메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages 3647-3680

Learning non-stationary dynamic bayesian networks

Author keywords

Bayesian networks; Graphical models; Model selection; Monte Carlo methods; Structure learning

Indexed keywords

BIOLOGICAL DATA; CONDITIONAL DEPENDENCE; DYNAMIC BAYESIAN NETWORK; EVOLVING NETWORKS; GENERATION PROCESS; GRAPHICAL MODEL; MCMC SAMPLING; MODEL SELECTION; NEURAL PATHWAY; NON-STATIONARY DYNAMICS; NONSTATIONARY; STATIONARY PROCESS; STRUCTURE LEARNING; TIME-SERIES DATA; TRAFFIC PATTERN; TRANSCRIPTIONAL REGULATORY NETWORKS;

EID: 79551497706     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (151)

References (43)
  • 1
    • 67849135609 scopus 로고    scopus 로고
    • TESLA: Recovering time-varying networks of dependencies in social and biological studies
    • Amr Ahmed and Eric P. Xing. TESLA: Recovering time-varying networks of dependencies in social and biological studies. Proceedings of the National Academy of Sciences, 106(29):11878-11883, 2009.
    • (2009) Proceedings of the National Academy of Sciences , vol.106 , Issue.29 , pp. 11878-11883
    • Ahmed, A.1    Xing, E.P.2
  • 3
    • 33750511893 scopus 로고    scopus 로고
    • Variational Bayesian learning of directed graphical models with hidden variables
    • Matthew J. Beal and Zoubin Ghahramani. Variational Bayesian learning of directed graphical models with hidden variables. Bayesian Analysis, 1(4):793-832, 2006.
    • (2006) Bayesian Analysis , vol.1 , Issue.4 , pp. 793-832
    • Beal, M.J.1    Ghahramani, Z.2
  • 4
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. In
    • World Scientific, Jan
    • Allister Bernard and Alexander J. Hartemink. Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. In Pacific Symposium on Biocomputing, volume 10, pages 459-470. World Scientific, Jan 2005.
    • (2005) Pacific Symposium on Biocomputing , vol.10 , pp. 459-470
    • Bernard, A.1    Hartemink, A.J.2
  • 5
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • Wray Buntine. A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering, 8(2):195-210, 1996.
    • (1996) IEEE Transactions on Knowledge and Data Engineering , vol.8 , Issue.2 , pp. 195-210
    • Buntine, W.1
  • 6
    • 34548527584 scopus 로고    scopus 로고
    • Dynamic matrix-variate graphical models
    • Carlos M. Carvalho and Mike West. Dynamic matrix-variate graphical models. Bayesian Analysis, 2(1):69-98, 2007.
    • (2007) Bayesian Analysis , vol.2 , Issue.1 , pp. 69-98
    • Carvalho, C.M.1    West, M.2
  • 11
    • 38949159281 scopus 로고    scopus 로고
    • Mef2 activity levels differentially affect gene expression during Drosophila muscle development
    • Jan
    • Stuart J. Elgar, Jun Han, and Michael V. Taylor. mef2 activity levels differentially affect gene expression during Drosophila muscle development. Proceedings of the National Academy of Sciences, 105(3):918-923, Jan 2008.
    • (2008) Proceedings of the National Academy of Sciences , vol.105 , Issue.3 , pp. 918-923
    • Elgar, S.J.1    Han, J.2    Taylor, M.V.3
  • 12
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables. In
    • Morgan Kaufmann Publishers
    • Nir Friedman. Learning belief networks in the presence of missing values and hidden variables. In Proceedings of the 14th International Conference on Machine Learning, pages 125-133.Morgan Kaufmann Publishers, 1997.
    • (1997) Proceedings of the 14th International Conference on Machine Learning , pp. 125-133
    • Friedman, N.1
  • 16
    • 0034170950 scopus 로고    scopus 로고
    • Variational learning for switching state-space models
    • Apr
    • Zoubin Ghahramani and Geoffrey E. Hinton. Variational learning for switching state-space models. Neural Computation, 12(4):963-996, Apr 2000.
    • (2000) Neural Computation , vol.12 , Issue.4 , pp. 963-996
    • Ghahramani, Z.1    Hinton, G.E.2
  • 17
