메뉴 건너뛰기




Volumn 540, Issue , 2016, Pages 623-640

A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network

Author keywords

Bayesian artificial neural networks; Conceptual hydrological models; Hybrid modelling; Monthly streamflow forecasting; South Australia; Uncertainty

Indexed keywords

BAYESIAN NETWORKS; CATCHMENTS; DECISION MAKING; GROUNDWATER; GROUNDWATER RESOURCES; HYDROLOGY; MOISTURE; NEURAL NETWORKS; RUNOFF; SOIL MOISTURE; STREAM FLOW; UNCERTAINTY ANALYSIS; WATER RESOURCES;

EID: 84976648644     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2016.06.026     Document Type: Article
Times cited : (205)

References (74)
  • 1
    • 0142027619 scopus 로고    scopus 로고
    • Managing uncertainty in hydrological models using complementary models
    • Abebe, A.J., Price, R.K., Managing uncertainty in hydrological models using complementary models. Hydrol. Sci. J. 48 (2003), 679–692, 10.1623/hysj.48.5.679.51450.
    • (2003) Hydrol. Sci. J. , vol.48 , pp. 679-692
    • Abebe, A.J.1    Price, R.K.2
  • 3
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H., A new look at the statistical model identification. IEEE Trans. Autom. Control 19 (1974), 716–723, 10.1109/TAC.1974.1100705.
    • (1974) IEEE Trans. Autom. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 1142294041 scopus 로고    scopus 로고
    • A soil moisture index as an auxiliary ANN input for stream flow forecasting
    • Anctil, F., Michel, C., Perrin, C., Andréassian, V., A soil moisture index as an auxiliary ANN input for stream flow forecasting. J. Hydrol. 286 (2004), 155–167, 10.1016/j.jhydrol.2003.09.006.
    • (2004) J. Hydrol. , vol.286 , pp. 155-167
    • Anctil, F.1    Michel, C.2    Perrin, C.3    Andréassian, V.4
  • 5
    • 0242407051 scopus 로고    scopus 로고
    • ANN output updating of lumped conceptual rainfall/runoff forecasting models
    • Anctil, F., Perrin, C., Andréassian, V., ANN output updating of lumped conceptual rainfall/runoff forecasting models. JAWRA J. Am. Water Resour. Assoc. 39 (2003), 1269–1279, 10.1111/j.1752-1688.2003.tb03708.x.
    • (2003) JAWRA J. Am. Water Resour. Assoc. , vol.39 , pp. 1269-1279
    • Anctil, F.1    Perrin, C.2    Andréassian, V.3
  • 6
    • 79957883561 scopus 로고    scopus 로고
    • An open software environment for hydrological model assessment and development
    • Andrews, F.T., Croke, B.F.W., Jakeman, A.J., An open software environment for hydrological model assessment and development. Environ. Model. Softw. 26 (2011), 1171–1185, 10.1016/j.envsoft.2011.04.006.
    • (2011) Environ. Model. Softw. , vol.26 , pp. 1171-1185
    • Andrews, F.T.1    Croke, B.F.W.2    Jakeman, A.J.3
  • 7
    • 84976633810 scopus 로고    scopus 로고
    • Coorong South Lagoon Restoration Project – Hydrological Investigation Final Report
    • Technical Report Australian Water Environments Pty Ltd (AWE) for Department of Water, Land and Biodiversity Conservation Adelaide
    • AWE, Coorong South Lagoon Restoration Project – Hydrological Investigation Final Report. Technical Report, 2009, Australian Water Environments Pty Ltd (AWE) for Department of Water, Land and Biodiversity Conservation, Adelaide.
    • (2009)
    • AWE1
  • 8
    • 0003487601 scopus 로고
    • Neural Networks for Pattern Recognition
    • Oxford University Press Oxford
    • Bishop, C.M., Neural Networks for Pattern Recognition. 1995, Oxford University Press, Oxford.
    • (1995)
    • Bishop, C.M.1
  • 9
    • 11144266547 scopus 로고    scopus 로고
    • Catchment water balance modelling in Australia 1960–2004
    • Boughton, W., Catchment water balance modelling in Australia 1960–2004. Agric. Water Manage. 71 (2005), 91–116, 10.1016/j.agwat.2004.10.012.
