-
1
-
-
84863764389
-
Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting
-
Abrahart R.J., Anctil F., Coulibaly P., Dawson C.W., Mount N.J., See L.M., Shamseldin a.Y., Solomatine D.P., Toth E., Wilby R.L. Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Prog. Phys. Geogr. 2012, 36:480-513. 10.1177/0309133312444943.
-
(2012)
Prog. Phys. Geogr.
, vol.36
, pp. 480-513
-
-
Abrahart, R.J.1
Anctil, F.2
Coulibaly, P.3
Dawson, C.W.4
Mount, N.J.5
See, L.M.6
Shamseldin, A.7
Solomatine, D.P.8
Toth, E.9
Wilby, R.L.10
-
2
-
-
0742267129
-
Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model
-
Abrahart R.J., See L.M., Kneale P.E. Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model. J. Hydroinform. 1999, 1:103-114.
-
(1999)
J. Hydroinform.
, vol.1
, pp. 103-114
-
-
Abrahart, R.J.1
See, L.M.2
Kneale, P.E.3
-
3
-
-
84906777236
-
Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine
-
Acharya N., Shrivastava N.A., Panigrahi B.K., Mohanty U.C. Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine. Clim. Dyn. 2013, 43:1303-1310. 10.1007/s00382-013-1942-2.
-
(2013)
Clim. Dyn.
, vol.43
, pp. 1303-1310
-
-
Acharya, N.1
Shrivastava, N.A.2
Panigrahi, B.K.3
Mohanty, U.C.4
-
4
-
-
84929144928
-
Improved particle swarm optimization-based artificial neural network for rainfall-runoff modeling
-
Asadnia M., Chua L.H.C., Qin X.S., Asce A.M., Talei A. Improved particle swarm optimization-based artificial neural network for rainfall-runoff modeling. J. Hydrol. Eng. 2014, 19:1320-1329. 10.1061/(ASCE)HE.1943-5584.0000927.
-
(2014)
J. Hydrol. Eng.
, vol.19
, pp. 1320-1329
-
-
Asadnia, M.1
Chua, L.H.C.2
Qin, X.S.3
Asce, A.M.4
Talei, A.5
-
5
-
-
0034174280
-
Application of artificial neural networks in hydrology. I: Preliminary concepts
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Application of artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5:115-123.
-
(2000)
J. Hydrol. Eng.
, vol.5
, pp. 115-123
-
-
-
6
-
-
12144264770
-
Neural networks and M5 model trees in modelling water level-discharge relationship
-
Bhattacharya B., Solomatine D.P. Neural networks and M5 model trees in modelling water level-discharge relationship. Neurocomputing 2005, 63:381-396. 10.1016/j.neucom.2004.04.016.
-
(2005)
Neurocomputing
, vol.63
, pp. 381-396
-
-
Bhattacharya, B.1
Solomatine, D.P.2
-
7
-
-
0031334221
-
Selection of relevant features and examples in machine
-
Blum A.L., Langley P. Selection of relevant features and examples in machine. Artif. Intell. 1997, 97:245-271.
-
(1997)
Artif. Intell.
, vol.97
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
8
-
-
36348997596
-
Hydrometeorological analysis of the 29 August 2003 flash flood in the Eastern Italian Alps
-
Borga M., Boscolo P., Zanon F., Sangati M. Hydrometeorological analysis of the 29 August 2003 flash flood in the Eastern Italian Alps. J. Hydrometeorol. 2007, 8:1049-1067. 10.1175/JHM593.1.
-
(2007)
J. Hydrometeorol.
, vol.8
, pp. 1049-1067
-
-
Borga, M.1
Boscolo, P.2
Zanon, F.3
Sangati, M.4
-
9
-
-
10644295753
-
Input determination for neural network models in water resources applications. Part 1-background and methodology
-
Bowden G.J., Dandy G.C., Maier H.R. Input determination for neural network models in water resources applications. Part 1-background and methodology. J. Hydrol. 2005, 301:75-92. 10.1016/j.jhydrol.2004.06.021.
-
(2005)
J. Hydrol.
, vol.301
, pp. 75-92
-
-
Bowden, G.J.1
Dandy, G.C.2
Maier, H.R.3
-
10
-
-
10644225424
-
Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river
-
Bowden G.J., Maier H.R., Dandy G.C. Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river. J. Hydrol. 2005, 301:93-107. 10.1016/j.jhydrol.2004.06.020.
