메뉴 건너뛰기




Volumn 197, Issue , 2017, Pages 42-63

Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm

Author keywords

Drought in Murray Darling Basin; Iterative input selection algorithm, MODWT; Streamflow forecasting; Wavelet hybrid model

Indexed keywords

DISCRETE WAVELET TRANSFORMS; DROUGHT; ERRORS; FORECASTING; FORESTRY; ITERATIVE METHODS; MATRIX ALGEBRA; METEOROLOGY; NEURAL NETWORKS; OPTIMIZATION; STREAM FLOW; WATER LEVELS; WATER RESOURCES; WAVELET TRANSFORMS;

EID: 85021292297     PISSN: 01698095     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.atmosres.2017.06.014     Document Type: Article
Times cited : (137)

References (129)
  • 1
    • 84862685995 scopus 로고    scopus 로고
    • Application of artificial neural networks to rainfall forecasting in Queensland, Australia
    • Abbot, J., Marohasy, J., Application of artificial neural networks to rainfall forecasting in Queensland, Australia. Adv. Atmos. Sci. 29 (2012), 717–730.
    • (2012) Adv. Atmos. Sci. , vol.29 , pp. 717-730
    • Abbot, J.1    Marohasy, J.2
  • 2
    • 84889646990 scopus 로고    scopus 로고
    • Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks
    • Abbot, J., Marohasy, J., Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmos. Res. 138 (2014), 166–178.
    • (2014) Atmos. Res. , vol.138 , pp. 166-178
    • Abbot, J.1    Marohasy, J.2
  • 3
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski, J., Chan, H.F., A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 407 (2011), 28–40.
    • (2011) J. Hydrol. , vol.407 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 4
    • 84856246099 scopus 로고    scopus 로고
    • Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada
    • Adamowski, J., Fung Chan, H., Prasher, S.O., Ozga-Zielinski, B., Sliusarieva, A., Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resour. Res., 48, 2012.
    • (2012) Water Resour. Res. , vol.48
    • Adamowski, J.1    Fung Chan, H.2    Prasher, S.O.3    Ozga-Zielinski, B.4    Sliusarieva, A.5
  • 5
    • 33344463490 scopus 로고    scopus 로고
    • Water level forecasting through fuzzy logic and artificial neural network approaches
    • Alvisi, S., Mascellani, G., Franchini, M., B'ardossy, A., Water level forecasting through fuzzy logic and artificial neural network approaches. Hydrol. Earth Syst. Sci. 10 (2006), 1–17.
    • (2006) Hydrol. Earth Syst. Sci. , vol.10 , pp. 1-17
    • Alvisi, S.1    Mascellani, G.2    Franchini, M.3    B'ardossy, A.4
  • 6
    • 0034174280 scopus 로고    scopus 로고
    • Task committee on application of ANN in hydrology, artificial neural networks in hydrology-I-preliminary concepts
    • ASCE, Task committee on application of ANN in hydrology, artificial neural networks in hydrology-I-preliminary concepts. J. Hydrol. Eng. 5 (2000), 115–123.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 115-123
    • ASCE1
  • 7
    • 33947647934 scopus 로고    scopus 로고
    • Nonlinear Programming: Analysis and Methods
    • Courier Corporation
    • Avriel, M., Nonlinear Programming: Analysis and Methods. 2003, Courier Corporation.
    • (2003)
    • Avriel, M.1
  • 8
    • 80053004163 scopus 로고    scopus 로고
    • Water and the Murray-Darling Basin - A Statistical Profile, 2000-01 to 2005-06
    • 23 May, 15/08/2008, <>
    • Australian Bureau of Statistics, Water and the Murray-Darling Basin - A Statistical Profile, 2000-01 to 2005-06. 2008 23 May, 15/08/2008, < http://www.abs.gov.au/ausstats/abs@.nsf/mf/4610.0.55.007>.
    • (2008)
    • Australian Bureau of Statistics1
  • 9
    • 84959315369 scopus 로고    scopus 로고
    • Improving Ann-based short-term and long-term seasonal river flow forecasting with signal processing techniques
    • Badrzadeh, H., Sarukkalige, R., Jayawardena, A.W., Improving Ann-based short-term and long-term seasonal river flow forecasting with signal processing techniques. River Res. Appl. 32 (2016), 245–256.
    • (2016) River Res. Appl. , vol.32 , pp. 245-256
    • Badrzadeh, H.1    Sarukkalige, R.2    Jayawardena, A.W.3
  • 10
    • 85086256335 scopus 로고    scopus 로고
    • A comparison of the BAWAP and SILO spatially interpolated daily rainfall datasets
    • Cairns Australia
    • Beesley, C., Frost, A., Zajaczkowski, J., A comparison of the BAWAP and SILO spatially interpolated daily rainfall datasets. 18th World IMACS/MODSIM Congress, 2009, Cairns, Australia, 17.
    • (2009) 18th World IMACS/MODSIM Congress , pp. 17
    • Beesley, C.1    Frost, A.2    Zajaczkowski, J.3
  • 12
    • 12144264770 scopus 로고    scopus 로고
    • Neural networks and M5 model trees in modelling water level–discharge relationship
    • Bhattacharya, B., Solomatine, D.P., Neural networks and M5 model trees in modelling water level–discharge relationship. Neurocomputing 63 (2005), 381–396.
    • (2005) Neurocomputing , vol.63 , pp. 381-396
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 13
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1—background and methodology
    • Bowden, G.J., Dandy, G.C., Maier, H.R., Input determination for neural network models in water resources applications. Part 1—background and methodology. J. Hydrol. 301 (2005), 75–92.
