메뉴 건너뛰기




Volumn 83, Issue 3, 2011, Pages 355-419

Non-homogeneous dynamic Bayesian networks for continuous data

Author keywords

Arabidopsis; Circadian regulation; Dynamic Bayesian networks; Dynamic programming; Gene regulatory network; Multiple changepoint process; Non homogeneity; Precision recall (PR) curve; Receiver operator characteristics (ROC) curve; Reversible jump Markov chain Monte Carlo (RJMCMC)

Indexed keywords

ARABIDOPSIS; CHANGE-POINTS; CIRCADIAN REGULATION; DYNAMIC BAYESIAN NETWORKS; GENE REGULATORY NETWORK; NONHOMOGENEITY; PRECISION-RECALL (PR) CURVE; RECEIVER OPERATOR CHARACTERISTICS (ROC) CURVE; REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO;

EID: 79958861169     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-010-5230-7     Document Type: Article
Times cited : (62)

References (41)
  • 1
    • 67849135609 scopus 로고    scopus 로고
    • Recovering time-varying networks of dependencies in social and biological studies
    • 10.1073/pnas.0901910106
    • A. Ahmed E. P. Xing 2009 Recovering time-varying networks of dependencies in social and biological studies Proceedings of the National Academy of Sciences 106 11878 11883 10.1073/pnas.0901910106
    • (2009) Proceedings of the National Academy of Sciences , vol.106 , pp. 11878-11883
    • Ahmed, A.1    Xing, E.P.2
  • 2
    • 0035800467 scopus 로고    scopus 로고
    • Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock
    • DOI 10.1126/science.1061320
    • D. Alabadi T. Oyama M. J. Yanovsky F. G. Harmon P. Mas S. A. Kay 2001 Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock Science 293 880 883 10.1126/science.1061320 (Pubitemid 32743980)
    • (2001) Science , vol.293 , Issue.5531 , pp. 880-883
    • Alabadi, D.1    Oyama, T.2    Yanovsky, M.J.3    Harmon, F.G.4    Mas, P.5    Kay, S.A.6
  • 3
    • 0032273615 scopus 로고    scopus 로고
    • General methods for monitoring convergence of iterative simulations
    • S. Brooks A. Gelman 1998 General methods for monitoring convergence of iterative simulations Journal of Computational and Graphial Statistics 7 434 455 1665662 10.2307/1390675 (Pubitemid 128635035)
    • (1998) Journal of Computational and Graphical Statistics , vol.7 , Issue.4 , pp. 434-455
    • Brooks, S.P.1    Gelman, A.2
  • 7
    • 33646510841 scopus 로고    scopus 로고
    • FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock
    • DOI 10.1105/tpc.105.038315
    • K. D. Edwards P. E. Anderson A. Hall N. S. Salathia J. C. Locke J. R. Lynn M. Straume J. Q. Smith A. J. Millar 2006 Flowering locus C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock The Plant Cell 18 639 650 10.1105/tpc.105.038315 (Pubitemid 43956167)
    • (2006) Plant Cell , vol.18 , Issue.3 , pp. 639-650
    • Edwards, K.D.1    Anderson, P.E.2    Hall, A.3    Salathia, N.S.4    Locke, J.C.W.5    Lynn, J.R.6    Straume, M.7    Smith, J.Q.8    Millar, A.J.9
  • 8
    • 33646687960 scopus 로고    scopus 로고
    • Exact and efficient Bayesian inference for multiple changepoint problems
    • DOI 10.1007/s11222-006-8450-8
    • P. Fearnhead 2006 Exact and efficient Bayesian inference for multiple changepoint problems Statistics and Computing 16 203 213 2227396 10.1007/s11222-006-8450-8 (Pubitemid 43742297)
    • (2006) Statistics and Computing , vol.16 , Issue.2 , pp. 203-213
    • Fearnhead, P.1
  • 9
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure
    • 1033.68104 10.1023/A:1020249912095
    • N. Friedman D. Koller 2003 Being Bayesian about network structure Machine Learning 50 95 126 1033.68104 10.1023/A:1020249912095
    • (2003) Machine Learning , vol.50 , pp. 95-126
    • Friedman, N.1    Koller, D.2
  • 12
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov chain Monte Carlo model search for data mining
