메뉴 건너뛰기




Volumn 529, Issue , 2015, Pages 1617-1632

Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines

Author keywords

Extreme Learning Machines; Input variable selection; Multi objective optimization; Particle swarm optimization; Rainfall runoff; Streamflow prediction

Indexed keywords

ALGORITHMS; CATCHMENTS; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; PARTICLE SWARM OPTIMIZATION (PSO); RAIN; RUNOFF; SPECIFICATIONS; STREAM FLOW;

EID: 84945467880     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2015.08.022     Document Type: Article
Times cited : (299)

References (60)
  • 2
    • 0742267129 scopus 로고    scopus 로고
    • Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model
    • Abrahart R.J., See L.M., Kneale P.E. Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model. J. Hydroinform. 1999, 1:103-114.
    • (1999) J. Hydroinform. , vol.1 , pp. 103-114
    • Abrahart, R.J.1    See, L.M.2    Kneale, P.E.3
  • 3
    • 84906777236 scopus 로고    scopus 로고
    • Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine
    • Acharya N., Shrivastava N.A., Panigrahi B.K., Mohanty U.C. Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine. Clim. Dyn. 2013, 43:1303-1310. 10.1007/s00382-013-1942-2.
    • (2013) Clim. Dyn. , vol.43 , pp. 1303-1310
    • Acharya, N.1    Shrivastava, N.A.2    Panigrahi, B.K.3    Mohanty, U.C.4
  • 4
    • 84929144928 scopus 로고    scopus 로고
    • Improved particle swarm optimization-based artificial neural network for rainfall-runoff modeling
    • Asadnia M., Chua L.H.C., Qin X.S., Asce A.M., Talei A. Improved particle swarm optimization-based artificial neural network for rainfall-runoff modeling. J. Hydrol. Eng. 2014, 19:1320-1329. 10.1061/(ASCE)HE.1943-5584.0000927.
    • (2014) J. Hydrol. Eng. , vol.19 , pp. 1320-1329
    • Asadnia, M.1    Chua, L.H.C.2    Qin, X.S.3    Asce, A.M.4    Talei, A.5
  • 5
    • 0034174280 scopus 로고    scopus 로고
    • Application of artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Application of artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5:115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 115-123
  • 6
    • 12144264770 scopus 로고    scopus 로고
    • Neural networks and M5 model trees in modelling water level-discharge relationship
    • Bhattacharya B., Solomatine D.P. Neural networks and M5 model trees in modelling water level-discharge relationship. Neurocomputing 2005, 63:381-396. 10.1016/j.neucom.2004.04.016.
    • (2005) Neurocomputing , vol.63 , pp. 381-396
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 7
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine
    • Blum A.L., Langley P. Selection of relevant features and examples in machine. Artif. Intell. 1997, 97:245-271.
    • (1997) Artif. Intell. , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 8
    • 36348997596 scopus 로고    scopus 로고
    • Hydrometeorological analysis of the 29 August 2003 flash flood in the Eastern Italian Alps
    • Borga M., Boscolo P., Zanon F., Sangati M. Hydrometeorological analysis of the 29 August 2003 flash flood in the Eastern Italian Alps. J. Hydrometeorol. 2007, 8:1049-1067. 10.1175/JHM593.1.
    • (2007) J. Hydrometeorol. , vol.8 , pp. 1049-1067
    • Borga, M.1    Boscolo, P.2    Zanon, F.3    Sangati, M.4
  • 9
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1-background and methodology
    • Bowden G.J., Dandy G.C., Maier H.R. Input determination for neural network models in water resources applications. Part 1-background and methodology. J. Hydrol. 2005, 301:75-92. 10.1016/j.jhydrol.2004.06.021.
    • (2005) J. Hydrol. , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 10
    • 10644225424 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river
    • Bowden G.J., Maier H.R., Dandy G.C. Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river. J. Hydrol. 2005, 301:93-107. 10.1016/j.jhydrol.2004.06.020.
    • (2005) J. Hydrol. , vol.301 , pp. 93-107
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 11
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
    • Chau K.W. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol. 2006, 329:363-367. 10.1016/j.jhydrol.2006.02.025.
    • (2006) J. Hydrol. , vol.329 , pp. 363-367
    • Chau, K.W.1
  • 12
    • 35349010023 scopus 로고    scopus 로고
    • A split-step particle swarm optimization algorithm in river stage forecasting
    • Chau K.W. A split-step particle swarm optimization algorithm in river stage forecasting. J. Hydrol. 2007, 346:131-135. 10.1016/j.jhydrol.2007.09.004.
    • (2007) J. Hydrol. , vol.346 , pp. 131-135
    • Chau, K.W.1
  • 13
    • 60549091177 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks for hydrological systems forecasting
