings of the National Academy of Sciences
, vol.105
, Issue.3
, pp. 918-923
-
-
Elgar, S.J.1
Han, J.2
Taylor, M.V.3
-
12
-
-
0001586968
-
Learning belief networks in the presence of missing values and hidden variables. In
-
Morgan Kaufmann Publishers
-
Nir Friedman. Learning belief networks in the presence of missing values and hidden variables. In Proceedings of the 14th International Conference on Machine Learning, pages 125-133.Morgan Kaufmann Publishers, 1997.
-
(1997)
Proceedings of the 14th International Conference on Machine Learning
, pp. 125-133
-
-
Friedman, N.1
-
15
-
-
0033691754
-
Using Bayesian networks to analyze expression data
-
ACM Press, Apr
-
Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe'er. Using Bayesian networks to analyze expression data. In Research in Computational Molecular Biology (RECOMB00), volume 4, pages 127-135. ACM Press, Apr 2000.
-
(2000)
Research in Computational Molecular Biology (RECOMB00)
, vol.4
, pp. 127-135
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
16
-
-
0034170950
-
Variational learning for switching state-space models
-
Apr
-
Zoubin Ghahramani and Geoffrey E. Hinton. Variational learning for switching state-space models. Neural Computation, 12(4):963-996, Apr 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.4
, pp. 963-996
-
-
Ghahramani, Z.1
Hinton, G.E.2
-
17
-
-
0037266163
-
Improving Markov chain Monte Carlo model search for data mining
-
Jan
-
Paolo Giudici and Robert Castelo. Improving Markov chain Monte Carlo model search for data mining. Machine Learning, 50(1-2), Jan 2003.
-
(2003)
Machine Learning
, vol.50
, Issue.1-2
-
-
Giudici, P.1
Castelo, R.2
-
19
-
-
51749112494
-
Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler
-
Jul
-
Marco Grzegorczyk, Dirk Husmeier, Kieron D. Edwards, Peter Ghazal, and Andrew J.Millar. Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler. Bioinformatics, 24(18):2071-2078, Jul 2008.
-
(2008)
Bioinformatics
, vol.24
, Issue.18
, pp. 2071-2078
-
-
Grzegorczyk, M.1
Husmeier, D.2
Edwards, K.D.3
Ghazal, P.4
Millar, A.J.5
-
23
-
-
0035221560
-
Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In
-
World Scientific, Jan
-
Alexander J. Hartemink, David K. Gifford, Tommi S. Jaakkola, and Richard A. Young. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In Pacific Symposium on Biocomputing, volume 6, pages 422-433. World Scientific, Jan 2001.
-
(2001)
Pacific Symposium on Biocomputing
, vol.6
, pp. 422-433
-
-
Hartemink, A.J.1
Gifford, D.K.2
Jaakkola, T.S.3
Young, R.A.4
-
24
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Sep
-
David Heckerman, Dan Geiger, and David Maxwell Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3):197-243, Sep 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
26
-
-
0038721965
-
Propagation of correlated activity through multiple stages of a neural circuit
-
Rhea R. Kimpo, Frederic E. Theunissen, and Allison J. Doupe. Propagation of correlated activity through multiple stages of a neural circuit. Journal of Neuroscience, 23(13):5750-5761, 2003.
-
(2003)
Journal of Neuroscience
, vol.23
, Issue.13
, pp. 5750-5761
-
-
Kimpo, R.R.1
Theunissen, F.E.2
Doupe, A.J.3
-
27
-
-
78650220412
-
Estimating time-varying networks
-
Mar
-
Mladen Kolar, Le Song, Amr Ahmed, and Eric P. Xing. Estimating time-varying networks. The Annals of Applied Statistics, 4(1):94-123, Mar 2010.
-
(2010)
The Annals of Applied Statistics
, vol.4
, Issue.1
, pp. 94-123
-
-
Kolar, M.1
Song, L.2
Ahmed, A.3
Xing, E.P.4
-
28
-
-
0032273105
-
Learning probabilistic networks
-
Paul K. Krause. Learning probabilistic networks. The Knowledge Engineering Review, 13(4):321-351, 1998.
-
(1998)
The Knowledge Engineering Review
, vol.13
, Issue.4
, pp. 321-351
-
-
Krause, P.K.1
-
29
-
-
0028482006
-
Learning Bayesian belief networks: An approach based on theMDL principle
-
Jul
-
Wai Lam and Fahiem Bacchus. Learning Bayesian belief networks: An approach based on theMDL principle. Computational Intelligence, 10(4):269-293, Jul 1994.
-
(1994)
Computational Intelligence
, vol.10
, Issue.4
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
30
-
-
0030245966
-
Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters
-
Sep
-
Pedro Larrañaga, Mikel Poza, Yosu Yurramendi, Roberto H. Murga, and Cindy M.H. Kuijpers. Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters. IEEE Journal on Pattern Analysis and Machine Intelligence, 18(9):912-926, Sep 1996.
-
(1996)
IEEE Journal on Pattern Analysis and Machine Intelligence
, vol.18
, Issue.9
, pp. 912-926
-
-
Larranaga, P.1
Poza, M.2
Yurramendi, Y.3
Murga, R.H.4
Kuijpers, C.M.H.5
-
31
-
-
4644326931
-
Genomic analysis of regulatory network dynamics reveals large topological changes
-
Sep
-
Nicholas M. Luscombe, M. Madan Babu, Haiyuan Yu, Michael Snyder, Sarah A. Teichmann, and Mark Gerstein. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 431:308-312, Sep 2004.