    • 1050.68120 10.1023/A:1020202028934
    • P. Giudici R. Castelo 2003 Improving Markov chain Monte Carlo model search for data mining Machine Learning 50 127 158 1050.68120 10.1023/A:1020202028934
    • (2003) Machine Learning , vol.50 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 13
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • 1380810 0861.62023 10.1093/biomet/82.4.711
    • P. Green 1995 Reversible jump Markov chain Monte Carlo computation and Bayesian model determination Biometrika 82 711 732 1380810 0861.62023 10.1093/biomet/82.4.711
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 14
    • 43049097125 scopus 로고    scopus 로고
    • Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move
    • 10.1007/s10994-008-5057-7
    • M. Grzegorczyk D. Husmeier 2008 Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move Machine Learning 71 265 305 10.1007/s10994-008-5057-7
    • (2008) Machine Learning , vol.71 , pp. 265-305
    • Grzegorczyk, M.1    Husmeier, D.2
  • 15
    • 77956512704 scopus 로고    scopus 로고
    • Non-stationary continuous dynamic Bayesian networks
    • Y. Bengio D. Schuurmans J. Lafferty C. K. I. Williams A. Culotta (eds)
    • Grzegorczyk, M., & Husmeier, D. (2009). Non-stationary continuous dynamic Bayesian networks. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (NIPS) (Vol. 22, pp. 682-690).
    • (2009) Advances in Neural Information Processing Systems (NIPS) , vol.22 , pp. 682-690
    • Grzegorczyk, M.1    Husmeier, D.2
  • 16
    • 51749112494 scopus 로고    scopus 로고
    • Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler
    • 10.1093/bioinformatics/btn367
    • M. Grzegorczyk D. Husmeier K. Edwards P. Ghazal A. Millar 2008 Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler Bioinformatics 24 2071 2078 10.1093/bioinformatics/ btn367
    • (2008) Bioinformatics , vol.24 , pp. 2071-2078
    • Grzegorczyk, M.1    Husmeier, D.2    Edwards, K.3    Ghazal, P.4    Millar, A.5
  • 17
    • 79955470162 scopus 로고    scopus 로고
    • Modelling non-stationary dynamic gene regulatory processes with the BGM model
    • 10.1007/s00180-010-0201-9
    • M. Grzegorczyk J. Rahnenführer D. Husmeier 2010 Modelling non-stationary dynamic gene regulatory processes with the BGM model Computational Statistics 10.1007/s00180-010-0201-9
    • (2010) Computational Statistics
    • Grzegorczyk, M.1    Rahnenführer, J.2    Husmeier, D.3
  • 20
    • 33644814040 scopus 로고    scopus 로고
    • ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY
    • 10.1111/j.1365-313X.2005.02531.x
    • E. Kikis R. Khanna P. Quail 2005 ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY The Plant Journal 44 300 313 10.1111/j.1365-313X.2005. 02531.x
    • (2005) The Plant Journal , vol.44 , pp. 300-313
    • Kikis, E.1    Khanna, R.2    Quail, P.3
  • 22
    • 77956517638 scopus 로고    scopus 로고
    • Sparsistent learning of varying-coefficient models with structural changes
    • Y. Bengio D. Schuurmans J. Lafferty C. K. I. Williams A. Culotta (eds)
    • Kolar, M., Song, L., & Xing, E. (2009). Sparsistent learning of varying-coefficient models with structural changes. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (NIPS) (pp. 1006-1014).
    • (2009) Advances in Neural Information Processing Systems (NIPS) , pp. 1006-1014
    • Kolar, M.1    Song, L.2    Xing, E.3
  • 24
    • 77957930628 scopus 로고    scopus 로고
    • Statistical inference of the time-varying structure of gene-regulation networks
    • Lèbre, S., Becq, J., Devaux, F., Lelandais, G., & Stumpf, M. (2010). Statistical inference of the time-varying structure of gene-regulation networks. BMC Systems Biology, 4 (130).
    • (2010) BMC Systems Biology , vol.4 , Issue.130