    • (2005) J. Hydrol. , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 14
    • 0037087735 scopus 로고    scopus 로고
    • An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment
    • Cameron, D., Kneale, P., See, L., An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment. Hydrol. Process. 16 (2002), 1033–1046.
    • (2002) Hydrol. Process. , vol.16 , pp. 1033-1046
    • Cameron, D.1    Kneale, P.2    See, L.3
  • 15
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno
    • Campolo, M., Soldati, A., Andreussi, P., Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J. 48 (2003), 381–398.
    • (2003) Hydrol. Sci. J. , vol.48 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 16
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas, B., Fanni, A., See, L., Sias, G., Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Physics and Chemistry of the Earth, Parts A/B/C 31 (2006), 1164–1171.
    • (2006) Physics and Chemistry of the Earth, Parts A/B/C , vol.31 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 17
    • 84903642315 scopus 로고    scopus 로고
    • Root mean square error (RMSE) or mean absolute error (MAE)?—arguments against avoiding RMSE in the literature
    • Chai, T., Draxler, R.R., Root mean square error (RMSE) or mean absolute error (MAE)?—arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7 (2014), 1247–1250.
    • (2014) Geosci. Model Dev. , vol.7 , pp. 1247-1250
    • Chai, T.1    Draxler, R.R.2
  • 18
    • 84903642315 scopus 로고    scopus 로고
    • Root mean square error (RMSE) or mean absolute error (MAE)? — arguments against avoiding RMSE in the literature
    • Chai, T., Draxler, R.R., Root mean square error (RMSE) or mean absolute error (MAE)? — arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7 (2014), 1247–1250.
    • (2014) Geosci. Model Dev. , vol.7 , pp. 1247-1250
    • Chai, T.1    Draxler, R.R.2
  • 19
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
    • Chau, K.W., Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol. 329 (2006), 363–367.
    • (2006) J. Hydrol. , vol.329 , pp. 363-367
    • Chau, K.W.1
  • 20
    • 35349010023 scopus 로고    scopus 로고
    • A split-step particle swarm optimization algorithm in river stage forecasting
    • Chau, K.W., A split-step particle swarm optimization algorithm in river stage forecasting. J. Hydrol. 346 (2007), 131–135.
    • (2007) J. Hydrol. , vol.346 , pp. 131-135
    • Chau, K.W.1
  • 21
    • 0032579575 scopus 로고    scopus 로고
    • El Nino/Southern oscillation and Australian rainfall, streamflow and drought: links and potential for forecasting
    • Chiew, F.H., Piechota, T.C., Dracup, J.A., McMahon, T.A., El Nino/Southern oscillation and Australian rainfall, streamflow and drought: links and potential for forecasting. J. Hydrol. 204 (1998), 138–149.
    • (1998) J. Hydrol. , vol.204 , pp. 138-149
    • Chiew, F.H.1    Piechota, T.C.2    Dracup, J.A.3    McMahon, T.A.4
  • 22
    • 85021307465 scopus 로고    scopus 로고
    • Maximal OverlapWavelet Statistical Analysis With Application to Atmospheric Turbulence
    • Kluwer Academic Publishers Netherlands
    • Cornish, C.R., Bretherton, S., Percival, D.B., Maximal OverlapWavelet Statistical Analysis With Application to Atmospheric Turbulence. 2005, Kluwer Academic Publishers, Netherlands.
    • (2005)
    • Cornish, C.R.1    Bretherton, S.2    Percival, D.B.3
  • 24
    • 84929625912 scopus 로고    scopus 로고
    • Climate Change in Australia Information for Australia's Natural Resource Management Regions: Technical Report
    • CSIRO and Bureau of Meteorology Australia
    • CSIRO and Bureau of Meteorology, Climate Change in Australia Information for Australia's Natural Resource Management Regions: Technical Report. 2015, CSIRO and Bureau of Meteorology, Australia.
    • (2015)
    • CSIRO and Bureau of Meteorology1
  • 25
    • 0025482241 scopus 로고
    • The wavelet transform, time-frequency localization and signal analysis
    • Daubechies, I., The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theor. 36 (1990), 961–1005.
    • (1990) IEEE Trans. Inf. Theor. , vol.36 , pp. 961-1005
    • Daubechies, I.1
  • 26
    • 85015440073 scopus 로고    scopus 로고
    • Application of hybrid artificial neural network algorithms for the prediction of standardized precipitation index
    • IEEE, Singapore
    • Dayal, K., Deo Ravinesh, C., Apan, A., Application of hybrid artificial neural network algorithms for the prediction of standardized precipitation index. IEEE TENCON 2016 — Technologies for Smart Nation, 2016 IEEE, Singapore.
    • (2016) IEEE TENCON 2016 — Technologies for Smart Nation
    • Dayal, K.1    Deo Ravinesh, C.2    Apan, A.3
  • 28
    • 84921346683 scopus 로고    scopus 로고
    • The skill of seasonal ensemble low-flow forecasts in the Moselle River for three different hydrological models
    • Demirel, M.C., Booij, M.J., Hoekstra, A.Y., The skill of seasonal ensemble low-flow forecasts in the Moselle River for three different hydrological models. Hydrol. Earth Syst. Sci. 19 (2015), 275–291, 10.5194/hess-19-275-2015.
    • (2015) Hydrol. Earth Syst. Sci. , vol.19 , pp. 275-291
    • Demirel, M.C.1    Booij, M.J.2    Hoekstra, A.Y.3
  • 29
    • 0003617434 scopus 로고    scopus 로고
    • Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Siam
    • Dennis, J.E. Jr., Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Siam. 1996.
