메뉴 건너뛰기




Volumn 90, Issue 2, 2013, Pages 191-230

Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure

Author keywords

Dynamic Bayesian networks; Gene expression time series; Hierarchical Bayesian models; Multiple changepoint processes; Reversible jump Markov chain Monte Carlo; Systems and synthetic biology

Indexed keywords

CHANGE-POINTS; DYNAMIC BAYESIAN NETWORKS; GENE EXPRESSION TIME SERIES; HIERARCHICAL BAYESIAN MODELS; REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO; SYNTHETIC BIOLOGY;

EID: 84880569964     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-012-5311-x     Document Type: Article
Times cited : (87)

References (39)
  • 1
    • 67849135609 scopus 로고    scopus 로고
    • Recovering time-varying networks of dependencies in social and biological studies
    • 10.1073/pnas.0901910106
    • Ahmed, A., & Xing, E. P. (2009). Recovering time-varying networks of dependencies in social and biological studies. Proceedings of the National Academy of Sciences, 106, 11878-11883.
    • (2009) Proceedings of the National Academy of Sciences , vol.106 , pp. 11878-11883
    • Ahmed, A.1    Xing, E.P.2
  • 3
    • 0033349354 scopus 로고    scopus 로고
    • Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
    • 10.1109/78.790649
    • Andrieu, C., & Doucet, A. (1999). Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC. IEEE Transactions on Signal Processing, 47(10), 2667-2676.
    • (1999) IEEE Transactions on Signal Processing , vol.47 , Issue.10 , pp. 2667-2676
    • Andrieu, C.1    Doucet, A.2
  • 10
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • 10.1214/ss/1177011136
    • Gelman, A., & Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457-472.
    • (1992) Statistical Science , vol.7 , Issue.4 , pp. 457-472
    • Gelman, A.1    Rubin, D.2
  • 11
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • 1380810 0861.62023 10.1093/biomet/82.4.711
    • Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 12
    • 77956512704 scopus 로고    scopus 로고
    • Non-stationary continuous dynamic Bayesian networks
    • Y. Bengio D. Schuurmans J. Lafferty C. K. I. Williams A. Culotta (eds)
    • Grzegorczyk, M., & Husmeier, D. (2009). Non-stationary continuous dynamic Bayesian networks. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (NIPS) (Vol. 22, pp. 682-690).
    • (2009) Advances in Neural Information Processing Systems (NIPS) , vol.22 , pp. 682-690
    • Grzegorczyk, M.1    Husmeier, D.2
  • 13
    • 79958861169 scopus 로고    scopus 로고
    • Non-homogeneous dynamic Bayesian networks for continuous data
    • 06031860 10.1007/s10994-010-5230-7
    • Grzegorczyk, M., & Husmeier, D. (2011). Non-homogeneous dynamic Bayesian networks for continuous data. Machine Learning, 83, 355-419.
    • (2011) Machine Learning , vol.83 , pp. 355-419
    • Grzegorczyk, M.1    Husmeier, D.2
  • 15
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • 0219.65008 10.1093/biomet/57.1.97
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 16
    • 0024007351 scopus 로고
    • Functional interactions between unlinked muscle genes within haploinsufficient regions of the Drosophila genome
    • Homyk, T. Jr, & Emerson, C. Jr (1988). Functional interactions between unlinked muscle genes within haploinsufficient regions of the Drosophila genome. Genetics, 119(1), 105.
    • (1988) Genetics , vol.119 , Issue.1 , pp. 105
    • Homyk, Jr.T.1    Emerson, Jr.C.2
  • 17
    • 0037358827 scopus 로고    scopus 로고
    • Detecting recombination in 4-taxa DNA sequence alignments with Bayesian hidden Markov models and Markov chain Monte Carlo
    • 10.1093/molbev/msg039
    • Husmeier, D., & McGuire, G. (2003). Detecting recombination in 4-taxa DNA sequence alignments with Bayesian hidden Markov models and Markov chain Monte Carlo. Molecular Biology and Evolution, 20(3), 315-337.
    • (2003) Molecular Biology and Evolution , vol.20 , Issue.3 , pp. 315-337