    • (2005) Agric. Water Manage. , vol.71 , pp. 91-116
    • Boughton, W.1
  • 10
    • 84868621819 scopus 로고    scopus 로고
    • Real-time deployment of artificial neural network forecasting models: understanding the range of applicability
    • Bowden, G.J., Maier, H.R., Dandy, G.C., Real-time deployment of artificial neural network forecasting models: understanding the range of applicability. Water Resour. Res., 48, 2012, W10549, 10.1029/2012wr011984.
    • (2012) Water Resour. Res. , vol.48 , pp. W10549
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 11
    • 0036697650 scopus 로고    scopus 로고
    • Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models
    • Brath, A., Montanari, A., Toth, E., Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models. Hydrol. Earth Syst. Sci. 6 (2002), 627–639, 10.5194/hess-6-627-2002.
    • (2002) Hydrol. Earth Syst. Sci. , vol.6 , pp. 627-639
    • Brath, A.1    Montanari, A.2    Toth, E.3
  • 12
    • 40049100822 scopus 로고    scopus 로고
    • On the estimation of antecedent wetness conditions in rainfall–runoff modelling
    • Brocca, L., Melone, F., Moramarco, T., On the estimation of antecedent wetness conditions in rainfall–runoff modelling. Hydrol. Process. 22 (2008), 629–642, 10.1002/hyp.6629.
    • (2008) Hydrol. Process. , vol.22 , pp. 629-642
    • Brocca, L.1    Melone, F.2    Moramarco, T.3
  • 13
    • 31044455061 scopus 로고    scopus 로고
    • Integration of artificial neural networks with conceptual models in rainfall-runoff modeling
    • Chen, J., Adams, B.J., Integration of artificial neural networks with conceptual models in rainfall-runoff modeling. J. Hydrol. 318 (2006), 232–249, 10.1016/j.jhydrol.2005.06.017.
    • (2006) J. Hydrol. , vol.318 , pp. 232-249
    • Chen, J.1    Adams, B.J.2
  • 14
    • 84861672912 scopus 로고    scopus 로고
    • Crash testing hydrological models in contrasted climate conditions: an experiment on 216 Australian catchments
    • Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., Hendrick, F., Crash testing hydrological models in contrasted climate conditions: an experiment on 216 Australian catchments. Water Resour. Res., 48, 2012, W05552, 10.1029/2011wr011721.
    • (2012) Water Resour. Res. , vol.48 , pp. W05552
    • Coron, L.1    Andréassian, V.2    Perrin, C.3    Lerat, J.4    Vaze, J.5    Bourqui, M.6    Hendrick, F.7
  • 15
    • 77951856333 scopus 로고    scopus 로고
    • Combining semi-distributed process-based and data-driven models in flow simulation: a case study of the Meuse river basin
    • Corzo, G.A., Solomatine, D.P., de Wit Hidayat, M., Werner, M., Uhlenbrook, S., Price, R.K., Combining semi-distributed process-based and data-driven models in flow simulation: a case study of the Meuse river basin. Hydrol. Earth Syst. Sci. 13 (2009), 1619–1634, 10.5194/hess-13-1619-2009.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1619-1634
    • Corzo, G.A.1    Solomatine, D.P.2    de Wit Hidayat, M.3    Werner, M.4    Uhlenbrook, S.5    Price, R.K.6
  • 16
    • 33846798345 scopus 로고    scopus 로고
    • Hydrotest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
    • Dawson, C.W., Abrahart, R.J., See, L.M., Hydrotest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 22 (2007), 1034–1052, 10.1016/j.envsoft.2006.06.008.
    • (2007) Environ. Model. Softw. , vol.22 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 17
    • 84879872378 scopus 로고    scopus 로고
    • Effect of different uncertainty sources on the skill of 10 day ensemble low flow forecasts for two hydrological models
    • Demirel, M.C., Booij, M.J., Hoekstra, A.Y., Effect of different uncertainty sources on the skill of 10 day ensemble low flow forecasts for two hydrological models. Water Resour. Res. 49 (2013), 4035–4053, 10.1002/wrcr.20294.
    • (2013) Water Resour. Res. , vol.49 , pp. 4035-4053
    • Demirel, M.C.1    Booij, M.J.2    Hoekstra, A.Y.3
  • 18
    • 84898435215 scopus 로고    scopus 로고
    • Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity
    • Evin, G., Thyer, M., Kavetski, D., McInerney, D., Kuczera, G., Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity. Water Resour. Res. 50 (2014), 2350–2375, 10.1002/2013wr014185.