    • (1996)
    • Dennis, J.E.1    Schnabel, R.B.2
  • 30
    • 85013212376 scopus 로고    scopus 로고
    • Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle
    • Deo, R.C., Downs, N., Parisi, A., Adamowski, J., Quilty, J., Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle. Environ. Res. 155 (2017), 141–166.
    • (2017) Environ. Res. , vol.155 , pp. 141-166
    • Deo, R.C.1    Downs, N.2    Parisi, A.3    Adamowski, J.4    Quilty, J.5
  • 31
    • 85016247366 scopus 로고    scopus 로고
    • Application of effective drought index for quantification of meteorological drought events: a case study in Australia
    • Deo, R.C., Byun, H.-R., Adamowski, J.F., Begum, K., Application of effective drought index for quantification of meteorological drought events: a case study in Australia. Theor. Appl. Climatol., 2016, 1–21.
    • (2016) Theor. Appl. Climatol. , pp. 1-21
    • Deo, R.C.1    Byun, H.-R.2    Adamowski, J.F.3    Begum, K.4
  • 32
    • 84938970119 scopus 로고    scopus 로고
    • A real-time flood monitoring index based on daily effective precipitation and its application to Brisbane and Lockyer Valley flood events
    • Deo, R.C., Byun, H.-R., Adamowski, J.F., Kim, D.-W., A real-time flood monitoring index based on daily effective precipitation and its application to Brisbane and Lockyer Valley flood events. Water Resour. Manag., 2015, 1–19, 10.1007/s11269-11015-11046-11263.
    • (2015) Water Resour. Manag. , pp. 1-19
    • Deo, R.C.1    Byun, H.-R.2    Adamowski, J.F.3    Kim, D.-W.4
  • 33
    • 84994060685 scopus 로고    scopus 로고
    • Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model
    • Deo, R.C., Kisi, O., Singh, V.P., Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model. Atmos. Res. 184 (2017), 149–175.
    • (2017) Atmos. Res. , vol.184 , pp. 149-175
    • Deo, R.C.1    Kisi, O.2    Singh, V.P.3
  • 34
    • 84954310363 scopus 로고    scopus 로고
    • An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
    • Deo, R.C., Sahin, M., An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Environ. Monit. Assess., 188, 2016, 90, 10.1007/s10661-016-5094-9.
    • (2016) Environ. Monit. Assess. , vol.188 , pp. 90
    • Deo, R.C.1    Sahin, M.2
  • 35
    • 85010288568 scopus 로고    scopus 로고
    • Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland
    • Deo, R.C., Sahin, M., Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland. Renew. Sust. Energ. Rev. 72 (2017), 828–848.
    • (2017) Renew. Sust. Energ. Rev. , vol.72 , pp. 828-848
    • Deo, R.C.1    Sahin, M.2
  • 36
    • 84928136722 scopus 로고    scopus 로고
    • Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern Australia
    • Deo, R.C., Şahin, M., Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern Australia. Atmos. Res. 161-162 (2015), 65–81.
    • (2015) Atmos. Res. , vol.161-162 , pp. 65-81
    • Deo, R.C.1    Şahin, M.2
  • 37
    • 84908611342 scopus 로고    scopus 로고
    • Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia
    • Deo, R.C., Şahin, M., Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia. Atmos. Res. 153 (2015), 512–525.
    • (2015) Atmos. Res. , vol.153 , pp. 512-525
    • Deo, R.C.1    Şahin, M.2
  • 38
    • 85020538410 scopus 로고    scopus 로고
    • Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
    • Deo, R.C., Tiwari, M.K., Adamowski, J.F., Quilty, M.J., Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model. Stoch. Env. Res. Risk A., 2016, 1–30.
    • (2016) Stoch. Env. Res. Risk A. , pp. 1-30
    • Deo, R.C.1    Tiwari, M.K.2    Adamowski, J.F.3    Quilty, M.J.4
  • 39
    • 84957916344 scopus 로고    scopus 로고
    • A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset
    • Deo, R.C., Wen, X., Qi, F., A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Appl. Energy 168 (2016), 568–593.
    • (2016) Appl. Energy , vol.168 , pp. 568-593
    • Deo, R.C.1    Wen, X.2    Qi, F.3
  • 42
    • 84911907592 scopus 로고    scopus 로고
    • Application of neural network to flood forecasting an examination of model sensitivity to rainfall assumptions
    • D.P. Ames N.W.T. Quinn A.E. Rizzoli International Environmental Modelling and Software Society (iEMSs) San Diego, CA, USA
    • Fazel, S.A.A., Mirfenderesk, H., Tomlinson, R., Application of neural network to flood forecasting an examination of model sensitivity to rainfall assumptions. Ames, D.P., Quinn, N.W.T., Rizzoli, A.E., (eds.) 7th Intl. Congress on Env. Modelling and Software, 2014, International Environmental Modelling and Software Society (iEMSs), San Diego, CA, USA.
    • (2014) 7th Intl. Congress on Env. Modelling and Software
    • Fazel, S.A.A.1    Mirfenderesk, H.2    Tomlinson, R.3
  • 43
    • 84880684699 scopus 로고    scopus 로고
    • Tree-based iterative input variable selection for hydrological modeling
    • Galelli, S., Castelletti, A., Tree-based iterative input variable selection for hydrological modeling. Water Resour. Res. 49 (2013), 4295–4310.
    • (2013) Water Resour. Res. , vol.49 , pp. 4295-4310
    • Galelli, S.1    Castelletti, A.2
  • 44
    • 84880684699 scopus 로고    scopus 로고
    • Tree-based iterative input variable selection for hydrological modeling
    • Galelli, S., Castelletti, A., Tree-based iterative input variable selection for hydrological modeling. Water Resour. Res. 49 (2013), 4295–4310.