    • Husmeier, D.1    McGuire, G.2
  • 19
    • 77956517638 scopus 로고    scopus 로고
    • Sparsistent learning of varying-coefficient models with structural changes
    • Y. Bengio D. Schuurmans J. Lafferty C. K. I. Williams A. Culotta (eds)
    • Kolar, M., Song, L., & Xing, E. (2009). Sparsistent learning of varying-coefficient models with structural changes. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (NIPS) (Vol. 22, pp. 1006-1014).
    • (2009) Advances in Neural Information Processing Systems (NIPS) , vol.22 , pp. 1006-1014
    • Kolar, M.1    Song, L.2    Xing, E.3
  • 20
    • 0032976397 scopus 로고    scopus 로고
    • Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees
    • 10.1093/oxfordjournals.molbev.a026160
    • Larget, B., & Simon, D. L. (1999). Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16(6), 750-759.
    • (1999) Molecular Biology and Evolution , vol.16 , Issue.6 , pp. 750-759
    • Larget, B.1    Simon, D.L.2
  • 22
    • 77957930628 scopus 로고    scopus 로고
    • Statistical inference of the time-varying structure of gene-regulation networks
    • 10.1186/1752-0509-4-130
    • Lèbre, S., Becq, J., Devaux, F., Lelandais, G., & Stumpf, M. (2010). Statistical inference of the time-varying structure of gene-regulation networks. BMC Systems Biology, 4, 130.
    • (2010) BMC Systems Biology , vol.4 , pp. 130
    • Lèbre, S.1    Becq, J.2    Devaux, F.3    Lelandais, G.4    Stumpf, M.5
  • 24
    • 1842456978 scopus 로고    scopus 로고
    • Characterization of a hypercontraction-induced myopathy in Drosophila caused by mutations in mhc
    • 10.1083/jcb.200308158
    • Montana, E., & Littleton, J. (2004). Characterization of a hypercontraction-induced myopathy in Drosophila caused by mutations in mhc. The Journal of Cell Biology, 164(7), 1045.
    • (2004) The Journal of Cell Biology , vol.164 , Issue.7 , pp. 1045
    • Montana, E.1    Littleton, J.2
  • 25
    • 0038530975 scopus 로고    scopus 로고
    • Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster
    • Nongthomba, U., Cummins, M., Clark, S., Vigoreaux, J., & Sparrow, J. (2003). Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster. Genetics, 164(1), 209.
    • (2003) Genetics , vol.164 , Issue.1 , pp. 209
    • Nongthomba, U.1    Cummins, M.2    Clark, S.3    Vigoreaux, J.4    Sparrow, J.5
  • 26
    • 0026084840 scopus 로고
    • WIMP, a dominant maternal-effect mutation, reduces transcription of a specific subset of segmentation genes in Drosophila
    • 10.1101/gad.5.3.341
    • Parkhurst, S., & Ish-Horowicz, D. (1991). WIMP, a dominant maternal-effect mutation, reduces transcription of a specific subset of segmentation genes in Drosophila. Genes & Development, 5(3), 341.
    • (1991) Genes & Development , vol.5 , Issue.3 , pp. 341
    • Parkhurst, S.1    Ish-Horowicz, D.2
  • 29
    • 0036504268 scopus 로고    scopus 로고
    • Bayesian curve fitting using MCMC with applications to signal segmentation
    • 10.1109/78.984776
    • Punskaya, E., Andrieu, C., Doucet, A., & Fitzgerald, W. (2002). Bayesian curve fitting using MCMC with applications to signal segmentation. IEEE Transactions on Signal Processing, 50(3), 747-758.
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.3 , pp. 747-758
    • Punskaya, E.1    Andrieu, C.2    Doucet, A.3    Fitzgerald, W.4
  • 30
    • 77956500503 scopus 로고    scopus 로고
    • Non-stationary dynamic Bayesian networks
    • D. Koller D. Schuurmans Y. Bengio L. Bottou (eds) 21 Morgan Kaufmann San Mateo
    • Robinson, J. W., & Hartemink, A. J. (2009). Non-stationary dynamic Bayesian networks. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems (NIPS) (Vol. 21, pp. 1369-1376). San Mateo: Morgan Kaufmann.
    • (2009) Advances in Neural Information Processing Systems (NIPS) , pp. 1369-1376
    • Robinson, J.W.1    Hartemink, A.J.2
  • 31
    • 79551497706 scopus 로고    scopus 로고