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov chain Monte Carlo model search for data mining
    • Jan
    • Paolo Giudici and Robert Castelo. Improving Markov chain Monte Carlo model search for data mining. Machine Learning, 50(1-2), Jan 2003.
    • (2003) Machine Learning , vol.50 , Issue.1-2
    • Giudici, P.1    Castelo, R.2
  • 19
    • 51749112494 scopus 로고    scopus 로고
    • Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler
    • Jul
    • Marco Grzegorczyk, Dirk Husmeier, Kieron D. Edwards, Peter Ghazal, and Andrew J.Millar. Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler. Bioinformatics, 24(18):2071-2078, Jul 2008.
    • (2008) Bioinformatics , vol.24 , Issue.18 , pp. 2071-2078
    • Grzegorczyk, M.1    Husmeier, D.2    Edwards, K.D.3    Ghazal, P.4    Millar, A.J.5
  • 23
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In
    • World Scientific, Jan
    • Alexander J. Hartemink, David K. Gifford, Tommi S. Jaakkola, and Richard A. Young. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In Pacific Symposium on Biocomputing, volume 6, pages 422-433. World Scientific, Jan 2001.
    • (2001) Pacific Symposium on Biocomputing , vol.6 , pp. 422-433
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 24
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Sep
    • David Heckerman, Dan Geiger, and David Maxwell Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3):197-243, Sep 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 25
  • 26
    • 0038721965 scopus 로고    scopus 로고
    • Propagation of correlated activity through multiple stages of a neural circuit
    • Rhea R. Kimpo, Frederic E. Theunissen, and Allison J. Doupe. Propagation of correlated activity through multiple stages of a neural circuit. Journal of Neuroscience, 23(13):5750-5761, 2003.
    • (2003) Journal of Neuroscience , vol.23 , Issue.13 , pp. 5750-5761
    • Kimpo, R.R.1    Theunissen, F.E.2    Doupe, A.J.3
  • 28
    • 0032273105 scopus 로고    scopus 로고
    • Learning probabilistic networks
    • Paul K. Krause. Learning probabilistic networks. The Knowledge Engineering Review, 13(4):321-351, 1998.
    • (1998) The Knowledge Engineering Review , vol.13 , Issue.4 , pp. 321-351
    • Krause, P.K.1
  • 29
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on theMDL principle
    • Jul
    • Wai Lam and Fahiem Bacchus. Learning Bayesian belief networks: An approach based on theMDL principle. Computational Intelligence, 10(4):269-293, Jul 1994.
    • (1994) Computational Intelligence , vol.10 , Issue.4 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 31
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • Sep
    • Nicholas M. Luscombe, M. Madan Babu, Haiyuan Yu, Michael Snyder, Sarah A. Teichmann, and Mark Gerstein. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 431:308-312, Sep 2004.
    • (2004) Nature , vol.431 , pp. 308-312
    • Luscombe, N.M.1    Babu, M.M.2    Yu, H.3    Snyder, M.4    Teichmann, S.A.5    Gerstein, M.6
  • 32
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Aug
    • David Madigan, Jeremy York, and Denis Allard. Bayesian graphical models for discrete data. International Statistical Review, 63(2):215-232, Aug 1995.
    • (1995) International Statistical Review , vol.63 , Issue.2 , pp. 215-232
    • Madigan, D.1    York, J.2    Allard, D.3
  • 33
    • 29344470807 scopus 로고    scopus 로고
    • Distribution-free learning of Bayesian network structure in continuous domains
    • AAAI Press / The MIT Press, Jul
    • Dimitris Margaritis. Distribution-free learning of Bayesian network structure in continuous domains. In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI05), pages 825-830. AAAI Press / The MIT Press, Jul 2005.
    • (2005) Proceedings of the 20th National Conference on Artificial Intelligence (AAAI05) , pp. 825-830
    • Margaritis, D.1
  • 34
    • 79551504327 scopus 로고    scopus 로고