-
(2005)
J. Hydrol.
, vol.301
, pp. 93-107
-
-
Bowden, G.J.1
Maier, H.R.2
Dandy, G.C.3
-
11
-
-
33748929857
-
Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
-
Chau K.W. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol. 2006, 329:363-367. 10.1016/j.jhydrol.2006.02.025.
-
(2006)
J. Hydrol.
, vol.329
, pp. 363-367
-
-
Chau, K.W.1
-
12
-
-
35349010023
-
A split-step particle swarm optimization algorithm in river stage forecasting
-
Chau K.W. A split-step particle swarm optimization algorithm in river stage forecasting. J. Hydrol. 2007, 346:131-135. 10.1016/j.jhydrol.2007.09.004.
-
(2007)
J. Hydrol.
, vol.346
, pp. 131-135
-
-
Chau, K.W.1
-
13
-
-
60549091177
-
Evolutionary artificial neural networks for hydrological systems forecasting
-
Chen Y., Chang F.-J. Evolutionary artificial neural networks for hydrological systems forecasting. J. Hydrol. 2009, 367:125-137. 10.1016/j.jhydrol.2009.01.009.
-
(2009)
J. Hydrol.
, vol.367
, pp. 125-137
-
-
Chen, Y.1
Chang, F.-J.2
-
14
-
-
0034621379
-
Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
-
Coulibaly P., Anctil F., Bobe B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 2000, 230:244-257. 10.1016/S0022-1694(00)00214-6.
-
(2000)
J. Hydrol.
, vol.230
, pp. 244-257
-
-
Coulibaly, P.1
Anctil, F.2
Bobe, B.3
-
15
-
-
0034749335
-
Hydrological modelling using artificial neural networks
-
Dawson C.W., Wilby R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 2001, 25:80-108. 10.1191/030913301674775671.
-
(2001)
Prog. Phys. Geogr.
, vol.25
, pp. 80-108
-
-
Dawson, C.W.1
Wilby, R.L.2
-
17
-
-
0036530772
-
A fast and elitist multiobjective genetic algorithm: NSGA-II
-
Deb K., Pratap A., Agarwal S., Meyarivan T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6:182-197.
-
(2002)
IEEE Trans. Evol. Comput.
, vol.6
, pp. 182-197
-
-
Deb, K.1
Pratap, A.2
Agarwal, S.3
Meyarivan, T.A.M.T.4
-
18
-
-
84908611342
-
Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia
-
Deo R.C., Şahin M. Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmos. Res. 2015, 153:512-525. 10.1016/j.atmosres.2014.10.016.
-
(2015)
Atmos. Res.
, vol.153
, pp. 512-525
-
-
Deo, R.C.1
Şahin, M.2
-
19
-
-
61749084755
-
Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach
-
Fernando T.M.K.G., Maier H.R., Dandy G.C. Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach. J. Hydrol. 2009, 367:165-176. 10.1016/j.jhydrol.2008.10.019.
-
(2009)
J. Hydrol.
, vol.367
, pp. 165-176
-
-
Fernando, T.M.K.G.1
Maier, H.R.2
Dandy, G.C.3
-
20
-
-
84880684699
-
Tree-based iterative input variable selection for hydrological modeling
-
Galelli S., Castelletti a. Tree-based iterative input variable selection for hydrological modeling. Water Resour. Res. 2013, 49:4295-4310. 10.1002/wrcr.20339.
-
(2013)
Water Resour. Res.
, vol.49
, pp. 4295-4310
-
-
Galelli, S.1
Castelletti, A.2
-
21
-
-
84881039240
-
Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
-
Galelli S., Castelletti a. Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling. Hydrol. Earth Syst. Sci. Discuss. 2013, 10:1617-1655. 10.5194/hessd-10-1617-2013.
-
(2013)
Hydrol. Earth Syst. Sci. Discuss.
, vol.10
, pp. 1617-1655
-
-
Galelli, S.1
Castelletti, A.2
-
22
-
-
84907068377
-
An evaluation framework for input variable selection algorithms for environmental data-driven models
-
Galelli S., Humphrey G.B., Maier H.R., Castelletti A., Dandy G.C., Gibbs M.S. An evaluation framework for input variable selection algorithms for environmental data-driven models. Environ. Model. Softw. 2014, 62:33-51. 10.1016/j.envsoft.2014.08.015.
-
(2014)
Environ. Model. Softw.