    • Learning non-stationary dynamic Bayesian networks
    • 2756196 1242.68244
    • Robinson, J., & Hartemink, A. (2010). Learning non-stationary dynamic Bayesian networks. Journal of Machine Learning Research, 11, 3647-3680.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3647-3680
    • Robinson, J.1    Hartemink, A.2
  • 32
    • 0032943195 scopus 로고    scopus 로고
    • Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an internet database
    • 10.1093/nar/27.1.89
    • Sanchez, C., Lachaize, C., Janody, F., Bellon, B., Roeder, L., Euzenat, J., Rechenmann, F., & Jacq, B. (1999). Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an internet database. Nucleic Acids Research, 27(1), 89.
    • (1999) Nucleic Acids Research , vol.27 , Issue.1 , pp. 89
    • Sanchez, C.1    Lachaize, C.2    Janody, F.3    Bellon, B.4    Roeder, L.5    Euzenat, J.6    Rechenmann, F.7    Jacq, B.8
  • 33
    • 33644876926 scopus 로고    scopus 로고
    • FLIGHT: Database and tools for the integration and cross-correlation of large-scale RNAi phenotypic datasets
    • D479 10.1093/nar/gkj038
    • Sims, D., Bursteinas, B., Gao, Q., Zvelebil, M., & Baum, B. (2006). FLIGHT: database and tools for the integration and cross-correlation of large-scale RNAi phenotypic datasets. Nucleic Acids Research, 34(suppl 1), D479.
    • (2006) Nucleic Acids Research , vol.34 , Issue.SUPPL. 1
    • Sims, D.1    Bursteinas, B.2    Gao, Q.3    Zvelebil, M.4    Baum, B.5
  • 34
    • 20744459144 scopus 로고    scopus 로고
    • Structural learning with time-varying components: Tracking the cross-section of financial time series
    • 2155341 1071.62094 10.1111/j.1467-9868.2005.00504.x
    • Talih, M., & Hengartner, N. (2005). Structural learning with time-varying components: tracking the cross-section of financial time series. Journal of the Royal Statistical Society B, 67(3), 321-341.
    • (2005) Journal of the Royal Statistical Society B , vol.67 , Issue.3 , pp. 321-341
    • Talih, M.1    Hengartner, N.2
  • 35
    • 79952665170 scopus 로고    scopus 로고
    • Time varying dynamic Bayesian network for non-stationary events modeling and online inference
    • 10.1109/TSP.2010.2103071
    • Wang, Z., Kuruoglu, E., Yang, X., Xu, Y., & Huang, T. (2011). Time varying dynamic Bayesian network for non-stationary events modeling and online inference. IEEE Transactions on Signal Processing, 4(59), 1553.
    • (2011) IEEE Transactions on Signal Processing , vol.4 , Issue.59 , pp. 1553
    • Wang, Z.1    Kuruoglu, E.2    Yang, X.3    Xu, Y.4    Huang, T.5
  • 36
    • 46049101810 scopus 로고    scopus 로고
    • Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions
    • 10.1142/S0219720008003539
    • Werhli, A. V., & Husmeier, D. (2008). Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions. Journal of Bioinformatics and Computational Biology, 6(3), 543-572.
    • (2008) Journal of Bioinformatics and Computational Biology , vol.6 , Issue.3 , pp. 543-572
    • Werhli, A.V.1    Husmeier, D.2
  • 38
    • 0002817906 scopus 로고
    • On assessing prior distributions and Bayesian regression analysis with g-prior distributions
    • Goel A. Zellner (eds) Elsevier Amsterdam
    • Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In P. Goel & A. Zellner (Eds.), Bayesian inference and decision techniques (pp. 233-243). Amsterdam: Elsevier.
    • (1986) Bayesian Inference and Decision Techniques , pp. 233-243
    • Zellner, A.1
  • 39
    • 33748654580 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time series data using the minimum description length principle
    • 10.1093/bioinformatics/btl364
    • Zhao, W., Serpedin, E., & Dougherty, E. (2006). Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics, 22(17), 2129.
    • (2006) Bioinformatics , vol.22 , Issue.17 , pp. 2129
    • Zhao, W.1    Serpedin, E.2    Dougherty, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.