메뉴 건너뛰기




Volumn 407, Issue 1-4, 2011, Pages 28-40

A wavelet neural network conjunction model for groundwater level forecasting

Author keywords

Artificial neural networks; Forecasting; Groundwater; Time series analysis; Wavelet transforms

Indexed keywords

ARIMA MODELS; ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORK MODELS; AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODELS; AVERAGE TEMPERATURE; GROUNDWATER LEVEL FORECASTING; NETWORK MODELS; QUEBEC , CANADA; RELATIVE PERFORMANCE; RURAL WATER SUPPLY; SUSTAINABLE GROUNDWATER MANAGEMENT; SUSTAINABLE USE; TOTAL PRECIPITATION; WAVELET NEURAL NETWORKS;

EID: 80052027629     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2011.06.013     Document Type: Article
Times cited : (532)

References (52)
  • 1
    • 81255164498 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method based on wavelet analysis
    • Adamowski J. Development of a short-term river flood forecasting method based on wavelet analysis. Warsaw Polish Academy of Sciences Publication 2007, 172.
    • (2007) Warsaw Polish Academy of Sciences Publication , pp. 172
    • Adamowski, J.1
  • 2
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski J. Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. Journal of Hydrology 2008, 353(3-4):247-266.
    • (2008) Journal of Hydrology , vol.353 , Issue.3-4 , pp. 247-266
    • Adamowski, J.1
  • 3
    • 67650321039 scopus 로고    scopus 로고
    • River flow forecasting using wavelet and cross-wavelet transform models
    • Adamowski J. River flow forecasting using wavelet and cross-wavelet transform models. Journal of Hydrological Processes 2008, (25):, 4877-4891.
    • (2008) Journal of Hydrological Processes , Issue.25 , pp. 4877-4891
    • Adamowski, J.1
  • 4
    • 77956838672 scopus 로고    scopus 로고
    • Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms
    • Adamowski J., Karapataki C. Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms. Journal of Hydrologic Engineering 2010, 15(10):729-743.
    • (2010) Journal of Hydrologic Engineering , vol.15 , Issue.10 , pp. 729-743
    • Adamowski, J.1    Karapataki, C.2
  • 5
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J., Sun K. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology 2010, 390(1-2):85-91.
    • (2010) Journal of Hydrology , vol.390 , Issue.1-2 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 6
    • 70349866643 scopus 로고    scopus 로고
    • Forecasting of groundwater level in hard rock region using artificial neural network
    • Banerjee P.R., Prasad K., Singh V.S. Forecasting of groundwater level in hard rock region using artificial neural network. Environmental Geology 2009, 58(6):1239-1246.
    • (2009) Environmental Geology , vol.58 , Issue.6 , pp. 1239-1246
    • Banerjee, P.R.1    Prasad, K.2    Singh, V.S.3
  • 7
    • 19744369445 scopus 로고    scopus 로고
    • Realistic forecasting of groundwater level, based on the eigenstructure of aquifer dynamics
    • Bidwell V.J. Realistic forecasting of groundwater level, based on the eigenstructure of aquifer dynamics. Mathematics and Computers in Simulation 2005, 69(1-2):12-20.
    • (2005) Mathematics and Computers in Simulation , vol.69 , Issue.1-2 , pp. 12-20
    • Bidwell, V.J.1
  • 8
    • 0031715454 scopus 로고    scopus 로고
    • Modeling water table fluctuations by means of a stochastic differential equation
    • Bierkens M.F.P. Modeling water table fluctuations by means of a stochastic differential equation. Water Resources Research 1998, 34(10):2485-2500.
    • (1998) Water Resources Research , vol.34 , Issue.10 , pp. 2485-2500
    • Bierkens, M.F.P.1
  • 10
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas B., Fanni A., See L., Sias G. Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Physis and Chemistry of the Earth 2006, 31(18):1164-1171.
    • (2006) Physis and Chemistry of the Earth , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 11
    • 67650084785 scopus 로고    scopus 로고
    • Evaluation of ground water quality using multiple linear regression and structural equation modeling
    • Chenini I., Khemiri S. Evaluation of ground water quality using multiple linear regression and structural equation modeling. International Journal of Environment Science and Technology 2009, 6(3):509-519.