    • Lèbre, S.1
  • 25
    • 34547830867 scopus 로고    scopus 로고
    • Comparative analysis of microarray normalization procedures: Effects on reverse engineering gene networks
    • DOI 10.1093/bioinformatics/btm201
    • W. Lim K. Wang C. Lefebvre A. Califano 2007 Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks Bioinformatics 23 i282 i288 10.1093/bioinformatics/btm201 (Pubitemid 47244411)
    • (2007) Bioinformatics , vol.23 , Issue.13
    • Lim, W.K.1    Wang, K.2    Lefebvre, C.3    Califano, A.4
  • 27
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • 0834.62003 10.2307/1403615
    • D. Madigan J. York 1995 Bayesian graphical models for discrete data International Statistical Review 63 215 232 0834.62003 10.2307/1403615
    • (1995) International Statistical Review , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 28
    • 33745456764 scopus 로고    scopus 로고
    • Plant circadian rhythms
    • DOI 10.1105/tpc.106.040980
    • C. R. McClung 2006 Plant circadian rhythms Plant Cell 18 792 803 10.1105/tpc.106.040980 (Pubitemid 43956136)
    • (2006) Plant Cell , vol.18 , Issue.4 , pp. 792-803
    • McClung, C.R.1
  • 29
    • 33745608072 scopus 로고    scopus 로고
    • Conserved expression profiles of circadian clock-related genes in two Lemna species showing long-day and short-day photoperiodic flowering responses
    • DOI 10.1093/pcp/pcj027
    • K. Miwa M. Serikawa S. Suzuki T. Kondo T. Oyama 2006 Conserved expression profiles of circadian clock-related genes in two lemna species showing long-day and short-day photoperiodic flowering responses Plant and Cell Physiology 47 601 612 10.1093/pcp/pcj027 (Pubitemid 43987606)
    • (2006) Plant and Cell Physiology , vol.47 , Issue.5 , pp. 601-612
    • Miwa, K.1    Serikawa, M.2    Suzuki, S.3    Kondo, T.4    Oyama, T.5
  • 30
    • 37149032477 scopus 로고    scopus 로고
    • Identification of amino acid substitutions that render the Arabidopsis cytokinin receptor histidine kinase AHK4 constitutively active
    • DOI 10.1093/pcp/pcm145
    • K. Miwa S. Ito N. Nakamichi T. Mizoguchi K. Niinuma T. Yamashino T. Mizuno 2007 Genetic linkages of the circadian clock-associated genes, TOC1, CCA1 and LHY, in the photoperiodic control of flowering time in Arabidopsis thaliana Plant and Cell Physiology 48 925 937 10.1093/pcp/pcm145 (Pubitemid 350262235)
    • (2007) Plant and Cell Physiology , vol.48 , Issue.12 , pp. 1809-1814
    • Miwa, K.1    Ishikawa, K.2    Terada, K.3    Yamada, H.4    Suzuki, T.5    Yamashino, T.6    Mizuno, T.7
  • 32
    • 34249673263 scopus 로고    scopus 로고
    • Bayesian finite mixtures with an unknown number of components: The allocation sampler
    • 2380643 10.1007/s11222-006-9014-7
    • A. Nobile A. Fearnside 2007 Bayesian finite mixtures with an unknown number of components: The allocation sampler Statistics and Computing 17 147 162 2380643 10.1007/s11222-006-9014-7
    • (2007) Statistics and Computing , vol.17 , pp. 147-162
    • Nobile, A.1    Fearnside, A.2
  • 33
    • 77956500503 scopus 로고    scopus 로고
    • Non-stationary dynamic Bayesian networks
    • D. Koller D. Schuurmans Y. Bengio L. Bottou (eds). Morgan Kaufmann San Mateo
    • Robinson, J. W., & Hartemink, A. J. (2009). Non-stationary dynamic Bayesian networks. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems (NIPS) (Vol. 21, pp. 1369-1376). San Mateo: Morgan Kaufmann.
    • (2009) Advances in Neural Information Processing Systems (NIPS) , vol.21 , pp. 1369-1376
    • Robinson, J.W.1    Hartemink, A.J.2
  • 34
    • 25144501141 scopus 로고    scopus 로고
    • A Bayesian regression approach to the inference of regulatory networks from gene expression data
    • DOI 10.1093/bioinformatics/bti487