    • (2013) Water Resour. Res. , vol.49 , pp. 4295-4310
    • Galelli, S.1    Castelletti, A.2
  • 45
    • 84907068377 scopus 로고    scopus 로고
    • An evaluation framework for input variable selection algorithms for environmental data-driven models
    • Galelli, S., et al., An evaluation framework for input variable selection algorithms for environmental data-driven models. Environ. Model. Softw. 62 (2014), 33–51.
    • (2014) Environ. Model. Softw. , vol.62 , pp. 33-51
    • Galelli, S.1
  • 46
    • 0442309436 scopus 로고    scopus 로고
    • The variable selection problem
    • George, E.I., The variable selection problem. J. Am. Stat. Assoc. 95 (2000), 1304–1308.
    • (2000) J. Am. Stat. Assoc. , vol.95 , pp. 1304-1308
    • George, E.I.1
  • 48
    • 70349272865 scopus 로고    scopus 로고
    • Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling
    • Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol. 377 (2009), 80–91.
    • (2009) J. Hydrol. , vol.377 , pp. 80-91
    • Gupta, H.V.1    Kling, H.2    Yilmaz, K.K.3    Martinez, G.F.4
  • 50
    • 62349086526 scopus 로고    scopus 로고
    • Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm
    • Hejazi, M.I., Cai, X., Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm. Adv. Water Resour. 32 (2009), 582–593.
    • (2009) Adv. Water Resour. , vol.32 , pp. 582-593
    • Hejazi, M.I.1    Cai, X.2
  • 51
    • 80053378534 scopus 로고    scopus 로고
    • Droughts in the Murrary-Darling Basin Since European Settlement. Griffith Centre for Coastal Management Research Report No 100, Licensed From the Murray-Darling Basin Authority Under a Creative Commons Attribution 3.0 Australia License
    • Helman, P., Droughts in the Murrary-Darling Basin Since European Settlement. Griffith Centre for Coastal Management Research Report No 100, Licensed From the Murray-Darling Basin Authority Under a Creative Commons Attribution 3.0 Australia License. 2009.
    • (2009)
    • Helman, P.1
  • 52
    • 84944278572 scopus 로고    scopus 로고
    • A review of performance criteria to validate simulation models
    • Hora, J., Campos, P., A review of performance criteria to validate simulation models. Expert. Syst. 32 (2015), 578–595.
    • (2015) Expert. Syst. , vol.32 , pp. 578-595
    • Hora, J.1    Campos, P.2
  • 53
    • 0014794877 scopus 로고
    • Unified approach to quadratically convergent algorithms for function minimization
    • Huang, H.-Y., Unified approach to quadratically convergent algorithms for function minimization. J. Optim. Theory Appl. 5 (1970), 405–423.
    • (1970) J. Optim. Theory Appl. , vol.5 , pp. 405-423
    • Huang, H.-Y.1
  • 54
    • 84976648644 scopus 로고    scopus 로고
    • A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network
    • Humphrey, G.B., Gibbs, M.S., Dandy, G.C., Maier, H.R., A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network. J. Hydrol. 540 (2016), 623–640.
    • (2016) J. Hydrol. , vol.540 , pp. 623-640
    • Humphrey, G.B.1    Gibbs, M.S.2    Dandy, G.C.3    Maier, H.R.4
  • 55
    • 84920916673 scopus 로고    scopus 로고
    • Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]
    • Geneva, Switzerland
    • IPCC, Pachauri, R.K., Meyer, L.A., Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland, 2014, 151.
    • (2014) , pp. 151
    • IPCC1    Pachauri, R.K.2    Meyer, L.A.3
  • 56
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
    • Jain, A., Srinivasulu, S., Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resour. Res. 40 (2004), 1–12.
    • (2004) Water Resour. Res. , vol.40 , pp. 1-12
    • Jain, A.1    Srinivasulu, S.2
  • 57
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain, S.K., Das, A., Srivastava, D.K., Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Plan. Manag. 125 (1999), 263–271.
    • (1999) J. Water Resour. Plan. Manag. , vol.125 , pp. 263-271
    • Jain, S.K.1    Das, A.2    Srivastava, D.K.3
  • 58
    • 0034787335 scopus 로고    scopus 로고
    • Using spatial interpolation to construct a comprehensive archive of Australian climate data
    • Jeffrey, S.J., Carter, J.O., Moodie, K.B., Beswick, A.R., Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 16 (2001), 309–330.
    • (2001) Environ. Model. Softw. , vol.16 , pp. 309-330
    • Jeffrey, S.J.1    Carter, J.O.2    Moodie, K.B.3    Beswick, A.R.4
  • 59
    • 80054975308 scopus 로고    scopus 로고
    • M5PrimeLab: M5' Regression Tree and Model Tree Toolbox for Matlab/Octave
    • Jekabsons, G., M5PrimeLab: M5' Regression Tree and Model Tree Toolbox for Matlab/Octave. 2010.
    • (2010)
    • Jekabsons, G.1
  • 61
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim, T.-W., Valdes, J.B., Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J. Hydrol. Eng. 8 (2003), 319–328.
    • (2003) J. Hydrol. Eng. , vol.8 , pp. 319-328
    • Kim, T.-W.1    Valdes, J.B.2
  • 62
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim, T.-W., Valdés, J.B., Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J. Hydrol. Eng. 8 (2003), 319–328.
    • (2003) J. Hydrol. Eng. , vol.8 , pp. 319-328
    • Kim, T.-W.1    Valdés, J.B.2
  • 63
    • 84934325903 scopus 로고    scopus 로고
    • Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree
    • Kisi, O., Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J. Hydrol. 528 (2015), 312–320.