    • (2014) Water Resour. Res. , vol.50 , pp. 2350-2375
    • Evin, G.1    Thyer, M.2    Kavetski, D.3    McInerney, D.4    Kuczera, G.5
  • 19
    • 0034910545 scopus 로고    scopus 로고
    • Explaining groundwater hydrographs: separating atypical rainfall events from time trends
    • Ferdowsian, R., Pannell, D.J., McCarron, C., Ryder, A., Crossing, L., Explaining groundwater hydrographs: separating atypical rainfall events from time trends. Soil Res. 39 (2001), 861–876, 10.1071/SR00037.
    • (2001) Soil Res. , vol.39 , pp. 861-876
    • Ferdowsian, R.1    Pannell, D.J.2    McCarron, C.3    Ryder, A.4    Crossing, L.5
  • 20
    • 84907068377 scopus 로고    scopus 로고
    • An evaluation framework for input variable selection algorithms for environmental data-driven models
    • Galelli, S., Humphrey, G.B., Maier, H.R., Castelletti, A., Dandy, G.C., Gibbs, M.S., An evaluation framework for input variable selection algorithms for environmental data-driven models. Environ. Model. Softw. 62 (2014), 33–51, 10.1016/j.envsoft.2014.08.015.
    • (2014) Environ. Model. Softw. , vol.62 , pp. 33-51
    • Galelli, S.1    Humphrey, G.B.2    Maier, H.R.3    Castelletti, A.4    Dandy, G.C.5    Gibbs, M.S.6
  • 21
    • 0027009397 scopus 로고
    • Improved techniques in regression-based streamflow volume forecasting
    • Garen, D., Improved techniques in regression-based streamflow volume forecasting. J. Water Resour. Plann. Manage. 118 (1992), 654–670, 10.1061/(ASCE)0733-9496(1992)118:6(654).
    • (1992) J. Water Resour. Plann. Manage. , vol.118 , pp. 654-670
    • Garen, D.1
  • 22
    • 84889094658 scopus 로고    scopus 로고
    • Assessment of the ability to meet environmental water requirements in the Upper South East of South Australia
    • Gibbs, M.S., Dandy, G.C., Maier, H.R., Assessment of the ability to meet environmental water requirements in the Upper South East of South Australia. Stoch. Env. Res. Risk Assess. 28 (2014), 39–56, 10.1007/s00477-013-0735-9.
    • (2014) Stoch. Env. Res. Risk Assess. , vol.28 , pp. 39-56
    • Gibbs, M.S.1    Dandy, G.C.2    Maier, H.R.3
  • 23
    • 0003722376 scopus 로고
    • Genetic Algorithms in Search, Optimization and Machine Learning
    • Addison-Wesley Pub. Co. Reading, Mass
    • Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning. 1989, Addison-Wesley Pub. Co., Reading, Mass.
    • (1989)
    • Goldberg, D.E.1
  • 24
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario, H., Saksman, E., Tamminen, J., An adaptive Metropolis algorithm. Bernoulli 7 (2001), 223–242.
    • (2001) Bernoulli , vol.7 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 25
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu, K.l., Gupta, H.V., Sorooshian, S., Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31 (1995), 2517–2530, 10.1029/95wr01955.
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 26
    • 84875520036 scopus 로고    scopus 로고
    • Modeling effects of changing land use/cover on daily streamflow: an artificial neural network and curve number based hybrid approach
    • Isik, S., Kalin, L., Schoonover, J.E., Srivastava, P., Lockaby, B.G., Modeling effects of changing land use/cover on daily streamflow: an artificial neural network and curve number based hybrid approach. J. Hydrol. 485 (2013), 103–112, 10.1016/j.jhydrol.2012.08.032.
    • (2013) J. Hydrol. , vol.485 , pp. 103-112
    • Isik, S.1    Kalin, L.2    Schoonover, J.E.3    Srivastava, P.4    Lockaby, B.G.5
  • 27
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
    • Jain, A., Srinivasulu, S., Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J. Hydrol. 317 (2006), 291–306, 10.1016/j.jhydrol.2005.05.022.
    • (2006) J. Hydrol. , vol.317 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 28
    • 0034787335 scopus 로고    scopus 로고
    • Using spatial interpolation to construct a comprehensive archive of Australian climate data
    • Jeffrey, S.J., Carter, J.O., Moodie, K.B., Beswick, A.R., Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 16 (2001), 309–330, 10.1016/s1364-8152(01)00008-1.