    • Chen Y., Chang F.-J. Evolutionary artificial neural networks for hydrological systems forecasting. J. Hydrol. 2009, 367:125-137. 10.1016/j.jhydrol.2009.01.009.
    • (2009) J. Hydrol. , vol.367 , pp. 125-137
    • Chen, Y.1    Chang, F.-J.2
  • 14
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P., Anctil F., Bobe B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 2000, 230:244-257. 10.1016/S0022-1694(00)00214-6.
    • (2000) J. Hydrol. , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobe, B.3
  • 15
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson C.W., Wilby R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 2001, 25:80-108. 10.1191/030913301674775671.
    • (2001) Prog. Phys. Geogr. , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 18
    • 84908611342 scopus 로고    scopus 로고
    • Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia
    • Deo R.C., Şahin M. Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmos. Res. 2015, 153:512-525. 10.1016/j.atmosres.2014.10.016.
    • (2015) Atmos. Res. , vol.153 , pp. 512-525
    • Deo, R.C.1    Şahin, M.2
  • 19
    • 61749084755 scopus 로고    scopus 로고
    • Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach
    • Fernando T.M.K.G., Maier H.R., Dandy G.C. Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach. J. Hydrol. 2009, 367:165-176. 10.1016/j.jhydrol.2008.10.019.
    • (2009) J. Hydrol. , vol.367 , pp. 165-176
    • Fernando, T.M.K.G.1    Maier, H.R.2    Dandy, G.C.3
  • 20
    • 84880684699 scopus 로고    scopus 로고
    • Tree-based iterative input variable selection for hydrological modeling
    • Galelli S., Castelletti a. Tree-based iterative input variable selection for hydrological modeling. Water Resour. Res. 2013, 49:4295-4310. 10.1002/wrcr.20339.
    • (2013) Water Resour. Res. , vol.49 , pp. 4295-4310
    • Galelli, S.1    Castelletti, A.2
  • 21
    • 84881039240 scopus 로고    scopus 로고
    • Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
    • Galelli S., Castelletti a. Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling. Hydrol. Earth Syst. Sci. Discuss. 2013, 10:1617-1655. 10.5194/hessd-10-1617-2013.
    • (2013) Hydrol. Earth Syst. Sci. Discuss. , vol.10 , pp. 1617-1655
    • Galelli, S.1    Castelletti, A.2
  • 22
    • 84907068377 scopus 로고    scopus 로고
    • An evaluation framework for input variable selection algorithms for environmental data-driven models
    • Galelli S., Humphrey G.B., Maier H.R., Castelletti A., Dandy G.C., Gibbs M.S. An evaluation framework for input variable selection algorithms for environmental data-driven models. Environ. Model. Softw. 2014, 62:33-51. 10.1016/j.envsoft.2014.08.015.
    • (2014) Environ. Model. Softw. , vol.62 , pp. 33-51
    • Galelli, S.1    Humphrey, G.B.2    Maier, H.R.3    Castelletti, A.4    Dandy, G.C.5    Gibbs, M.S.6
  • 23
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 24
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks
    • IEEE (Ed.), Neural Networks, 2004.
    • Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2004. Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE (Ed.), Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, vol. 2, pp. 985-990. doi:10.1109/IJCNN.2004.1380068.
    • (2004) Proceedings. 2004 IEEE International Joint Conference on , vol.2 , pp. 985-990
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 25
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.-B., Chen L., Siew C. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 2006, 17:879-892.
    • (2006) IEEE Trans. Neural Networks , vol.17 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.3
  • 26
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501. 10.1016/j.neucom.2005.12.126.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 29
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: generalisation beyond the calibration range
    • Imrie C.E., Durucan S., Korre A. River flow prediction using artificial neural networks: generalisation beyond the calibration range. J. Hydrol. 2000, 233:138-153. 10.1016/S0022-1694(00)00228-6.
    • (2000) J. Hydrol. , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 30
    • 69249158084 scopus 로고    scopus 로고
    • Dissection of trained neural network hydrologic models for knowledge extraction
    • Jain A., Kumar S. Dissection of trained neural network hydrologic models for knowledge extraction. Water Resour. Res. 2009, 45:W07420. 10.1029/2008WR007194.
    • (2009) Water Resour. Res. , vol.45 , pp. W07420
    • Jain, A.1    Kumar, S.2
  • 31
    • 84899047533 scopus 로고    scopus 로고
    • Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance
    • (Cat. No. 99TH8406)
    • Kennedy, J., 1999. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proc. 1999 Congr. Evol. Comput. (Cat. No. 99TH8406) 1931-1938. doi:10.1109/CEC.1999.785509.
    • (1999) Proc. 1999 Congr. Evol. Comput , pp. 1931-1938
    • Kennedy, J.1
  • 34
    • 84901464055 scopus 로고    scopus 로고
    • Population structure and particle swarm performance
    • Kennedy, J., Mendes, R., 2002. Population structure and particle swarm performance. In: Proc. 2002 Congr. Evol. Comput. CEC'02, vol. 2, pp. 1671-1676. doi:10.1109/CEC.2002.1004493.
    • (2002) Proc. 2002 Congr. Evol. Comput. CEC'02 , vol.2 , pp. 1671-1676
    • Kennedy, J.1    Mendes, R.2
  • 35
    • 84857685424 scopus 로고    scopus 로고
    • Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm
    • Kisi O., Ozkan C., Akay B. Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm. J. Hydrol. 2012, 428-429:94-103. 10.1016/j.jhydrol.2012.01.026.
    • (2012) J. Hydrol. , pp. 94-103
    • Kisi, O.1    Ozkan, C.2    Akay, B.3
  • 36
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John H. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, H.2
  • 37
    • 43949087486 scopus 로고    scopus 로고
    • Structural optimisation and input selection of an artificial neural network for river level prediction
    • Leahy P., Kiely G., Corcoran G. Structural optimisation and input selection of an artificial neural network for river level prediction. J. Hydrol. 2008, 355:192-201. 10.1016/j.jhydrol.2008.03.017.
    • (2008) J. Hydrol. , vol.355 , pp. 192-201
    • Leahy, P.1    Kiely, G.2    Corcoran, G.3
  • 38
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Modell. Softw. 2000, 15:101-124. 10.1016/S1364-8152(99)00007-9.
    • (2000) Environ. Modell. Softw. , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 39
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier H.R., Jain A., Dandy G.C., Sudheer K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Modell. Softw. 2010, 25:891-909. 10.1016/j.envsoft.2010.02.003.
    • (2010) Environ. Modell. Softw. , vol.25 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 41
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • May R.J., Maier H.R., Dandy G.C., Fernando T.M.K.G. Non-linear variable selection for artificial neural networks using partial mutual information. Environ. Modell. Softw. 2008, 23:1312-1326. 10.1016/j.envsoft.2008.03.007.
    • (2008) Environ. Modell. Softw. , vol.23 , pp. 1312-1326
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Fernando, T.M.K.G.4
  • 42
    • 84942113543 scopus 로고    scopus 로고
    • Watch thy neighbor or how the swarm can learn from its environment
    • Mendes, R., Kennedy, J., Neves, J., 2003. Watch thy neighbor or how the swarm can learn from its environment. In: Proc. 2003 IEEE Swarm Intell. Symp. - SIS'03, pp. 88-94. doi:10.1109/SIS.2003.1202252.
    • (2003) Proc. 2003 IEEE Swarm Intell. Symp. - SIS'03 , pp. 88-94
    • Mendes, R.1    Kennedy, J.2    Neves, J.3
  • 43
    • 3142781923 scopus 로고    scopus 로고
    • The fully informed particle swarm: simpler, maybe better
    • Mendes R., Kennedy J., Neves J. The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 2004, 8:204-210.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , pp. 204-210
    • Mendes, R.1    Kennedy, J.2    Neves, J.3
  • 45
    • 79953796890 scopus 로고    scopus 로고
    • Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction
    • Noori R., Karbassi a.R., Moghaddamnia a., Han D., Zokaei-Ashtiani M.H., Farokhnia a., Gousheh M.G. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. Hydrol. 2011, 401:177-189. 10.1016/j.jhydrol.2011.02.021.
    • (2011) J. Hydrol. , vol.401 , pp. 177-189
    • Noori, R.1    Karbassi, A.2    Moghaddamnia, A.3    Han, D.4    Zokaei-Ashtiani, M.H.5    Farokhnia, A.6    Gousheh, M.G.7
  • 46
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani V., Alami M.T., Aminfar M.H. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22:466-472. 10.1016/j.engappai.2008.09.003.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 47
    • 84893386848 scopus 로고    scopus 로고
    • Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data
    • Ortiz-García E.G., Salcedo-Sanz S., Casanova-Mateo C. Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data. Atmos. Res. 2014, 139:128-136. 10.1016/j.atmosres.2014.01.012.
    • (2014) Atmos. Res. , vol.139 , pp. 128-136
    • Ortiz-García, E.G.1    Salcedo-Sanz, S.2    Casanova-Mateo, C.3
  • 48
    • 45449118697 scopus 로고    scopus 로고
    • Particle swarm optimization
    • Poli R., Kennedy J., Blackwell T. Particle swarm optimization. Swarm Intell. 2007, 1:33-57. 10.1007/s11721-007-0002-0.