    • (2015) J. Hydrol. , vol.528 , pp. 312-320
    • Kisi, O.1
  • 64
    • 33748913014 scopus 로고    scopus 로고
    • Comparison of different efficiency criteria for hydrological model assessment
    • Krause, P., Boyle, D., Bäse, F., Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 5 (2005), 89–97.
    • (2005) Adv. Geosci. , vol.5 , pp. 89-97
    • Krause, P.1    Boyle, D.2    Bäse, F.3
  • 65
    • 33748913014 scopus 로고    scopus 로고
    • Comparison of different efficiency criteria for hydrological model assessment
    • Krause, P., Boyle, D.P., Base, F., Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 5 (2005), 89–97.
    • (2005) Adv. Geosci. , vol.5 , pp. 89-97
    • Krause, P.1    Boyle, D.P.2    Base, F.3
  • 67
    • 84879110170 scopus 로고    scopus 로고
    • Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization
    • Kumar, D., Prasad, R.K., Mathur, S., Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization. J. Contam. Hydrol. 151 (2013), 105–116.
    • (2013) J. Contam. Hydrol. , vol.151 , pp. 105-116
    • Kumar, D.1    Prasad, R.K.2    Mathur, S.3
  • 68
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation
    • Legates, D.R., McCabe, G.J., Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35 (1999), 233–241.
    • (1999) Water Resour. Res. , vol.35 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 69
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation
    • Legates, D.R., McCabe, G.J., Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35 (1999), 233–241.
    • (1999) Water Resour. Res. , vol.35 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 70
    • 0034723860 scopus 로고    scopus 로고
    • Advance flood forecasting for flood stricken Bangladesh with a fuzzy reasoning method
    • Liong, S.-Y., Lim, W.-H., Kojiri, T., Hori, T., Advance flood forecasting for flood stricken Bangladesh with a fuzzy reasoning method. Hydrol. Process. 14 (2000), 431–448.
    • (2000) Hydrol. Process. , vol.14 , pp. 431-448
    • Liong, S.-Y.1    Lim, W.-H.2    Kojiri, T.3    Hori, T.4
  • 71
    • 0036202123 scopus 로고    scopus 로고
    • Flood stage forecasting with support vector machines
    • Liong, S.-Y., Sivapragasam, C., Flood stage forecasting with support vector machines. J. Am. Water Resour. Assoc. 38 (2002), 173–186.
    • (2002) J. Am. Water Resour. Assoc. , vol.38 , pp. 173-186
    • Liong, S.-Y.1    Sivapragasam, C.2
  • 73
    • 9944242270 scopus 로고    scopus 로고
    • Selection of input parameters to model direct solar irradiance by using artificial neural networks
    • López, G., Batlles, F., Tovar-Pescador, J., Selection of input parameters to model direct solar irradiance by using artificial neural networks. Energy 30 (2005), 1675–1684.
    • (2005) Energy , vol.30 , pp. 1675-1684
    • López, G.1    Batlles, F.2    Tovar-Pescador, J.3
  • 74
    • 84862642100 scopus 로고    scopus 로고
    • Comparative study of different wavelets for hydrologic forecasting
    • Maheswaran, R., Khosa, R., Comparative study of different wavelets for hydrologic forecasting. Comput. Geosci. 46 (2012), 284–295.
    • (2012) Comput. Geosci. , vol.46 , pp. 284-295
    • Maheswaran, R.1    Khosa, R.2
  • 75
    • 84871523656 scopus 로고    scopus 로고
    • Long term forecasting of groundwater levels with evidence of non-stationary and nonlinear characteristics
    • Maheswaran, R., Khosa, R., Long term forecasting of groundwater levels with evidence of non-stationary and nonlinear characteristics. Comput. Geosci. 52 (2013), 422–436.
    • (2013) Comput. Geosci. , vol.52 , pp. 422-436
    • Maheswaran, R.1    Khosa, R.2
  • 76
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier, H.R., Dandy, G.C., Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Softw. 15 (2000), 101–124.
    • (2000) Environ. Model. Softw. , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 77
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier, H.R., Jain, A., Dandy, G.C., Sudheer, K.P., Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Model. Softw. 25 (2010), 891–909.
    • (2010) Environ. Model. Softw. , vol.25 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 79
    • 0020867250 scopus 로고
    • Seasonal relationships between Australian rainfall and the Southern oscillation
    • McBride, J.L., Nicholls, N., Seasonal relationships between Australian rainfall and the Southern oscillation. Mon. Weather Rev. 111 (1983), 1998–2004.
    • (1983) Mon. Weather Rev. , vol.111 , pp. 1998-2004
    • McBride, J.L.1    Nicholls, N.2
  • 80
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch, W.S., Pitts, W., A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5 (1943), 115–133.
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 81
    • 84930960542 scopus 로고    scopus 로고
    • Successive station monthly streamflow prediction using different artificial neural network algorithms
    • Mehr, A.D., Kahya, E., Şahin, A., Nazemosadat, M.J., Successive station monthly streamflow prediction using different artificial neural network algorithms. Int. J. Environ. Sci. Technol. 12 (2014), 2191–2200.
    • (2014) Int. J. Environ. Sci. Technol. , vol.12 , pp. 2191-2200
    • Mehr, A.D.1    Kahya, E.2    Şahin, A.3    Nazemosadat, M.J.4
  • 82
    • 79955881885 scopus 로고    scopus 로고
    • Drought modeling — a review
    • Mishra, A.K., Singh, V.P., Drought modeling — a review. J. Hydrol. 403 (2011), 157–175.