    • (2001) Environ. Model. Softw. , vol.16 , pp. 309-330
    • Jeffrey, S.J.1    Carter, J.O.2    Moodie, K.B.3    Beswick, A.R.4
  • 29
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modeling
    • Khan, M.S., Coulibaly, P., Bayesian neural network for rainfall-runoff modeling. Water Resour. Res., 42, 2006, W07409, 10.1029/2005wr003971.
    • (2006) Water Resour. Res. , vol.42 , pp. W07409
    • Khan, M.S.1    Coulibaly, P.2
  • 30
    • 84976609857 scopus 로고    scopus 로고
    • Bayesian Artificial Neural Networks: with Applications in Water Resources Engineering
    • VDM Verlag
    • Kingston, G., Maier, H., Lambert, M., Bayesian Artificial Neural Networks: with Applications in Water Resources Engineering. 2010, VDM Verlag.
    • (2010)
    • Kingston, G.1    Maier, H.2    Lambert, M.3
  • 31
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian training of artificial neural networks used for water resources modeling
    • Kingston, G.B., Lambert, M.F., Maier, H.R., Bayesian training of artificial neural networks used for water resources modeling. Water Resour. Res., 41, 2005, W12409, 10.1029/2005wr004152.
    • (2005) Water Resour. Res. , vol.41 , pp. W12409
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 32
    • 44349171685 scopus 로고    scopus 로고
    • Bayesian model selection applied to artificial neural networks used for water resources modeling
    • Kingston, G.B., Maier, H.R., Lambert, M.F., Bayesian model selection applied to artificial neural networks used for water resources modeling. Water Resour. Res., 44, 2008, W04419, 10.1029/2007wr006155.
    • (2008) Water Resour. Res. , vol.44 , pp. W04419
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 33
    • 0034863505 scopus 로고    scopus 로고
    • A comparison of metric and conceptual approaches in rainfall-runoff modeling and its implications
    • Kokkonen, T.S., Jakeman, A.J., A comparison of metric and conceptual approaches in rainfall-runoff modeling and its implications. Water Resour. Res. 37 (2001), 2345–2352, 10.1029/2000WR000299.
    • (2001) Water Resour. Res. , vol.37 , pp. 2345-2352
    • Kokkonen, T.S.1    Jakeman, A.J.2
  • 34
    • 34248166114 scopus 로고    scopus 로고
    • Verification tools for probabilistic forecasts of continuous hydrological variables
    • Laio, F., Tamea, S., Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrol. Earth Syst. Sci. 11 (2007), 1267–1277, 10.5194/hess-11-1267-2007.
    • (2007) Hydrol. Earth Syst. Sci. , vol.11 , pp. 1267-1277
    • Laio, F.1    Tamea, S.2
  • 35
    • 84885294315 scopus 로고    scopus 로고
    • An innovative method for dynamic update of initial water table in XXT model based on neural network technique
    • Liu, S., Xu, J., Zhao, J., Xie, X., Zhang, W., An innovative method for dynamic update of initial water table in XXT model based on neural network technique. Appl. Soft Comput. 13 (2013), 4185–4193, 10.1016/j.asoc.2013.06.024.
    • (2013) Appl. Soft Comput. , vol.13 , pp. 4185-4193
    • Liu, S.1    Xu, J.2    Zhao, J.3    Xie, X.4    Zhang, W.5
  • 36
    • 84903974139 scopus 로고    scopus 로고
    • Streamflow simulation methods for ungauged and poorly gauged watersheds
    • Loukas, A., Vasiliades, L., Streamflow simulation methods for ungauged and poorly gauged watersheds. Nat. Hazards Earth Syst. Sci. 14 (2014), 1641–1661, 10.5194/nhess-14-1641-2014.
    • (2014) Nat. Hazards Earth Syst. Sci. , vol.14 , pp. 1641-1661
    • Loukas, A.1    Vasiliades, L.2
  • 37
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier, H.R., Dandy, G.C., Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Softw. 15 (2000), 101–124, 10.1016/S1364-8152(99)00007-9.
    • (2000) Environ. Model. Softw. , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 38
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier, H.R., Jain, A., Dandy, G.C., Sudheer, K.P., Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Model. Softw. 25 (2010), 891–909, 10.1016/j.envsoft.2010.02.003.
