-
1
-
-
67849135609
-
Recovering time-varying networks of dependencies in social and biological studies
-
10.1073/pnas.0901910106
-
Ahmed, A., & Xing, E. P. (2009). Recovering time-varying networks of dependencies in social and biological studies. Proceedings of the National Academy of Sciences, 106, 11878-11883.
-
(2009)
Proceedings of the National Academy of Sciences
, vol.106
, pp. 11878-11883
-
-
Ahmed, A.1
Xing, E.P.2
-
2
-
-
33745454125
-
Synthetic biology: New engineering rules for an emerging discipline
-
Andrianantoandro, E., Basu, S., Karig, D., & Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2(1), E1-E14.
-
(2006)
Molecular Systems Biology
, vol.2
, Issue.1
-
-
Andrianantoandro, E.1
Basu, S.2
Karig, D.3
Weiss, R.4
-
3
-
-
0033349354
-
Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
-
10.1109/78.790649
-
Andrieu, C., & Doucet, A. (1999). Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC. IEEE Transactions on Signal Processing, 47(10), 2667-2676.
-
(1999)
IEEE Transactions on Signal Processing
, vol.47
, Issue.10
, pp. 2667-2676
-
-
Andrieu, C.1
Doucet, A.2
-
4
-
-
0037183901
-
Gene expression during the life cycle of Drosophila melanogaster
-
10.1126/science.1072152
-
Arbeitman, M., Furlong, E., Imam, F., Johnson, E., Null, B., Baker, B., Krasnow, M., Scott, M., Davis, R., & White, K. (2002). Gene expression during the life cycle of Drosophila melanogaster. Science, 297(5590), 2270-2275.
-
(2002)
Science
, vol.297
, Issue.5590
, pp. 2270-2275
-
-
Arbeitman, M.1
Furlong, E.2
Imam, F.3
Johnson, E.4
Null, B.5
Baker, B.6
Krasnow, M.7
Scott, M.8
Davis, R.9
White, K.10
-
5
-
-
63049128934
-
A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
-
10.1016/j.cell.2009.01.055
-
Cantone, I., Marucci, L., Iorio, F., Ricci, M.A., Belcastro, V., Bansal, M., Santini, S., di Bernardo, M., di Bernardo, D., & Cosma, M. P. (2009). A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell, 137(1), 172-181.
-
(2009)
Cell
, vol.137
, Issue.1
, pp. 172-181
-
-
Cantone, I.1
Marucci, L.2
Iorio, F.3
Ricci, M.A.4
Belcastro, V.5
Bansal, M.6
Santini, S.7
Di Bernardo, M.8
Di Bernardo, D.9
Cosma, M.P.10
-
9
-
-
20144379646
-
Protein interaction mapping: A Drosophila case study
-
10.1101/gr.2659105
-
Formstecher, E., Aresta, S., Collura, V., Hamburger, A., Meil, A., Trehin, A., Reverdy, C., Betin, V., Maire, S., Brun, C., et al. (2005). Protein interaction mapping: a Drosophila case study. Genome Research, 15(3), 376.
-
(2005)
Genome Research
, vol.15
, Issue.3
, pp. 376
-
-
Formstecher, E.1
Aresta, S.2
Collura, V.3
Hamburger, A.4
Meil, A.5
Trehin, A.6
Reverdy, C.7
Betin, V.8
Maire, S.9
Brun, C.10
-
10
-
-
84972492387
-
Inference from iterative simulation using multiple sequences
-
10.1214/ss/1177011136
-
Gelman, A., & Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457-472.
-
(1992)
Statistical Science
, vol.7
, Issue.4
, pp. 457-472
-
-
Gelman, A.1
Rubin, D.2
-
11
-
-
77956889087
-
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
-
1380810 0861.62023 10.1093/biomet/82.4.711
-
Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.1
-
12
-
-
77956512704
-
Non-stationary continuous dynamic Bayesian networks
-
Y. Bengio D. Schuurmans J. Lafferty C. K. I. Williams A. Culotta (eds)
-
Grzegorczyk, M., & Husmeier, D. (2009). Non-stationary continuous dynamic Bayesian networks. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (NIPS) (Vol. 22, pp. 682-690).