    • (2009) International Journal of Environment Science and Technology , vol.6 , Issue.3 , pp. 509-519
    • Chenini, I.1    Khemiri, S.2
  • 13
    • 54049089420 scopus 로고    scopus 로고
    • Atlas du bassin versant de la rivière Châteauguay
    • Collaboration étroite avec la Commission géologique du Canada et l'Institut national de la recherche scientifique - Eau, Terre et Environnement. Québec: ministère du Développement durable, de l'Environnement et des Parcs.
    • Côté, M.J., Lachance, Y., Lamontagne, C., Nastev, M., Plamondon, R., Roy, N., 2006. Atlas du bassin versant de la rivière Châteauguay. Collaboration étroite avec la Commission géologique du Canada et l'Institut national de la recherche scientifique - Eau, Terre et Environnement. Québec: ministère du Développement durable, de l'Environnement et des Parcs.
    • (2006)
    • Côté, M.J.1    Lachance, Y.2    Lamontagne, C.3    Nastev, M.4    Plamondon, R.5    Roy, N.6
  • 14
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural network
    • Daliakopoulos I., Coulibalya P., Tsani I.K. Groundwater level forecasting using artificial neural network. Journal of Hydrology 2005, 309(1-4):229-240.
    • (2005) Journal of Hydrology , vol.309 , Issue.1-4 , pp. 229-240
    • Daliakopoulos, I.1    Coulibalya, P.2    Tsani, I.K.3
  • 15
    • 0000562670 scopus 로고
    • Decompositions of hardy functions into square integrable wavelets of constant shape
    • Grossman A., Morlet J. Decompositions of hardy functions into square integrable wavelets of constant shape. SIAM Journal of Mathematical Analysis 1984, 15:723-736.
    • (1984) SIAM Journal of Mathematical Analysis , vol.15 , pp. 723-736
    • Grossman, A.1    Morlet, J.2
  • 16
    • 0018200567 scopus 로고
    • The use of multiple linear regression in simulating ground-water level responses
    • Hodgson F.D.I. The use of multiple linear regression in simulating ground-water level responses. Groundwater 1978, 16(4):249-253.
    • (1978) Groundwater , vol.16 , Issue.4 , pp. 249-253
    • Hodgson, F.D.I.1
  • 17
    • 0035494446 scopus 로고    scopus 로고
    • Short-term water demand forecast modeling at IIT Kanpar using artificial neural networks
    • Jain A., Varshney A.K., Joshi U. Short-term water demand forecast modeling at IIT Kanpar using artificial neural networks. Water Resource Management 2001, 15(5):299-321.
    • (2001) Water Resource Management , vol.15 , Issue.5 , pp. 299-321
    • Jain, A.1    Varshney, A.K.2    Joshi, U.3
  • 18
  • 19
    • 48449101338 scopus 로고    scopus 로고
    • Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
    • Karahan H., Ayvaz M. Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks. Hydrogeology Journal 2008, 16(5):817-827.
    • (2008) Hydrogeology Journal , vol.16 , Issue.5 , pp. 817-827
    • Karahan, H.1    Ayvaz, M.2
  • 20
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi O. River flow modeling using artificial neural networks. Journal of Hydrologic Engineering 2004, 9(1):60-63.
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 21
    • 34548146808 scopus 로고    scopus 로고
    • Stream flow forecasting using different artificial neural network algorithms
    • Kisi O. Stream flow forecasting using different artificial neural network algorithms. Journal of Hydrologic Engineering 2007, 12(5):532-539.
    • (2007) Journal of Hydrologic Engineering , vol.12 , Issue.5 , pp. 532-539
    • Kisi, O.1
  • 22
    • 61849131098 scopus 로고    scopus 로고
    • Stream flow forecasting using neuro-wavelet technique
    • Kisi O. Stream flow forecasting using neuro-wavelet technique. Hydrological Processes 2008, 22(20):4142-4152.
    • (2008) Hydrological Processes , vol.22 , Issue.20 , pp. 4142-4152
    • Kisi, O.1
  • 23
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent streamflow forecasting
    • Kisi O. Neural networks and wavelet conjunction model for intermittent streamflow forecasting. Journal of Hydrologic Engineering 2009, 14(8):773-782.
    • (2009) Journal of Hydrologic Engineering , vol.14 , Issue.8 , pp. 773-782
    • Kisi, O.1
  • 24
    • 17044377585 scopus 로고    scopus 로고
    • Groundwater depletion: a global problem
    • Konikow L.F., Kendy E. Groundwater depletion: a global problem. Hydrogeology Journal 2005, 13(1):317-320.
    • (2005) Hydrogeology Journal , vol.13 , Issue.1 , pp. 317-320