    • (2011) J. Hydrol. , vol.403 , pp. 157-175
    • Mishra, A.K.1    Singh, V.P.2
  • 83
    • 57549095413 scopus 로고    scopus 로고
    • Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques
    • Moghaddamnia, A., Gousheh, M.G., Piri, J., Amin, S., Han, D., Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv. Water Res. 32 (2009), 88–97.
    • (2009) Adv. Water Res. , vol.32 , pp. 88-97
    • Moghaddamnia, A.1    Gousheh, M.G.2    Piri, J.3    Amin, S.4    Han, D.5
  • 84
    • 79956141353 scopus 로고    scopus 로고
    • Precipitation forecast using artificial neural networks in specific regions of Greece
    • Moustris, K.P., Larissi, I.K., Nastos, P.T., Paliatsos, A.G., Precipitation forecast using artificial neural networks in specific regions of Greece. Water Resour. Manag. 25 (2011), 1979–1993.
    • (2011) Water Resour. Manag. , vol.25 , pp. 1979-1993
    • Moustris, K.P.1    Larissi, I.K.2    Nastos, P.T.3    Paliatsos, A.G.4
  • 85
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I — a discussion of principles
    • Nash, J.E., Sutcliffe, J.V., River flow forecasting through conceptual models part I — a discussion of principles. J. Hydrol. 10 (1970), 282–290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 86
    • 77952366436 scopus 로고    scopus 로고
    • Evolutionary modeling for streamflow forecasting with minimal datasets: a case study in the west Malian River, China
    • Ni, Q., Wang, L., Ye, R., Yang, F., Sivakumar, M., Evolutionary modeling for streamflow forecasting with minimal datasets: a case study in the west Malian River, China. Environ. Eng. Sci. 27 (2010), 377–385.
    • (2010) Environ. Eng. Sci. , vol.27 , pp. 377-385
    • Ni, Q.1    Wang, L.2    Ye, R.3    Yang, F.4    Sivakumar, M.5
  • 87
    • 84900481738 scopus 로고    scopus 로고
    • Applications of hybrid wavelet–artificial intelligence models in hydrology: a review
    • Nourani, V., Hosseini Baghanam, A., Adamowski, J., Kisi, O., Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. J. Hydrol. 514 (2014), 358–377.
    • (2014) J. Hydrol. , vol.514 , pp. 358-377
    • Nourani, V.1    Hosseini Baghanam, A.2    Adamowski, J.3    Kisi, O.4
  • 88
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall–runoff process
    • Nourani, V., Kisi, Ö., Komasi, M., Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. J. Hydrol. 402 (2011), 41–59.
    • (2011) J. Hydrol. , vol.402 , pp. 41-59
    • Nourani, V.1    Kisi, Ö.2    Komasi, M.3
  • 89
    • 84871943582 scopus 로고    scopus 로고
    • Wavelet neural network model for reservoir inflow prediction
    • Okkan, U., Wavelet neural network model for reservoir inflow prediction. Scientia Iranica 19 (2012), 1445–1455.
    • (2012) Scientia Iranica , vol.19 , pp. 1445-1455
    • Okkan, U.1
  • 90
    • 84925988131 scopus 로고    scopus 로고
    • A support vector machine–firefly algorithm-based model for global solar radiation prediction
    • Olatomiwa, L., et al., A support vector machine–firefly algorithm-based model for global solar radiation prediction. Sol. Energy 115 (2015), 632–644.
    • (2015) Sol. Energy , vol.115 , pp. 632-644
    • Olatomiwa, L.1
  • 92
    • 85013531162 scopus 로고
    • Long-memory processes, the Allan variance and wavelets
    • Academic San Diego
    • Long-memory processes, the Allan variance and wavelets. Percival, D.B., Guttorp, P., Georgiou, E.F., Kumar, P., (eds.) Wavelets in Geophysics, 1994, Academic, San Diego, 325–344.
    • (1994) Wavelets in Geophysics , pp. 325-344
    • Percival, D.B.1    Guttorp, P.2    Georgiou, E.F.3    Kumar, P.4
  • 93
  • 94
    • 0003610422 scopus 로고    scopus 로고
    • Wavelet Methods for Time Series Analysis
    • Cambridge University Press UK
    • Percival, D.B., Walden, A.T., Wavelet Methods for Time Series Analysis. 2000, Cambridge University Press, UK.
    • (2000)
    • Percival, D.B.1    Walden, A.T.2
  • 95
    • 28844493616 scopus 로고    scopus 로고
    • Modeling a densely urbanized watershed with an artificial neural network, weather radar and telemetric data
    • Pereira Filho, A.J., dos Santos, C.C., Modeling a densely urbanized watershed with an artificial neural network, weather radar and telemetric data. J. Hydrol. 317 (2006), 31–48.
    • (2006) J. Hydrol. , vol.317 , pp. 31-48
    • Pereira Filho, A.J.1    dos Santos, C.C.2
  • 96
    • 0041472702 scopus 로고    scopus 로고
    • Flood Forecasting for the Upper Reach of the Red River Basin North Vietnam
    • Phien, H.N., Kha, N.D.A., Flood Forecasting for the Upper Reach of the Red River Basin North Vietnam. 29, 2003, 267–272.
    • (2003) , vol.29 , pp. 267-272
    • Phien, H.N.1    Kha, N.D.A.2
  • 97
    • 84979491168 scopus 로고    scopus 로고
    • Bootstrap Rank-Ordered Conditional Mutual Information (broCMI)—A Nonlinear Input Variable Selection Method for Water Resources Modeling
    • Quilty, J., Adamowski, J., Khalil, B., Rathinasamy, M., Bootstrap Rank-Ordered Conditional Mutual Information (broCMI)—A Nonlinear Input Variable Selection Method for Water Resources Modeling. Water Resour. Res., 2016.
    • (2016) Water Resour. Res.