-
(2009)
Advances in Neural Information Processing Systems (NIPS)
, vol.22
, pp. 682-690
-
-
Grzegorczyk, M.1
Husmeier, D.2
-
13
-
-
79958861169
-
Non-homogeneous dynamic Bayesian networks for continuous data
-
06031860 10.1007/s10994-010-5230-7
-
Grzegorczyk, M., & Husmeier, D. (2011). Non-homogeneous dynamic Bayesian networks for continuous data. Machine Learning, 83, 355-419.
-
(2011)
Machine Learning
, vol.83
, pp. 355-419
-
-
Grzegorczyk, M.1
Husmeier, D.2
-
14
-
-
34547980513
-
Recovering temporally rewiring networks: A model-based approach
-
ACM New York
-
Guo, F., Hanneke, S., Fu, W., & Xing, E. (2007). Recovering temporally rewiring networks: a model-based approach. In Proceedings of the 24th international conference on machine learning (p. 328). New York: ACM.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning
, pp. 328
-
-
Guo, F.1
Hanneke, S.2
Fu, W.3
Xing, E.4
-
15
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
0219.65008 10.1093/biomet/57.1.97
-
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
16
-
-
0024007351
-
Functional interactions between unlinked muscle genes within haploinsufficient regions of the Drosophila genome
-
Homyk, T. Jr, & Emerson, C. Jr (1988). Functional interactions between unlinked muscle genes within haploinsufficient regions of the Drosophila genome. Genetics, 119(1), 105.
-
(1988)
Genetics
, vol.119
, Issue.1
, pp. 105
-
-
Homyk, Jr.T.1
Emerson, Jr.C.2
-
17
-
-
0037358827
-
Detecting recombination in 4-taxa DNA sequence alignments with Bayesian hidden Markov models and Markov chain Monte Carlo
-
10.1093/molbev/msg039
-
Husmeier, D., & McGuire, G. (2003). Detecting recombination in 4-taxa DNA sequence alignments with Bayesian hidden Markov models and Markov chain Monte Carlo. Molecular Biology and Evolution, 20(3), 315-337.
-
(2003)
Molecular Biology and Evolution
, vol.20
, Issue.3
, pp. 315-337
-
-
Husmeier, D.1
McGuire, G.2
-
18
-
-
85161981671
-
Inter-time segment information sharing for non-homogeneous dynamic Bayesian networks
-
J. Lafferty (eds) 23 Curran Associates New York
-
Husmeier, D., Dondelinger, F., & Lèbre, S. (2010). Inter-time segment information sharing for non-homogeneous dynamic Bayesian networks. In J. Lafferty (Ed.), Proceedings of the twenty-fourth annual conference on neural information processing systems (NIPS) (Vol. 23, pp. 901-909). New York: Curran Associates.
-
(2010)
Proceedings of the Twenty-fourth Annual Conference on Neural Information Processing Systems (NIPS)
, pp. 901-909
-
-
Husmeier, D.1
Dondelinger, F.2
Lèbre, S.3
-
19
-
-
77956517638
-
Sparsistent learning of varying-coefficient models with structural changes
-
Y. Bengio D. Schuurmans J. Lafferty C. K. I. Williams A. Culotta (eds)
-
Kolar, M., Song, L., & Xing, E. (2009). Sparsistent learning of varying-coefficient models with structural changes. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (NIPS) (Vol. 22, pp. 1006-1014).
-
(2009)
Advances in Neural Information Processing Systems (NIPS)
, vol.22
, pp. 1006-1014
-
-
Kolar, M.1
Song, L.2
Xing, E.3
-
20
-
-
0032976397
-
Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees
-
10.1093/oxfordjournals.molbev.a026160
-
Larget, B., & Simon, D. L. (1999). Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16(6), 750-759.
-
(1999)
Molecular Biology and Evolution
, vol.16
, Issue.6
, pp. 750-759
-
-
Larget, B.1
Simon, D.L.2
-
22
-
-
77957930628
-
Statistical inference of the time-varying structure of gene-regulation networks
-
10.1186/1752-0509-4-130
-
Lèbre, S., Becq, J., Devaux, F., Lelandais, G., & Stumpf, M. (2010). Statistical inference of the time-varying structure of gene-regulation networks. BMC Systems Biology, 4, 130.
-
(2010)
BMC Systems Biology
, vol.4
, pp. 130
-
-
Lèbre, S.1
Becq, J.2
Devaux, F.3
Lelandais, G.4
Stumpf, M.5
-
23
-
-
33846050368
-
Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana
-
Locke, J., Kozma-Bognár, L., Gould, P., Fehér, B., Kevei, E., Nagy, F., Turner, M., Hall, A., & Millar, A. (2006). Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Molecular Systems Biology, 2(1), 59.