, vol.62
, pp. 33-51
-
-
Galelli, S.1
Humphrey, G.B.2
Maier, H.R.3
Castelletti, A.4
Dandy, G.C.5
Gibbs, M.S.6
-
23
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
24
-
-
10944272650
-
Extreme learning machine: a new learning scheme of feedforward neural networks
-
IEEE (Ed.), Neural Networks, 2004.
-
Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2004. Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE (Ed.), Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, vol. 2, pp. 985-990. doi:10.1109/IJCNN.2004.1380068.
-
(2004)
Proceedings. 2004 IEEE International Joint Conference on
, vol.2
, pp. 985-990
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
25
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Huang G.-B., Chen L., Siew C. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 2006, 17:879-892.
-
(2006)
IEEE Trans. Neural Networks
, vol.17
, pp. 879-892
-
-
Huang, G.-B.1
Chen, L.2
Siew, C.3
-
26
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501. 10.1016/j.neucom.2005.12.126.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
28
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
Huang G.-B., Zhou H., Ding X., Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man, Cybern. Part B: Cybern. 2012, 42:513-529.
-
(2012)
IEEE Trans. Syst. Man, Cybern. Part B: Cybern.
, vol.42
, pp. 513-529
-
-
Huang, G.-B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
29
-
-
0034641121
-
River flow prediction using artificial neural networks: generalisation beyond the calibration range
-
Imrie C.E., Durucan S., Korre A. River flow prediction using artificial neural networks: generalisation beyond the calibration range. J. Hydrol. 2000, 233:138-153. 10.1016/S0022-1694(00)00228-6.
-
(2000)
J. Hydrol.
, vol.233
, pp. 138-153
-
-
Imrie, C.E.1
Durucan, S.2
Korre, A.3
-
30
-
-
69249158084
-
Dissection of trained neural network hydrologic models for knowledge extraction
-
Jain A., Kumar S. Dissection of trained neural network hydrologic models for knowledge extraction. Water Resour. Res. 2009, 45:W07420. 10.1029/2008WR007194.
-
(2009)
Water Resour. Res.
, vol.45
, pp. W07420
-
-
Jain, A.1
Kumar, S.2
-
31
-
-
84899047533
-
Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance
-
(Cat. No. 99TH8406)
-
Kennedy, J., 1999. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proc. 1999 Congr. Evol. Comput. (Cat. No. 99TH8406) 1931-1938. doi:10.1109/CEC.1999.785509.
-
(1999)
Proc. 1999 Congr. Evol. Comput
, pp. 1931-1938
-
-
Kennedy, J.1
-
32
-
-
0029535737
-
Particle swarm optimization
-
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proc. ICNN'95 - Int. Conf. Neural Networks, vol. 4, pp. 1942-1948. doi:10.1109/ICNN.1995.488968.
-
(1995)
Proc. ICNN'95 - Int. Conf. Neural Networks
, vol.4
, pp. 1942-1948
-
-
Kennedy, J.1
Eberhart, R.2
-
34
-
-
84901464055
-
Population structure and particle swarm performance
-
Kennedy, J., Mendes, R., 2002. Population structure and particle swarm performance. In: Proc. 2002 Congr. Evol. Comput. CEC'02, vol. 2, pp. 1671-1676. doi:10.1109/CEC.2002.1004493.
-
(2002)
Proc. 2002 Congr. Evol. Comput. CEC'02
, vol.2
, pp. 1671-1676
-
-
Kennedy, J.1
Mendes, R.2
-
35
-
-
84857685424
-
Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm
-
Kisi O., Ozkan C., Akay B. Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm. J. Hydrol. 2012, 428-429:94-103. 10.1016/j.jhydrol.2012.01.026.
-
(2012)
J. Hydrol.
, pp. 94-103
-
-
Kisi, O.1
Ozkan, C.2
Akay, B.3
-
36
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R., John H. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
-
(1997)
Artif. Intell.
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, H.2
-
37
-
-
43949087486
-
Structural optimisation and input selection of an artificial neural network for river level prediction
-
Leahy P., Kiely G., Corcoran G. Structural optimisation and input selection of an artificial neural network for river level prediction. J. Hydrol. 2008, 355:192-201. 10.1016/j.jhydrol.2008.03.017.
-
(2008)
J. Hydrol.
, vol.355
, pp. 192-201
-
-
Leahy, P.1
Kiely, G.2
Corcoran, G.3
-
38
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
-
Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Modell. Softw. 2000, 15:101-124. 10.1016/S1364-8152(99)00007-9.
-
(2000)
Environ. Modell. Softw.