    • (2010) Environ. Model. Softw. , vol.25 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 39
    • 77956807349 scopus 로고    scopus 로고
    • How do we know whether Seasonal Climate Forecasts are any Good?
    • Springer Netherlands Dordrecht
    • Mason, S.J., Stephenson, D.B., How do we know whether Seasonal Climate Forecasts are any Good?. 2008, Springer Netherlands, Dordrecht, 259–289.
    • (2008) , pp. 259-289
    • Mason, S.J.1    Stephenson, D.B.2
  • 40
    • 85028647311 scopus 로고    scopus 로고
    • Data-driven modelling approaches for socio-hydrology: opportunities and challenges within the Panta Rhei Science Plan
    • Mount, N.J., Maier, H.R., Toth, E., Elshorbagy, A., Solomatine, D., Chang, F.J., Abrahart, R.J., Data-driven modelling approaches for socio-hydrology: opportunities and challenges within the Panta Rhei Science Plan. Hydrol. Sci. J., 2016, 1–17, 10.1080/02626667.2016.1159683.
    • (2016) Hydrol. Sci. J. , pp. 1-17
    • Mount, N.J.1    Maier, H.R.2    Toth, E.3    Elshorbagy, A.4    Solomatine, D.5    Chang, F.J.6    Abrahart, R.J.7
  • 41
    • 84976605230 scopus 로고    scopus 로고
    • Land-use Impact on Water Quality and Quantity in the Lower South East, South Australia
    • Technical Report DWLBC Report 2006/25 Government of South Australia, Department of Water, Land and Biodiversity Conservation Adelaide
    • Mustafa, S., Lawson, J., Leaney, F., Osei-Bonsu, K., Land-use Impact on Water Quality and Quantity in the Lower South East, South Australia. Technical Report DWLBC Report 2006/25, 2006, Government of South Australia, Department of Water, Land and Biodiversity Conservation, Adelaide.
    • (2006)
    • Mustafa, S.1    Lawson, J.2    Leaney, F.3    Osei-Bonsu, K.4
  • 42
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I – a discussion of principles
    • Nash, J.E., Sutcliffe, J.V., River flow forecasting through conceptual models part I – a discussion of principles. J. Hydrol. 10 (1970), 282–290, 10.1016/0022-1694(70)90255-6.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 43
    • 33645973241 scopus 로고    scopus 로고
    • Monthly runoff simulation: comparing and combining conceptual and neural network models
    • Nilsson, P., Uvo, C.B., Berndtsson, R., Monthly runoff simulation: comparing and combining conceptual and neural network models. J. Hydrol. 321 (2006), 344–363, 10.1016/j.jhydrol.2005.08.007.
    • (2006) J. Hydrol. , vol.321 , pp. 344-363
    • Nilsson, P.1    Uvo, C.B.2    Berndtsson, R.3
  • 44
    • 84951090173 scopus 로고    scopus 로고
    • Coupling SWAT and ANN models for enhanced daily streamflow prediction
    • Noori, N., Kalin, L., Coupling SWAT and ANN models for enhanced daily streamflow prediction. J. Hydrol. 533 (2016), 141–151, 10.1016/j.jhydrol.2015.11.050.
    • (2016) J. Hydrol. , vol.533 , pp. 141-151
    • Noori, N.1    Kalin, L.2
  • 45
    • 66149108672 scopus 로고    scopus 로고
    • Daily updating of operational statistical seasonal water supply forecasts for the western U.S
    • Pagano, T.C., Garen, D.C., Perkins, T.R., Pasteris, P.A., Daily updating of operational statistical seasonal water supply forecasts for the western U.S. JAWRA J. Am. Water Resour. Assoc. 45 (2009), 767–778, 10.1111/j.1752-1688.2009.00321.x.
    • (2009) JAWRA J. Am. Water Resour. Assoc. , vol.45 , pp. 767-778
    • Pagano, T.C.1    Garen, D.C.2    Perkins, T.R.3    Pasteris, P.A.4
  • 46
    • 0141682120 scopus 로고    scopus 로고
    • Improvement of a parsimonious model for streamflow simulation
    • Perrin, C., Michel, C., Andréassian, V., Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 279 (2003), 275–289, 10.1016/S0022-1694(03)00225-7.