    • Konikow, L.F.1    Kendy, E.2
  • 25
    • 42149163573 scopus 로고    scopus 로고
    • Modeling groundwater levels in an urban coastal aquifer using artificial neural networks
    • Krishna B., Rao Y.R.S., Vijaya T. Modeling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrological Process 2008, 22(8):1180-1188.
    • (2008) Hydrological Process , vol.22 , Issue.8 , pp. 1180-1188
    • Krishna, B.1    Rao, Y.R.S.2    Vijaya, T.3
  • 26
    • 80052022392 scopus 로고    scopus 로고
    • A model for groundwater time-series from the well field of riverbank filtration
    • Lee S.I., Lee S.K., Hamm S.Y. A model for groundwater time-series from the well field of riverbank filtration. Journal of Korea Water Resources Association 2009, 42:673-680.
    • (2009) Journal of Korea Water Resources Association , vol.42 , pp. 673-680
    • Lee, S.I.1    Lee, S.K.2    Hamm, S.Y.3
  • 28
    • 80052033760 scopus 로고    scopus 로고
    • MATLAB, 2010. The MathWorks Inc., Natick, MA.
    • MATLAB, 2010. The MathWorks Inc., Natick, MA.
  • 30
    • 80052031592 scopus 로고    scopus 로고
    • Groundwater table estimation using MODFLOW and artificial neural networks
    • Mohammadi K. Groundwater table estimation using MODFLOW and artificial neural networks. Water Science and Technology Library 2008, 68(2):127-138.
    • (2008) Water Science and Technology Library , vol.68 , Issue.2 , pp. 127-138
    • Mohammadi, K.1
  • 31
    • 77953325250 scopus 로고    scopus 로고
    • Artificial neural network modeling for groundwater level forecasting in a river island of eastern India
    • Mohanty S., Madan K., Jha A., Kumar K., Sudheer P. Artificial neural network modeling for groundwater level forecasting in a river island of eastern India. Water Resources Management 2010, 24(9):1845-1865.
    • (2010) Water Resources Management , vol.24 , Issue.9 , pp. 1845-1865
    • Mohanty, S.1    Madan, K.2    Jha, A.3    Kumar, K.4    Sudheer, P.5
  • 32
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater level forecasting in a shallow aquifer using artificial neural network approach
    • Nayak P., Rao Y.R.S., Sudheer K.P. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resource Management 2006, 20(1):77-90.
    • (2006) Water Resource Management , vol.20 , Issue.1 , pp. 77-90
    • Nayak, P.1    Rao, Y.R.S.2    Sudheer, K.P.3
  • 34
    • 65249094814 scopus 로고    scopus 로고
    • River flow forecasting using different artificial neural network algorithms and wavelet transform
    • Partal T. River flow forecasting using different artificial neural network algorithms and wavelet transform. Canadian Journal of Civil Engineering 2009, 36(1):26-38.
    • (2009) Canadian Journal of Civil Engineering , vol.36 , Issue.1 , pp. 26-38
    • Partal, T.1
  • 35
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T., Kisi O. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. Journal of Hydrology 2007, 342(1-2):199-212.
    • (2007) Journal of Hydrology , vol.342 , Issue.1-2 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 36
    • 69949143939 scopus 로고    scopus 로고
    • Application of neural network and adaptive neuro fuzzy inference systems for stream flow prediction
    • Pramanik N., Panda R.K. Application of neural network and adaptive neuro fuzzy inference systems for stream flow prediction. Hydrological Sciences Journal 2009, 54(2):247-260.
    • (2009) Hydrological Sciences Journal , vol.54 , Issue.2 , pp. 247-260
    • Pramanik, N.1    Panda, R.K.2
  • 37
    • 80052025756 scopus 로고    scopus 로고
    • Design of a Real-Time Groundwater Level Monitoring Network and Portrayal of Hydrologic Data in Southern Florida. USGC Water Resources Investigations Report 01-4275.
    • Prinos, S.T., Lietz, A.C., Irvin, R.B., 2002. Design of a Real-Time Groundwater Level Monitoring Network and Portrayal of Hydrologic Data in Southern Florida. USGC Water Resources Investigations Report 01-4275.
    • (2002)
    • Prinos, S.T.1    Lietz, A.C.2    Irvin, R.B.3
  • 38
    • 59049088362 scopus 로고    scopus 로고
    • Improved irrigation water demand forecasting using a soft-computing hybrid model
    • Pulido-Calvo I., Gutierrez-Estrada J.C. Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosystems Engineering 2009, 102(2):202-218.
    • (2009) Biosystems Engineering , vol.102 , Issue.2 , pp. 202-218