, vol.15
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
39
-
-
77951175284
-
Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
-
Maier H.R., Jain A., Dandy G.C., Sudheer K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Modell. Softw. 2010, 25:891-909. 10.1016/j.envsoft.2010.02.003.
-
(2010)
Environ. Modell. Softw.
, vol.25
, pp. 891-909
-
-
Maier, H.R.1
Jain, A.2
Dandy, G.C.3
Sudheer, K.P.4
-
41
-
-
44749087316
-
Non-linear variable selection for artificial neural networks using partial mutual information
-
May R.J., Maier H.R., Dandy G.C., Fernando T.M.K.G. Non-linear variable selection for artificial neural networks using partial mutual information. Environ. Modell. Softw. 2008, 23:1312-1326. 10.1016/j.envsoft.2008.03.007.
-
(2008)
Environ. Modell. Softw.
, vol.23
, pp. 1312-1326
-
-
May, R.J.1
Maier, H.R.2
Dandy, G.C.3
Fernando, T.M.K.G.4
-
42
-
-
84942113543
-
Watch thy neighbor or how the swarm can learn from its environment
-
Mendes, R., Kennedy, J., Neves, J., 2003. Watch thy neighbor or how the swarm can learn from its environment. In: Proc. 2003 IEEE Swarm Intell. Symp. - SIS'03, pp. 88-94. doi:10.1109/SIS.2003.1202252.
-
(2003)
Proc. 2003 IEEE Swarm Intell. Symp. - SIS'03
, pp. 88-94
-
-
Mendes, R.1
Kennedy, J.2
Neves, J.3
-
43
-
-
3142781923
-
The fully informed particle swarm: simpler, maybe better
-
Mendes R., Kennedy J., Neves J. The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 2004, 8:204-210.
-
(2004)
IEEE Trans. Evol. Comput.
, vol.8
, pp. 204-210
-
-
Mendes, R.1
Kennedy, J.2
Neves, J.3
-
44
-
-
73949154686
-
OP-ELM: optimally pruned extreme learning machine
-
Miche Y., Sorjamaa A., Bas P., Simula O., Jutten C., Lendasse A. OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Networks 2010, 21:158-162.
-
(2010)
IEEE Trans. Neural Networks
, vol.21
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.6
-
45
-
-
79953796890
-
Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction
-
Noori R., Karbassi a.R., Moghaddamnia a., Han D., Zokaei-Ashtiani M.H., Farokhnia a., Gousheh M.G. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. Hydrol. 2011, 401:177-189. 10.1016/j.jhydrol.2011.02.021.
-
(2011)
J. Hydrol.
, vol.401
, pp. 177-189
-
-
Noori, R.1
Karbassi, A.2
Moghaddamnia, A.3
Han, D.4
Zokaei-Ashtiani, M.H.5
Farokhnia, A.6
Gousheh, M.G.7
-
46
-
-
61349106542
-
A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
-
Nourani V., Alami M.T., Aminfar M.H. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22:466-472. 10.1016/j.engappai.2008.09.003.
-
(2009)
Eng. Appl. Artif. Intell.
, vol.22
, pp. 466-472
-
-
Nourani, V.1
Alami, M.T.2
Aminfar, M.H.3
-
47
-
-
84893386848
-
Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data
-
Ortiz-García E.G., Salcedo-Sanz S., Casanova-Mateo C. Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data. Atmos. Res. 2014, 139:128-136. 10.1016/j.atmosres.2014.01.012.
-
(2014)
Atmos. Res.
, vol.139
, pp. 128-136
-
-
Ortiz-García, E.G.1
Salcedo-Sanz, S.2
Casanova-Mateo, C.3
-
49
-
-
0035427685
-
An investigation of model selection criteria for neural network time series forecasting
-
Qi M., Zhang G.P. An investigation of model selection criteria for neural network time series forecasting. Eur. J. Oper. Res. 2001, 132:666-680.
-
(2001)
Eur. J. Oper. Res.
, vol.132
, pp. 666-680
-
-
Qi, M.1
Zhang, G.P.2
-
50
-
-
0034694877
-
Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1-a strategy for system predictor identification
-
Sharma A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1-a strategy for system predictor identification. J. Hydrol. 2000, 239:232-239. 10.1016/S0022-1694(00)00346-2.
-
(2000)
J. Hydrol.
, vol.239
, pp. 232-239
-
-
Sharma, A.1
-
51
-
-
84896739021
-
An information theoretic alternative to model a natural system using observational information alone
-
Sharma A., Mehrotra R. An information theoretic alternative to model a natural system using observational information alone. Water Resour. Res. 2014, 50:650-660. 10.1002/2013WR013845.