    • (2003) J. Hydrol. , vol.279 , pp. 275-289
    • Perrin, C.1    Michel, C.2    Andréassian, V.3
  • 47
    • 84863368876 scopus 로고    scopus 로고
    • Towards better understanding of changes in rainfall-runoff relationships during the recent drought in south-eastern Australia
    • Modelling and Simulation Society of Australia and New Zealand
    • Petheram, C., Potter, N., Vaze, J., Chiew, F., Zhang, L., Towards better understanding of changes in rainfall-runoff relationships during the recent drought in south-eastern Australia. MODSIM 2011, 19th International Congress on Modelling and Simulation, 2011, Modelling and Simulation Society of Australia and New Zealand.
    • (2011) MODSIM 2011, 19th International Congress on Modelling and Simulation
    • Petheram, C.1    Potter, N.2    Vaze, J.3    Chiew, F.4    Zhang, L.5
  • 48
    • 80053039912 scopus 로고    scopus 로고
    • A seasonal water availability prediction service: opportunities and challenges
    • R.S. Anderssen R.D. Braddock L.T.H. Newham Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation
    • Plummer, N., Tuteja, N., Wang, Q.J., Wang, E., Robertson, D., Zhou, S., Schepen, A., Alves, O., Timbal, B., Puri, K., A seasonal water availability prediction service: opportunities and challenges. Anderssen, R.S., Braddock, R.D., Newham, L.T.H., (eds.) 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation, 2009, Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation, 80–94.
    • (2009) 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation , pp. 80-94
    • Plummer, N.1    Tuteja, N.2    Wang, Q.J.3    Wang, E.4    Robertson, D.5    Zhou, S.6    Schepen, A.7    Alves, O.8    Timbal, B.9    Puri, K.10
  • 49
    • 84885521312 scopus 로고    scopus 로고
    • The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia
    • Pokhrel, P., Wang, Q.J., Robertson, D.E., The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia. Water Resour. Res. 49 (2013), 6671–6687, 10.1002/wrcr.20449.
    • (2013) Water Resour. Res. , vol.49 , pp. 6671-6687
    • Pokhrel, P.1    Wang, Q.J.2    Robertson, D.E.3
  • 50
    • 0035427685 scopus 로고    scopus 로고
    • An investigation of model selection criteria for neural network time series forecasting
    • Qi, M., Zhang, G.P., An investigation of model selection criteria for neural network time series forecasting. Eur. J. Oper. Res. 132 (2001), 666–680, 10.1016/S0377-2217(00)00171-5.
    • (2001) Eur. J. Oper. Res. , vol.132 , pp. 666-680
    • Qi, M.1    Zhang, G.P.2
  • 51
    • 77950177246 scopus 로고    scopus 로고
    • Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors
    • Renard, B., Kavetski, D., Kuczera, G., Thyer, M., Franks, S.W., Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors. Water Resour. Res., 46, 2010, W05521, 10.1029/2009wr008328.
    • (2010) Water Resour. Res. , vol.46 , pp. W05521
    • Renard, B.1    Kavetski, D.2    Kuczera, G.3    Thyer, M.4    Franks, S.W.5
  • 52
    • 84877002570 scopus 로고    scopus 로고
    • Improving statistical forecasts of seasonal streamflows using hydrological model output
    • Robertson, D.E., Pokhrel, P., Wang, Q.J., Improving statistical forecasts of seasonal streamflows using hydrological model output. Hydrol. Earth Syst. Sci. 17 (2013), 579–593, 10.5194/hess-17-579-2013.
    • (2013) Hydrol. Earth Syst. Sci. , vol.17 , pp. 579-593
    • Robertson, D.E.1    Pokhrel, P.2    Wang, Q.J.3
  • 53
    • 84863338492 scopus 로고    scopus 로고
    • A Bayesian approach to predictor selection for seasonal streamflow forecasting
    • Robertson, D.E., Wang, Q.J., A Bayesian approach to predictor selection for seasonal streamflow forecasting. J. Hydrometeorol. 13 (2012), 155–171, 10.1175/jhm-d-10-05009.1.
    • (2012) J. Hydrometeorol. , vol.13 , pp. 155-171
    • Robertson, D.E.1    Wang, Q.J.2
  • 54
    • 80053352274 scopus 로고    scopus 로고
    • Statistical applications of physically based hydrologic models to seasonal streamflow forecasts
    • Rosenberg, E.A., Wood, A.W., Steinemann, A.C., Statistical applications of physically based hydrologic models to seasonal streamflow forecasts. Water Resour. Res., 47, 2011, W00h14, 10.1029/2010wr010101.