-
(2004)
Nature
, vol.431
, pp. 308-312
-
-
Luscombe, N.M.1
Babu, M.M.2
Yu, H.3
Snyder, M.4
Teichmann, S.A.5
Gerstein, M.6
-
32
-
-
21844520724
-
Bayesian graphical models for discrete data
-
Aug
-
David Madigan, Jeremy York, and Denis Allard. Bayesian graphical models for discrete data. International Statistical Review, 63(2):215-232, Aug 1995.
-
(1995)
International Statistical Review
, vol.63
, Issue.2
, pp. 215-232
-
-
Madigan, D.1
York, J.2
Allard, D.3
-
33
-
-
29344470807
-
Distribution-free learning of Bayesian network structure in continuous domains
-
AAAI Press / The MIT Press, Jul
-
Dimitris Margaritis. Distribution-free learning of Bayesian network structure in continuous domains. In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI05), pages 825-830. AAAI Press / The MIT Press, Jul 2005.
-
(2005)
Proceedings of the 20th National Conference on Artificial Intelligence (AAAI05)
, pp. 825-830
-
-
Margaritis, D.1
-
34
-
-
79551504327
-
-
UC Berkeley technical report 990, Computer Science Department, University of California at Berkeley, May
-
Kevin Murphy. Learning Bayesian network structure from sparse data sets. UC Berkeley technical report 990, Computer Science Department, University of California at Berkeley, May 2001.
-
(2001)
Learning Bayesian Network Structure from Sparse Data Sets
-
-
Murphy, K.1
-
35
-
-
33646858607
-
A temporal map of transcription factor activity: Mef2 directly regulates target genes at all stages of muscle development
-
Jun
-
Thomas Sandmann, Lars J. Jensen, Janus S. Jakobsen,MichalM. Karzynski,Michael P. Eichenlaub, Peer Bork, and Eileen E.M. Furlong. A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. Developmental Cell, 10(6): 797-807, Jun 2006.
-
(2006)
Developmental Cell
, vol.10
, Issue.6
, pp. 797-807
-
-
Sandmann, T.1
Jensen, L.J.2
Jakobsen, J.S.3
Karzynski, M.M.4
Eichenlaub, M.P.5
Bork, P.6
Furlong, E.E.M.7
-
36
-
-
0041627865
-
Influence of network topology and data collection on network inference
-
World Scientific, Jan
-
V. Anne Smith, Erich D. Jarvis, and Alexander J. Hartemink. Influence of network topology and data collection on network inference. In Pacific Symposium on Biocomputing, volume 8, pages 164-175. World Scientific, Jan 2003.
-
(2003)
Pacific Symposium on Biocomputing
, vol.8
, pp. 164-175
-
-
Smith, V.A.1
Jarvis, E.D.2
Hartemink, A.J.3
-
37
-
-
33751407959
-
Computational inference of neural information flow networks
-
Nov
-
V. Anne Smith, Jing Yu, Tom V. Smulders, Alexander J. Hartemink, and Erich D. Jarvis. Computational inference of neural information flow networks. PLoS Computational Biology, 2(11): 1436-1449, Nov 2006.
-
(2006)
PLoS Computational Biology
, vol.2
, Issue.11
, pp. 1436-1449
-
-
Smith, V.A.1
Yu, J.2
Smulders, T.V.3
Hartemink, A.J.4
Jarvis, E.D.5
-
38
-
-
0008564212
-
Learning Bayesian belief networks based on the minimum description length principle: An efficient algorithm using the branch and bound technique. In
-
Morgan Kaufmann Publishers Inc., Jul
-
Joe Suzuki. Learning Bayesian belief networks based on the minimum description length principle: An efficient algorithm using the branch and bound technique. In Proceedings of the 13th International Conference on Machine Learning (ICML96), pages 462-470. Morgan Kaufmann Publishers Inc., Jul 1996.
-
(1996)
Proceedings of the 13th International Conference on Machine Learning (ICML96)
, pp. 462-470
-
-
Suzuki, J.1
-
39
-
-
20744459144
-
Structural learning with time-varying components: Tracking the cross-section of financial time series
-
Jun
-
Makram Talih and Nicolas Hengartner. Structural learning with time-varying components: Tracking the cross-section of financial time series. Journal of the Royal Statistical Society B, 67(3):321-341, Jun 2005.
-
(2005)
Journal of the Royal Statistical Society B
, vol.67
, Issue.3
, pp. 321-341
-
-
Talih, M.1
Hengartner, N.2
-
40
-
-
84993704988
-
MCMC model determination for discrete graphical models
-
Apr
-
Claudia Tarantola. MCMC model determination for discrete graphical models. Statistical Modelling, 4(1):39-61, Apr 2004.
-
(2004)
Statistical Modelling
, vol.4
, Issue.1
, pp. 39-61
-
-
Tarantola, C.1
-
41
-
-
0030491229
-
Logit models and logistic regressions for social networks: I. An introduction to markov graphs and p
-
Stanley Wasserman and Philippa E. Pattison. Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and p. Psychometrika, 61(3):401-425, Sep 1996. (Pubitemid 126345724)
-
(1996)
Psychometrika
, vol.61
, Issue.3
, pp. 401-425
-
-
Wasserman, S.1
Pattison, P.2
-
43
-
-
33748654580
-
Inferring gene regulatory networks from time series data using the minimum description length principle
-
Sep
-
Wentao Zhao, Erchin Serpedin, and Edward R. Dougherty. Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics, 22(17): 2129-2135, Sep 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.17
, pp. 2129-2135
-
-
Zhao, W.1
Serpedin, E.2
Dougherty, E.R.3
|