-
(2006)
Molecular Systems Biology
, vol.2
, Issue.1
, pp. 59
-
-
Locke, J.1
Kozma-Bognár, L.2
Gould, P.3
Fehér, B.4
Kevei, E.5
Nagy, F.6
Turner, M.7
Hall, A.8
Millar, A.9
-
24
-
-
1842456978
-
Characterization of a hypercontraction-induced myopathy in Drosophila caused by mutations in mhc
-
10.1083/jcb.200308158
-
Montana, E., & Littleton, J. (2004). Characterization of a hypercontraction-induced myopathy in Drosophila caused by mutations in mhc. The Journal of Cell Biology, 164(7), 1045.
-
(2004)
The Journal of Cell Biology
, vol.164
, Issue.7
, pp. 1045
-
-
Montana, E.1
Littleton, J.2
-
25
-
-
0038530975
-
Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster
-
Nongthomba, U., Cummins, M., Clark, S., Vigoreaux, J., & Sparrow, J. (2003). Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster. Genetics, 164(1), 209.
-
(2003)
Genetics
, vol.164
, Issue.1
, pp. 209
-
-
Nongthomba, U.1
Cummins, M.2
Clark, S.3
Vigoreaux, J.4
Sparrow, J.5
-
26
-
-
0026084840
-
WIMP, a dominant maternal-effect mutation, reduces transcription of a specific subset of segmentation genes in Drosophila
-
10.1101/gad.5.3.341
-
Parkhurst, S., & Ish-Horowicz, D. (1991). WIMP, a dominant maternal-effect mutation, reduces transcription of a specific subset of segmentation genes in Drosophila. Genes & Development, 5(3), 341.
-
(1991)
Genes & Development
, vol.5
, Issue.3
, pp. 341
-
-
Parkhurst, S.1
Ish-Horowicz, D.2
-
27
-
-
77957260103
-
Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model
-
Pokhilko, A., Hodge, S., Stratford, K., Knox, K., Edwards, K., Thomson, A., Mizuno, T., & Millar, A. (2010). Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model. Molecular Systems Biology, 6(1), 416.
-
(2010)
Molecular Systems Biology
, vol.6
, Issue.1
, pp. 416
-
-
Pokhilko, A.1
Hodge, S.2
Stratford, K.3
Knox, K.4
Edwards, K.5
Thomson, A.6
Mizuno, T.7
Millar, A.8
-
28
-
-
77949644952
-
Towards a rigorous assessment of systems biology models: The DREAM3 challenges
-
e9202 10.1371/journal.pone.0009202
-
Prill, R. J., Marbach, D., Saez-Rodriguez, J., Sorger, P. K., Alexopoulos, L. G., Xue, X., Clarke, N. D., Altan-Bonnet, G., & Stolovitzky, G. (2010). Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS ONE, 5(2), e9202.
-
(2010)
PLoS ONE
, vol.5
, Issue.2
-
-
Prill, R.J.1
Marbach, D.2
Saez-Rodriguez, J.3
Sorger, P.K.4
Alexopoulos, L.G.5
Xue, X.6
Clarke, N.D.7
Altan-Bonnet, G.8
Stolovitzky, G.9
-
29
-
-
0036504268
-
Bayesian curve fitting using MCMC with applications to signal segmentation
-
10.1109/78.984776
-
Punskaya, E., Andrieu, C., Doucet, A., & Fitzgerald, W. (2002). Bayesian curve fitting using MCMC with applications to signal segmentation. IEEE Transactions on Signal Processing, 50(3), 747-758.
-
(2002)
IEEE Transactions on Signal Processing
, vol.50
, Issue.3
, pp. 747-758
-
-
Punskaya, E.1
Andrieu, C.2
Doucet, A.3
Fitzgerald, W.4
-
30
-
-
77956500503
-
Non-stationary dynamic Bayesian networks
-
D. Koller D. Schuurmans Y. Bengio L. Bottou (eds) 21 Morgan Kaufmann San Mateo
-
Robinson, J. W., & Hartemink, A. J. (2009). Non-stationary dynamic Bayesian networks. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems (NIPS) (Vol. 21, pp. 1369-1376). San Mateo: Morgan Kaufmann.