-
(2014)
Water Resour. Res.
, vol.50
, pp. 650-660
-
-
Sharma, A.1
Mehrotra, R.2
-
52
-
-
84860361346
-
Advances in variable selection methods I: causal selection methods versus stepwise regression and principal component analysis on data of known and unknown functional relationships
-
Ssegane H., Tollner E.W., Mohamoud Y.M., Rasmussen T.C., Dowd J.F. Advances in variable selection methods I: causal selection methods versus stepwise regression and principal component analysis on data of known and unknown functional relationships. J. Hydrol. 2012, 438-439:16-25. 10.1016/j.jhydrol.2012.01.008.
-
(2012)
J. Hydrol.
, pp. 16-25
-
-
Ssegane, H.1
Tollner, E.W.2
Mohamoud, Y.M.3
Rasmussen, T.C.4
Dowd, J.F.5
-
53
-
-
84924153739
-
Neural network river forecasting with multi-objective fully informed particle swarm optimization
-
Taormina R., Chau K. Neural network river forecasting with multi-objective fully informed particle swarm optimization. J. Hydroinform. 2015, 17:99-112. 10.2166/hydro.2014.116.
-
(2015)
J. Hydroinform.
, vol.17
, pp. 99-112
-
-
Taormina, R.1
Chau, K.2
-
54
-
-
84868367414
-
Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon
-
Taormina R., Chau K., Sethi R. Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intell. 2012, 25:1670-1676. 10.1016/j.engappai.2012.02.009.
-
(2012)
Eng. Appl. Artif. Intell.
, vol.25
, pp. 1670-1676
-
-
Taormina, R.1
Chau, K.2
Sethi, R.3
-
55
-
-
84902791443
-
Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization
-
Tapoglou E., Trichakis I.C., Dokou Z., Nikolos I.K., Karatzas G.P. Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization. Hydrol. Sci. J. 2014, 59:1225-1239. 10.1080/02626667.2013.838005.
-
(2014)
Hydrol. Sci. J.
, vol.59
, pp. 1225-1239
-
-
Tapoglou, E.1
Trichakis, I.C.2
Dokou, Z.3
Nikolos, I.K.4
Karatzas, G.P.5
-
56
-
-
79960066451
-
Input variable selection for median flood regionalization
-
Wan Jaafar W.Z., Liu J., Han D. Input variable selection for median flood regionalization. Water Resour. Res. 2011, 47. 10.1029/2011WR010436.
-
(2011)
Water Resour. Res.
, vol.47
-
-
Wan Jaafar, W.Z.1
Liu, J.2
Han, D.3
-
57
-
-
84887799080
-
Particle swarm optimization for feature selection in classification: a multi-objective approach
-
Xue B., Zhang M., Member S., Browne W.N. Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 2013, 43:1656-1671.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, pp. 1656-1671
-
-
Xue, B.1
Zhang, M.2
Member, S.3
Browne, W.N.4
-
58
-
-
0033362601
-
Evolving artificial neural networks
-
Yao X. Evolving artificial neural networks. Proc. IEEE 1999, 87:1423-1447.
-
(1999)
Proc. IEEE
, vol.87
, pp. 1423-1447
-
-
Yao, X.1
-
59
-
-
0030621249
-
Performance of conceptual rainfall-runoff models in low-yielding ephemeral catchments
-
Ye W., Bates B.C., Viney N.R., Sivapalan M. Performance of conceptual rainfall-runoff models in low-yielding ephemeral catchments. Water Resour. Res. 1997, 33:153-166.
-
(1997)
Water Resour. Res.
, vol.33
, pp. 153-166
-
-
Ye, W.1
Bates, B.C.2
Viney, N.R.3
Sivapalan, M.4
-
60
-
-
33947362356
-
Estimating evapotranspiration using artificial neural network and minimum climatological data
-
Zanetti S.S., Sousa E.F., Oliveira V.P.S., Almeida F.T., Bernardo S. Estimating evapotranspiration using artificial neural network and minimum climatological data. J. Irrig. Drain. Eng. 2007, 133:83-89.
-
(2007)
J. Irrig. Drain. Eng.
, vol.133
, pp. 83-89
-
-
Zanetti, S.S.1
Sousa, E.F.2
Oliveira, V.P.S.3
Almeida, F.T.4
Bernardo, S.5
|