    • S. Rogers M. Girolami 2005 A Bayesian regression approach to the inference of regulatory networks from gene expression data Bioinformatics 21 3131 3137 10.1093/bioinformatics/bti487 (Pubitemid 41418466)
    • (2005) Bioinformatics , vol.21 , Issue.14 , pp. 3131-3137
    • Rogers, S.1    Girolami, M.2
  • 35
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • DOI 10.1126/science.1105809
    • K. Sachs O. Perez D. Pe'er D. A. Lauffenburger G. P. Nolan 2005 Protein-signaling networks derived from multiparameter single-cell data Science 308 523 529 10.1126/science.1105809 (Pubitemid 40570578)
    • (2005) Science , vol.308 , Issue.5721 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 36
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • 468014 0379.62005 10.1214/aos/1176344136
    • G. Schwarz 1978 Estimating the dimension of a model Annals of Statistics 6 461 464 468014 0379.62005 10.1214/aos/1176344136
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 37
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • 10.1038/ng881
    • S. S. Shen-Orr R. Milo S. Mangan U. Alon 2002 Network motifs in the transcriptional regulation network of Escherichia coli Nature Genetics 31 64 68 10.1038/ng881
    • (2002) Nature Genetics , vol.31 , pp. 64-68
    • Shen-Orr, S.S.1    Milo, R.2    Mangan, S.3    Alon, U.4
  • 38
    • 33751407959 scopus 로고    scopus 로고
    • Computational inference of neural information flow networks
    • DOI 10.1371/journal.pcbi.0020161
    • V. A. Smith J. Yu T. V. Smulders A. J. Hartemink E. D. Jarvi 2006 Computational inference of neural information flow networks PLoS Computational Biology 2 1436 1449 10.1371/journal.pcbi.0020161 (Pubitemid 44819929)
    • (2006) PLoS Computational Biology , vol.2 , Issue.11 , pp. 1436-1449
    • Smith, V.A.1    Yu, J.2    Smulders, T.V.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 39
    • 20744459144 scopus 로고    scopus 로고
    • Structural learning with time-varying components: Tracking the cross-section of financial time series
    • DOI 10.1111/j.1467-9868.2005.00504.x
    • M. Talih N. Hengartner 2005 Structural learning with time-varying components: Tracking the cross-section of financial time series Journal of the Royal Statistical Society B 67 321 341 2155341 1071.62094 10.1111/j.1467-9868. 2005.00504.x (Pubitemid 40855287)
    • (2005) Journal of the Royal Statistical Society. Series B: Statistical Methodology , vol.67 , Issue.3 , pp. 321-341
    • Talih, M.1    Hengartner, N.2
  • 40
    • 46049101810 scopus 로고    scopus 로고
    • Gene regulatory network reconstruction by bayesian integration of prior knowledge and/or different experimental conditions
    • DOI 10.1142/S0219720008003539, PII S0219720008003539
    • A. V. Werhli D. Husmeier 2008 Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions Journal of Bioinformatics and Computational Biology 6 543 572 10.1142/S0219720008003539 (Pubitemid 351895193)
    • (2008) Journal of Bioinformatics and Computational Biology , vol.6 , Issue.3 , pp. 543-572
    • Werhli, A.V.1    Husmeier, D.2
  • 41
    • 34547991011 scopus 로고    scopus 로고
    • Modeling changing dependency structure in multivariate time series
    • DOI 10.1145/1273496.1273629, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
    • Xuan, X., & Murphy, K. (2007). Modeling changing dependency structure in multivariate time series. In Z. Ghahramani (Ed.), Proceedings of the 24th annual international conference on machine learning (ICML 2007) (pp. 1055-1062). New York: Omnipress. (Pubitemid 47275171)
    • (2007) ACM International Conference Proceeding Series , vol.227 , pp. 1055-1062
    • Xuan, X.1    Murphy, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.