    • UC Berkeley technical report 990, Computer Science Department, University of California at Berkeley, May
    • Kevin Murphy. Learning Bayesian network structure from sparse data sets. UC Berkeley technical report 990, Computer Science Department, University of California at Berkeley, May 2001.
    • (2001) Learning Bayesian Network Structure from Sparse Data Sets
    • Murphy, K.1
  • 35
    • 33646858607 scopus 로고    scopus 로고
    • A temporal map of transcription factor activity: Mef2 directly regulates target genes at all stages of muscle development
    • Jun
    • Thomas Sandmann, Lars J. Jensen, Janus S. Jakobsen,MichalM. Karzynski,Michael P. Eichenlaub, Peer Bork, and Eileen E.M. Furlong. A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. Developmental Cell, 10(6): 797-807, Jun 2006.
    • (2006) Developmental Cell , vol.10 , Issue.6 , pp. 797-807
    • Sandmann, T.1    Jensen, L.J.2    Jakobsen, J.S.3    Karzynski, M.M.4    Eichenlaub, M.P.5    Bork, P.6    Furlong, E.E.M.7
  • 36
    • 0041627865 scopus 로고    scopus 로고
    • Influence of network topology and data collection on network inference
    • World Scientific, Jan
    • V. Anne Smith, Erich D. Jarvis, and Alexander J. Hartemink. Influence of network topology and data collection on network inference. In Pacific Symposium on Biocomputing, volume 8, pages 164-175. World Scientific, Jan 2003.
    • (2003) Pacific Symposium on Biocomputing , vol.8 , pp. 164-175
    • Smith, V.A.1    Jarvis, E.D.2    Hartemink, A.J.3
  • 38
    • 0008564212 scopus 로고    scopus 로고
    • Learning Bayesian belief networks based on the minimum description length principle: An efficient algorithm using the branch and bound technique. In
    • Morgan Kaufmann Publishers Inc., Jul
    • Joe Suzuki. Learning Bayesian belief networks based on the minimum description length principle: An efficient algorithm using the branch and bound technique. In Proceedings of the 13th International Conference on Machine Learning (ICML96), pages 462-470. Morgan Kaufmann Publishers Inc., Jul 1996.
    • (1996) Proceedings of the 13th International Conference on Machine Learning (ICML96) , pp. 462-470
    • Suzuki, J.1
  • 39
    • 20744459144 scopus 로고    scopus 로고
    • Structural learning with time-varying components: Tracking the cross-section of financial time series
    • Jun
    • Makram Talih and Nicolas Hengartner. Structural learning with time-varying components: Tracking the cross-section of financial time series. Journal of the Royal Statistical Society B, 67(3):321-341, Jun 2005.
    • (2005) Journal of the Royal Statistical Society B , vol.67 , Issue.3 , pp. 321-341
    • Talih, M.1    Hengartner, N.2
  • 40
    • 84993704988 scopus 로고    scopus 로고
    • MCMC model determination for discrete graphical models
    • Apr
    • Claudia Tarantola. MCMC model determination for discrete graphical models. Statistical Modelling, 4(1):39-61, Apr 2004.
    • (2004) Statistical Modelling , vol.4 , Issue.1 , pp. 39-61
    • Tarantola, C.1
  • 41
    • 0030491229 scopus 로고    scopus 로고
    • Logit models and logistic regressions for social networks: I. An introduction to markov graphs and p
    • Stanley Wasserman and Philippa E. Pattison. Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and p. Psychometrika, 61(3):401-425, Sep 1996. (Pubitemid 126345724)
    • (1996) Psychometrika , vol.61 , Issue.3 , pp. 401-425
    • Wasserman, S.1    Pattison, P.2
  • 43
    • 33748654580 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time series data using the minimum description length principle
    • Sep
    • Wentao Zhao, Erchin Serpedin, and Edward R. Dougherty. Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics, 22(17): 2129-2135, Sep 2006.
    • (2006) Bioinformatics , vol.22 , Issue.17 , pp. 2129-2135
    • Zhao, W.1    Serpedin, E.2    Dougherty, E.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.