    • (2011) Water Resour. Res. , vol.47 , pp. W00h14
    • Rosenberg, E.A.1    Wood, A.W.2    Steinemann, A.C.3
  • 55
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G., Estimating the dimension of a model. Ann. Stat. 6 (1978), 461–464.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 56
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin, A.Y., Application of a neural network technique to rainfall-runoff modelling. J. Hydrol. 199 (1997), 272–294, 10.1016/S0022-1694(96)03330-6.
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 57
    • 0035701248 scopus 로고    scopus 로고
    • A non-linear neural network technique for updating of river flow forecasts
    • Shamseldin, A.Y., O'Connor, K.M., A non-linear neural network technique for updating of river flow forecasts. Hydrol. Earth Syst. Sci. 5 (2001), 577–598, 10.5194/hess-5-577-2001.
    • (2001) Hydrol. Earth Syst. Sci. , vol.5 , pp. 577-598
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 58
    • 84876078385 scopus 로고    scopus 로고
    • An improved statistical analogue downscaling procedure for seasonal precipitation forecast
    • Shao, Q., Li, M., An improved statistical analogue downscaling procedure for seasonal precipitation forecast. Stoch. Env. Res. Risk Assess. 27 (2013), 819–830, 10.1007/s00477-012-0610-0.
    • (2013) Stoch. Env. Res. Risk Assess. , vol.27 , pp. 819-830
    • Shao, Q.1    Li, M.2
  • 59
    • 0034694864 scopus 로고    scopus 로고
    • Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 3 – a nonparametric probabilistic forecast model
    • Sharma, A., Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 3 – a nonparametric probabilistic forecast model. J. Hydrol. 239 (2000), 249–258, 10.1016/S0022-1694(00)00348-6.
    • (2000) J. Hydrol. , vol.239 , pp. 249-258
    • Sharma, A.1
  • 60
    • 75749099728 scopus 로고    scopus 로고
    • A novel approach to parameter uncertainty analysis of hydrological models using neural networks
    • Shrestha, D.L., Kayastha, N., Solomatine, D.P., A novel approach to parameter uncertainty analysis of hydrological models using neural networks. Hydrol. Earth Syst. Sci. 13 (2009), 1235–1248, 10.5194/hess-13-1235-2009.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1235-1248
    • Shrestha, D.L.1    Kayastha, N.2    Solomatine, D.P.3
  • 61
    • 85001819623 scopus 로고    scopus 로고
    • Hybrid optimization rainfall-runoff simulation based on Xinanjiang model and artificial neural network
    • Song, X., Kong, F., Zhan, C., Han, J., Hybrid optimization rainfall-runoff simulation based on Xinanjiang model and artificial neural network. J. Hydrol. Eng. 17 (2012), 1033–1041, 10.1061/(ASCE)HE.1943-5584.0000548.
    • (2012) J. Hydrol. Eng. , vol.17 , pp. 1033-1041
    • Song, X.1    Kong, F.2    Zhan, C.3    Han, J.4
  • 62
    • 57949116748 scopus 로고    scopus 로고
    • River flow prediction using an integrated approach
    • Srinivasulu, S., Jain, A., River flow prediction using an integrated approach. J. Hydrol. Eng. 14 (2009), 75–83, 10.1061/(ASCE)1084-0699(2009)14:1(75).
    • (2009) J. Hydrol. Eng. , vol.14 , pp. 75-83
    • Srinivasulu, S.1    Jain, A.2
  • 63
    • 69849096009 scopus 로고    scopus 로고
    • Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis
    • Thyer, M., Renard, B., Kavetski, D., Kuczera, G., Franks, S.W., Srikanthan, S., Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis. Water Resour. Res., 45, 2009, W00B14, 10.1029/2008wr006825.
    • (2009) Water Resour. Res. , vol.45 , pp. W00B14
    • Thyer, M.1    Renard, B.2    Kavetski, D.3    Kuczera, G.4    Franks, S.W.5    Srikanthan, S.6
  • 65
    • 84871416150 scopus 로고    scopus 로고
    • Parameters estimate of autoregressive moving average and autoregressive integrated moving average models and compare their ability for inflow forecasting
    • Valipour, M., Banihabib, M.E., Behbahani, S.M.R., Parameters estimate of autoregressive moving average and autoregressive integrated moving average models and compare their ability for inflow forecasting. J. Math. Stat. 8 (2012), 330–338, 10.3844/jmssp.2012.330.338.