    • Pulido-Calvo, I.1    Gutierrez-Estrada, J.C.2
  • 39
    • 0029413038 scopus 로고
    • Multivariate modelling of water resources time series using artificial neural networks
    • Raman H., Sunilkumar N. Multivariate modelling of water resources time series using artificial neural networks. Hydrology Science Journal 1995, 40(2):145-163.
    • (1995) Hydrology Science Journal , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 40
    • 34249898039 scopus 로고    scopus 로고
    • A simple neural network model for the determination of aquifer parameters
    • Samani M., Gohri-Moghadam M., Safavi A.A. A simple neural network model for the determination of aquifer parameters. Journal Hydrology 2007, 340(1-2):1-11.
    • (2007) Journal Hydrology , vol.340 , Issue.1-2 , pp. 1-11
    • Samani, M.1    Gohri-Moghadam, M.2    Safavi, A.A.3
  • 41
    • 80052034962 scopus 로고    scopus 로고
    • SCABRIC, 2005. Société de conservation et d'aménagement du bassin de la rivière Châteauguay, Plan général d'intervention de la SCABRIC 2005-2015.
    • SCABRIC, 2005. Société de conservation et d'aménagement du bassin de la rivière Châteauguay, Plan général d'intervention de la SCABRIC 2005-2015.
  • 42
    • 80052028333 scopus 로고    scopus 로고
    • SCABRIC-2, 2005. Société de conservation et d'aménagement du bassin de la rivière Châteauguay. Portrait du bassin versant de la rivière Châteauguay: la cohabitation. Formation des employés - Partie 2.
    • SCABRIC-2, 2005. Société de conservation et d'aménagement du bassin de la rivière Châteauguay. Portrait du bassin versant de la rivière Châteauguay: la cohabitation. Formation des employés - Partie 2.
  • 45
    • 80052031126 scopus 로고    scopus 로고
    • Statistica, 2006. Statitica Electronic Manual. Ver. 7.1. StatSoft, Inc., Tulsa, Okla.
    • Statistica, 2006. Statitica Electronic Manual. Ver. 7.1. StatSoft, Inc., Tulsa, Okla.
  • 46
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach
    • Tiwari M.K., Chatterjee C. Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. Journal of Hydrology 2010, 1(394):458-470.
    • (2010) Journal of Hydrology , vol.1 , Issue.394 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 47
    • 54449098749 scopus 로고    scopus 로고
    • Improving groundwater level forecasting with a feedforward neural network and linearly regressed projected precipitation
    • Tsanis I.K., Coulibay P., Daliakopoulos N. Improving groundwater level forecasting with a feedforward neural network and linearly regressed projected precipitation. Journal of Hydroinformatics 2008, 10(4):317-330.
    • (2008) Journal of Hydroinformatics , vol.10 , Issue.4 , pp. 317-330
    • Tsanis, I.K.1    Coulibay, P.2    Daliakopoulos, N.3
  • 48
    • 33846095406 scopus 로고    scopus 로고
    • Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas
    • Uddameri V. Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas. Environmental Geology 2007, 51(6):885-895.
    • (2007) Environmental Geology , vol.51 , Issue.6 , pp. 885-895
    • Uddameri, V.1
  • 49
    • 80052032159 scopus 로고    scopus 로고
    • USGS, (accessed 02.07.10).
    • USGS, 2010. (accessed 02.07.10). http://ga.water.usgs.gov/edu/gwdepletion.html.
    • (2010)
  • 50
    • 70349237925 scopus 로고    scopus 로고
    • Prediction of inflow at Three Gorges Dam in Yangtze River with wavelet network model
    • Wang W., Jin J., Li Y. Prediction of inflow at Three Gorges Dam in Yangtze River with wavelet network model. Water Resources Management 2009, 23(13):2791-2803.
    • (2009) Water Resources Management , vol.23 , Issue.13 , pp. 2791-2803
    • Wang, W.1    Jin, J.2    Li, Y.3
  • 51
    • 0002548939 scopus 로고    scopus 로고
    • Nonstationary time series analysis and forecasting
    • Young P.C. Nonstationary time series analysis and forecasting. Progress in Environmental Science 1999, 1(1):3-48.
    • (1999) Progress in Environmental Science , vol.1 , Issue.1 , pp. 3-48
    • Young, P.C.1
  • 52
    • 85016620552 scopus 로고    scopus 로고
    • A Trous decomposition applied to image edge detection
    • Zhang X., Li D. A Trous decomposition applied to image edge detection. Geographic Information Science 2001, 7(2):119-123.
    • (2001) Geographic Information Science , vol.7 , Issue.2 , pp. 119-123
    • Zhang, X.1    Li, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.