    • (2007) Swarm Intell. , vol.1 , pp. 33-57
    • Poli, R.1    Kennedy, J.2    Blackwell, T.3
  • 49
    • 0035427685 scopus 로고    scopus 로고
    • An investigation of model selection criteria for neural network time series forecasting
    • Qi M., Zhang G.P. An investigation of model selection criteria for neural network time series forecasting. Eur. J. Oper. Res. 2001, 132:666-680.
    • (2001) Eur. J. Oper. Res. , vol.132 , pp. 666-680
    • Qi, M.1    Zhang, G.P.2
  • 50
    • 0034694877 scopus 로고    scopus 로고
    • Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1-a strategy for system predictor identification
    • Sharma A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1-a strategy for system predictor identification. J. Hydrol. 2000, 239:232-239. 10.1016/S0022-1694(00)00346-2.
    • (2000) J. Hydrol. , vol.239 , pp. 232-239
    • Sharma, A.1
  • 51
    • 84896739021 scopus 로고    scopus 로고
    • An information theoretic alternative to model a natural system using observational information alone
    • Sharma A., Mehrotra R. An information theoretic alternative to model a natural system using observational information alone. Water Resour. Res. 2014, 50:650-660. 10.1002/2013WR013845.
    • (2014) Water Resour. Res. , vol.50 , pp. 650-660
    • Sharma, A.1    Mehrotra, R.2
  • 52
    • 84860361346 scopus 로고    scopus 로고
    • Advances in variable selection methods I: causal selection methods versus stepwise regression and principal component analysis on data of known and unknown functional relationships
    • Ssegane H., Tollner E.W., Mohamoud Y.M., Rasmussen T.C., Dowd J.F. Advances in variable selection methods I: causal selection methods versus stepwise regression and principal component analysis on data of known and unknown functional relationships. J. Hydrol. 2012, 438-439:16-25. 10.1016/j.jhydrol.2012.01.008.
    • (2012) J. Hydrol. , pp. 16-25
    • Ssegane, H.1    Tollner, E.W.2    Mohamoud, Y.M.3    Rasmussen, T.C.4    Dowd, J.F.5
  • 53
    • 84924153739 scopus 로고    scopus 로고
    • Neural network river forecasting with multi-objective fully informed particle swarm optimization
    • Taormina R., Chau K. Neural network river forecasting with multi-objective fully informed particle swarm optimization. J. Hydroinform. 2015, 17:99-112. 10.2166/hydro.2014.116.
    • (2015) J. Hydroinform. , vol.17 , pp. 99-112
    • Taormina, R.1    Chau, K.2
  • 54
    • 84868367414 scopus 로고    scopus 로고
    • Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon
    • Taormina R., Chau K., Sethi R. Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intell. 2012, 25:1670-1676. 10.1016/j.engappai.2012.02.009.
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , pp. 1670-1676
    • Taormina, R.1    Chau, K.2    Sethi, R.3
  • 55
    • 84902791443 scopus 로고    scopus 로고
    • Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization
    • Tapoglou E., Trichakis I.C., Dokou Z., Nikolos I.K., Karatzas G.P. Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization. Hydrol. Sci. J. 2014, 59:1225-1239. 10.1080/02626667.2013.838005.
    • (2014) Hydrol. Sci. J. , vol.59 , pp. 1225-1239
    • Tapoglou, E.1    Trichakis, I.C.2    Dokou, Z.3    Nikolos, I.K.4    Karatzas, G.P.5
  • 56
    • 79960066451 scopus 로고    scopus 로고
    • Input variable selection for median flood regionalization
    • Wan Jaafar W.Z., Liu J., Han D. Input variable selection for median flood regionalization. Water Resour. Res. 2011, 47. 10.1029/2011WR010436.
    • (2011) Water Resour. Res. , vol.47
    • Wan Jaafar, W.Z.1    Liu, J.2    Han, D.3
  • 57
    • 84887799080 scopus 로고    scopus 로고
    • Particle swarm optimization for feature selection in classification: a multi-objective approach
    • Xue B., Zhang M., Member S., Browne W.N. Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 2013, 43:1656-1671.
    • (2013) IEEE Trans. Cybern. , vol.43 , pp. 1656-1671
    • Xue, B.1    Zhang, M.2    Member, S.3    Browne, W.N.4
  • 58
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X. Evolving artificial neural networks. Proc. IEEE 1999, 87:1423-1447.
    • (1999) Proc. IEEE , vol.87 , pp. 1423-1447
    • Yao, X.1
  • 59
    • 0030621249 scopus 로고    scopus 로고
    • Performance of conceptual rainfall-runoff models in low-yielding ephemeral catchments
    • Ye W., Bates B.C., Viney N.R., Sivapalan M. Performance of conceptual rainfall-runoff models in low-yielding ephemeral catchments. Water Resour. Res. 1997, 33:153-166.
    • (1997) Water Resour. Res. , vol.33 , pp. 153-166
    • Ye, W.1    Bates, B.C.2    Viney, N.R.3    Sivapalan, M.4
  • 60


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.