    • (2012) J. Math. Stat. , vol.8 , pp. 330-338
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3
  • 66
    • 84870999624 scopus 로고    scopus 로고
    • Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
    • Valipour, M., Banihabib, M.E., Behbahani, S.M.R., Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476 (2013), 433–441, 10.1016/j.jhydrol.2012.11.017.
    • (2013) J. Hydrol. , vol.476 , pp. 433-441
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3
  • 67
    • 0003895851 scopus 로고    scopus 로고
    • Modern Applied Statistics with S
    • fourth ed. Springer New York
    • Venables, W.N., Ripley, B.D., Modern Applied Statistics with S. fourth ed., 2002, Springer, New York.
    • (2002)
    • Venables, W.N.1    Ripley, B.D.2
  • 69
    • 79957577785 scopus 로고    scopus 로고
    • Monthly and seasonal streamflow forecasts using rainfall-runoff modeling and historical weather data
    • Wang, E., Zhang, Y., Luo, J., Chiew, F.H.S., Wang, Q.J., Monthly and seasonal streamflow forecasts using rainfall-runoff modeling and historical weather data. Water Resour. Res., 47, 2011, W05516, 10.1029/2010wr009922.
    • (2011) Water Resour. Res. , vol.47 , pp. W05516
    • Wang, E.1    Zhang, Y.2    Luo, J.3    Chiew, F.H.S.4    Wang, Q.J.5
  • 70
    • 79959282323 scopus 로고    scopus 로고
    • Monthly versus daily water balance models in simulating monthly runoff
    • Wang, Q.J., Pagano, T.C., Zhou, S.L., Hapuarachchi, H.A.P., Zhang, L., Robertson, D.E., Monthly versus daily water balance models in simulating monthly runoff. J. Hydrol. 404 (2011), 166–175, 10.1016/j.jhydrol.2011.04.027.
    • (2011) J. Hydrol. , vol.404 , pp. 166-175
    • Wang, Q.J.1    Pagano, T.C.2    Zhou, S.L.3    Hapuarachchi, H.A.P.4    Zhang, L.5    Robertson, D.E.6
  • 71
    • 67650292897 scopus 로고    scopus 로고
    • A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites
    • Wang, Q.J., Robertson, D.E., Chiew, F.H.S., A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour. Res., 45, 2009, W05407, 10.1029/2008wr007355.
    • (2009) Water Resour. Res. , vol.45 , pp. W05407
    • Wang, Q.J.1    Robertson, D.E.2    Chiew, F.H.S.3
  • 72
    • 41149164098 scopus 로고    scopus 로고
    • Multivariate streamflow forecasting using independent component analysis
    • Westra, S., Sharma, A., Brown, C., Lall, U., Multivariate streamflow forecasting using independent component analysis. Water Resour. Res., 44, 2008, W02437, 10.1029/2007wr006104.
    • (2008) Water Resour. Res. , vol.44 , pp. W02437
    • Westra, S.1    Sharma, A.2    Brown, C.3    Lall, U.4
  • 73
    • 84892886293 scopus 로고    scopus 로고
    • Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling
    • Wu, W., Dandy, G.C., Maier, H.R., Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environ. Model. Softw. 54 (2014), 108–127, 10.1016/j.envsoft.2013.12.016.
    • (2014) Environ. Model. Softw. , vol.54 , pp. 108-127
    • Wu, W.1    Dandy, G.C.2    Maier, H.R.3
  • 74
    • 84945157492 scopus 로고    scopus 로고
    • Artificial intelligence based models for stream-flow forecasting: 2000–2015
    • Yaseen, Z.M., El-shafie, A., Jaafar, O., Afan, H.A., Sayl, K.N., Artificial intelligence based models for stream-flow forecasting: 2000–2015. J. Hydrol. 530 (2015), 829–844, 10.1016/j.jhydrol.2015.10.038.
    • (2015) J. Hydrol. , vol.530 , pp. 829-844
    • Yaseen, Z.M.1    El-shafie, A.2    Jaafar, O.3    Afan, H.A.4    Sayl, K.N.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.