    • Quilty, J.1    Adamowski, J.2    Khalil, B.3    Rathinasamy, M.4
  • 99
    • 85027922997 scopus 로고    scopus 로고
    • Comparison between M5 model tree and neural networks for estimating reference evapotranspiration in an arid environment
    • Rahimikhoob, A., Comparison between M5 model tree and neural networks for estimating reference evapotranspiration in an arid environment. Water Resour. Manag. 28 (2014), 657–669.
    • (2014) Water Resour. Manag. , vol.28 , pp. 657-669
    • Rahimikhoob, A.1
  • 100
    • 84887548611 scopus 로고    scopus 로고
    • Multiscale streamflow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method
    • Rathinasamy, M., Adamowski, J., Khosa, R., Multiscale streamflow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method. J. Hydrol. 507 (2013), 186–200.
    • (2013) J. Hydrol. , vol.507 , pp. 186-200
    • Rathinasamy, M.1    Adamowski, J.2    Khosa, R.3
  • 101
    • 85028135148 scopus 로고    scopus 로고
    • Wavelet-based multiscale performance analysis: an approach to assess and improve hydrological models
    • Rathinasamy, M., et al., Wavelet-based multiscale performance analysis: an approach to assess and improve hydrological models. Water Resour. Res. 50 (2014), 9721–9737.
    • (2014) Water Resour. Res. , vol.50 , pp. 9721-9737
    • Rathinasamy, M.1
  • 102
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall–runoff model using an artificial neural network
    • Sajikumara, N., Thandaveswarab, B.S., A non-linear rainfall–runoff model using an artificial neural network. J. Hydrol. 216 (1999), 32–55.
    • (1999) J. Hydrol. , vol.216 , pp. 32-55
    • Sajikumara, N.1    Thandaveswarab, B.S.2
  • 104
    • 84877837814 scopus 로고    scopus 로고
    • M5 model tree application in daily river flow forecasting in Sohu stream, Turkey
    • Sattari, M.T., Pal, M., Apaydin, H., Ozturk, F., M5 model tree application in daily river flow forecasting in Sohu stream, Turkey. Water Res. 40 (2013), 233–242.
    • (2013) Water Res. , vol.40 , pp. 233-242
    • Sattari, M.T.1    Pal, M.2    Apaydin, H.3    Ozturk, F.4
  • 105
    • 79960810686 scopus 로고    scopus 로고
    • Hybrid particle swarm and neural network approach for streamflow forecasting
    • Sedki, A., Ouazar, D., Hybrid particle swarm and neural network approach for streamflow forecasting. Mathematical Modelling of Natural Phenomena 5 (2010), 132–138.
    • (2010) Mathematical Modelling of Natural Phenomena , vol.5 , pp. 132-138
    • Sedki, A.1    Ouazar, D.2
  • 106
    • 84903647373 scopus 로고    scopus 로고
    • Wavelet bootstrap multiple linear regression based hybrid modeling for daily river discharge forecasting
    • Sehgal, V., Tiwari, M.K., Chatterjee, C., Wavelet bootstrap multiple linear regression based hybrid modeling for daily river discharge forecasting. Water Resour. Manag. 28 (2014), 2793–2811.
    • (2014) Water Resour. Manag. , vol.28 , pp. 2793-2811
    • Sehgal, V.1    Tiwari, M.K.2    Chatterjee, C.3
  • 107
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall runoff
    • Shamseldin, A.Y., Application of a neural network technique to rainfall runoff. J. Hydrol. 199 (1997), 272–294.
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 108
    • 0026938667 scopus 로고
    • The discrete wavelet transform: wedding the a trous and Mallat algorithms
    • Shensa, M.J., The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 40 (1992), 2464–2482.
    • (1992) IEEE Trans. Signal Process. , vol.40 , pp. 2464-2482
    • Shensa, M.J.1
  • 109
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall—runoff modelling
    • Solomatine, D.P., Dulal, K.N., Model trees as an alternative to neural networks in rainfall—runoff modelling. Hydrol. Sci. J. 48 (2003), 399–411.
    • (2003) Hydrol. Sci. J. , vol.48 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 110
    • 39449115775 scopus 로고    scopus 로고
    • Flexible and optimal m5 model trees with applications to flow predictions
    • P.B. Liong World Scientific Publishing Company
    • Solomatine, D.P., Siek, M.B.L.A., Flexible and optimal m5 model trees with applications to flow predictions. Liong, P.B., (eds.) 6th International Conference on Hydroinformatics, 2004, World Scientific Publishing Company.
    • (2004) 6th International Conference on Hydroinformatics
    • Solomatine, D.P.1    Siek, M.B.L.A.2
  • 111
    • 10244261532 scopus 로고    scopus 로고
    • M5 model trees and neural networks application to flood forecasting in the upper reach of the Huai River in China
    • Solomatine, D.P., Xue, Y., M5 model trees and neural networks application to flood forecasting in the upper reach of the Huai River in China. J. Hydrol. Eng. 9 (2004), 491–501.
    • (2004) J. Hydrol. Eng. , vol.9 , pp. 491-501
    • Solomatine, D.P.1    Xue, Y.2
  • 113
    • 84941071394 scopus 로고    scopus 로고
    • ANN-based interval forecasting of streamflow discharges\using the LUBE method and MOFIPS
    • Taormina, R., Chau, K.-W., ANN-based interval forecasting of streamflow discharges\using the LUBE method and MOFIPS. Eng. Appl. Artif. Intell. 45 (2015), 429–440.
    • (2015) Eng. Appl. Artif. Intell. , vol.45 , pp. 429-440
    • Taormina, R.1    Chau, K.-W.2
  • 114
    • 84945467880 scopus 로고    scopus 로고
    • Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and extreme learning machines
    • Taormina, R., Chau, K.-W., Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and extreme learning machines. J. Hydrol., 2015.