-
(2009)
Advances in Neural Information Processing Systems (NIPS)
, pp. 1369-1376
-
-
Robinson, J.W.1
Hartemink, A.J.2
-
31
-
-
79551497706
-
Learning non-stationary dynamic Bayesian networks
-
2756196 1242.68244
-
Robinson, J., & Hartemink, A. (2010). Learning non-stationary dynamic Bayesian networks. Journal of Machine Learning Research, 11, 3647-3680.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3647-3680
-
-
Robinson, J.1
Hartemink, A.2
-
32
-
-
0032943195
-
Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an internet database
-
10.1093/nar/27.1.89
-
Sanchez, C., Lachaize, C., Janody, F., Bellon, B., Roeder, L., Euzenat, J., Rechenmann, F., & Jacq, B. (1999). Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an internet database. Nucleic Acids Research, 27(1), 89.
-
(1999)
Nucleic Acids Research
, vol.27
, Issue.1
, pp. 89
-
-
Sanchez, C.1
Lachaize, C.2
Janody, F.3
Bellon, B.4
Roeder, L.5
Euzenat, J.6
Rechenmann, F.7
Jacq, B.8
-
33
-
-
33644876926
-
FLIGHT: Database and tools for the integration and cross-correlation of large-scale RNAi phenotypic datasets
-
D479 10.1093/nar/gkj038
-
Sims, D., Bursteinas, B., Gao, Q., Zvelebil, M., & Baum, B. (2006). FLIGHT: database and tools for the integration and cross-correlation of large-scale RNAi phenotypic datasets. Nucleic Acids Research, 34(suppl 1), D479.
-
(2006)
Nucleic Acids Research
, vol.34
, Issue.SUPPL. 1
-
-
Sims, D.1
Bursteinas, B.2
Gao, Q.3
Zvelebil, M.4
Baum, B.5
-
34
-
-
20744459144
-
Structural learning with time-varying components: Tracking the cross-section of financial time series
-
2155341 1071.62094 10.1111/j.1467-9868.2005.00504.x
-
Talih, M., & Hengartner, N. (2005). Structural learning with time-varying components: tracking the cross-section of financial time series. Journal of the Royal Statistical Society B, 67(3), 321-341.
-
(2005)
Journal of the Royal Statistical Society B
, vol.67
, Issue.3
, pp. 321-341
-
-
Talih, M.1
Hengartner, N.2
-
35
-
-
79952665170
-
Time varying dynamic Bayesian network for non-stationary events modeling and online inference
-
10.1109/TSP.2010.2103071
-
Wang, Z., Kuruoglu, E., Yang, X., Xu, Y., & Huang, T. (2011). Time varying dynamic Bayesian network for non-stationary events modeling and online inference. IEEE Transactions on Signal Processing, 4(59), 1553.
-
(2011)
IEEE Transactions on Signal Processing
, vol.4
, Issue.59
, pp. 1553
-
-
Wang, Z.1
Kuruoglu, E.2
Yang, X.3
Xu, Y.4
Huang, T.5
-
36
-
-
46049101810
-
Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions
-
10.1142/S0219720008003539
-
Werhli, A. V., & Husmeier, D. (2008). Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions. Journal of Bioinformatics and Computational Biology, 6(3), 543-572.
-
(2008)
Journal of Bioinformatics and Computational Biology
, vol.6
, Issue.3
, pp. 543-572
-
-
Werhli, A.V.1
Husmeier, D.2
-
38
-
-
0002817906
-
On assessing prior distributions and Bayesian regression analysis with g-prior distributions
-
Goel A. Zellner (eds) Elsevier Amsterdam
-
Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In P. Goel & A. Zellner (Eds.), Bayesian inference and decision techniques (pp. 233-243). Amsterdam: Elsevier.
-
(1986)
Bayesian Inference and Decision Techniques
, pp. 233-243
-
-
Zellner, A.1
-
39
-
-
33748654580
-
Inferring gene regulatory networks from time series data using the minimum description length principle
-
10.1093/bioinformatics/btl364
-
Zhao, W., Serpedin, E., & Dougherty, E. (2006). Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics, 22(17), 2129.
-
(2006)
Bioinformatics
, vol.22
, Issue.17
, pp. 2129
-
-
Zhao, W.1
Serpedin, E.2
Dougherty, E.3
|