    • (2015) J. Hydrol.
    • Taormina, R.1    Chau, K.-W.2
  • 115
    • 84885070735 scopus 로고    scopus 로고
    • Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models
    • Tiwari, M.K., Adamowski, J., Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models. Water Resour. Res. 49 (2013), 6486–6507.
    • (2013) Water Resour. Res. , vol.49 , pp. 6486-6507
    • Tiwari, M.K.1    Adamowski, J.2
  • 116
    • 79959790257 scopus 로고    scopus 로고
    • A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting
    • Tiwari, M.K., Chatterjee, C., A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting. J. Hydroinf. 13 (2011), 500–519.
    • (2011) J. Hydroinf. , vol.13 , pp. 500-519
    • Tiwari, M.K.1    Chatterjee, C.2
  • 117
    • 84861833358 scopus 로고    scopus 로고
    • On the uncertainties associated with using gridded rainfall data as a proxy for observed
    • Tozer, C., Kiem, A., Verdon-Kidd, D., On the uncertainties associated with using gridded rainfall data as a proxy for observed. Hydrol. Earth Syst. Sci. 16 (2012), 1481–1499.
    • (2012) Hydrol. Earth Syst. Sci. , vol.16 , pp. 1481-1499
    • Tozer, C.1    Kiem, A.2    Verdon-Kidd, D.3
  • 118
    • 34250094997 scopus 로고
    • Accelerating the convergence of the backpropagation method
    • Vogl, T., Mangis, J., Rigler, A., Zink, W., Alkon, D., Accelerating the convergence of the backpropagation method. Biol. Cybern. 59 (1988), 257–263.
    • (1988) Biol. Cybern. , vol.59 , pp. 257-263
    • Vogl, T.1    Mangis, J.2    Rigler, A.3    Zink, W.4    Alkon, D.5
  • 119
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang, W., Ding, J., Wavelet network model and its application to the prediction of hydrology. Nat. Sci. 1 (2003), 67–71.
    • (2003) Nat. Sci. , vol.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 121
    • 0019707668 scopus 로고
    • On the validation of models
    • Willmott, C.J., On the validation of models. Phys. Geogr. 2 (1981), 184–194.
    • (1981) Phys. Geogr. , vol.2 , pp. 184-194
    • Willmott, C.J.1
  • 122
    • 0002575135 scopus 로고
    • On the evaluation of model performance in physical geography
    • G.L. Gaile C.J. Willmott Springer
    • Willmott, C.J., On the evaluation of model performance in physical geography. Gaile, G.L., Willmott, C.J., (eds.) Spatial Statistics and Models, 1984, Springer, 443–460.
    • (1984) Spatial Statistics and Models , pp. 443-460
    • Willmott, C.J.1
  • 123
    • 84991833843 scopus 로고    scopus 로고
    • Data Mining — Practical Machine Learning Tools and Techniques
    • 3 ed Morgan Kaufmann Publishers United States
    • Witten, I.H., Frank, E., Hall, M.A., Data Mining — Practical Machine Learning Tools and Techniques. 3 ed, 2011, Morgan Kaufmann Publishers, United States.
    • (2011)
    • Witten, I.H.1    Frank, E.2    Hall, M.A.3
  • 124
    • 18844480083 scopus 로고    scopus 로고
    • Comparison of four updating models for real-time river flow forecasting
    • Xiong, L., O'Connor, K.M., Comparison of four updating models for real-time river flow forecasting. Hydrol. Sci. J. 47 (2002), 621–639.
    • (2002) Hydrol. Sci. J. , vol.47 , pp. 621-639
    • Xiong, L.1    O'Connor, K.M.2
  • 125
    • 84994591754 scopus 로고    scopus 로고
    • Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
    • Yaseen, Z.M., et al., Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq. J. Hydrol., 2016.
    • (2016) J. Hydrol.
    • Yaseen, Z.M.1
  • 126
    • 84994591754 scopus 로고    scopus 로고
    • Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
    • Yaseen, Z.M., et al., Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq. J. Hydrol. 542 (2016), 603–614.
    • (2016) J. Hydrol. , vol.542 , pp. 603-614
    • Yaseen, Z.M.1
  • 127
    • 80054871623 scopus 로고    scopus 로고
    • Catchment flow estimation using artificial neural networks in the mountainous Euphrates Basin
    • Yilmaz, A.G., Imteaz, M.A., Jenkins, G., Catchment flow estimation using artificial neural networks in the mountainous Euphrates Basin. J. Hydrol. 410 (2011), 134–140.
    • (2011) J. Hydrol. , vol.410 , pp. 134-140
    • Yilmaz, A.G.1    Imteaz, M.A.2    Jenkins, G.3
  • 128
    • 84883142023 scopus 로고    scopus 로고
    • Improved historical solar radiation gridded data for Australia
    • Zajaczkowski, J., Wong, K., Carter, J., Improved historical solar radiation gridded data for Australia. Environ. Model. Softw. 49 (2013), 64–77.
    • (2013) Environ. Model. Softw. , vol.49 , pp. 64-77
    • Zajaczkowski, J.1    Wong, K.2    Carter, J.3
  • 129
    • 67649421237 scopus 로고    scopus 로고
    • Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model
    • Zhao, M., Hendon, H.H., Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Q. J. R. Meteorol. Soc. 135:639 (2009), 337–352, 10.1002/qj.370.
    • (2009) Q. J. R. Meteorol. Soc. , vol.135 , Issue.639 , pp. 337-352
    • Zhao, M.1    Hendon, H.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.