메뉴 건너뛰기




Volumn 95, Issue 452, 2000, Pages 1304-1308

The Variable Selection Problem

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0442309436     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2000.10474336     Document Type: Article
Times cited : (255)

References (58)
  • 1
    • 0000501656 scopus 로고
    • Information Theory and an Extension of the Maximum Likelihood Principle
    • B. N. Petrov and F. Csaki, Budapest: Akademia Kiado
    • Akaike, H. (1973), “Information Theory and an Extension of the Maximum Likelihood Principle,” in 2nd International Symposium on Information Theory, eds. B. N. Petrov and F. Csaki, Budapest: Akademia Kiado, pp. 267-281.
    • (1973) 2Nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 0001677717 scopus 로고
    • Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing
    • Benjamini, Y., and Hochberg, Y. (1995), “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing,” Journal of the Royal Statistical Society, Ser. B, 57, 289-300.
    • (1995) Journal of the Royal Statistical Society, Ser. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 4
    • 0001809736 scopus 로고    scopus 로고
    • The Intrinsic Bayes Factor for Linear Models
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, London: Oxford University Press
    • Berger, J. O., and Pericchi, L. R. (1996b), “The Intrinsic Bayes Factor for Linear Models,” in Bayesian Statistics 5, eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, London: Oxford University Press, pp. 25-44.
    • (1996) Bayesian Statistics 5 , pp. 25-44
    • Berger, J.O.1    Pericchi, L.R.2
  • 5
    • 0001587464 scopus 로고
    • The Little Bootstrap and Other Methods for Dimensionality Selection in Regression: X-Fixed Prediction Error
    • Brieman, L. (1992), “The Little Bootstrap and Other Methods for Dimensionality Selection in Regression: X-Fixed Prediction Error,” Journal of the American Statistical Association, 87, 738-754.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 738-754
    • Brieman, L.1
  • 6
    • 84874257732 scopus 로고
    • Better Subset Selection Using the Nonnegative Garrote
    • Berger, J. O., and Pericchi, L. R. (1995), “Better Subset Selection Using the Nonnegative Garrote,” Technometrics, 37, 373-384.
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Berger, J.O.1    Pericchi, L.R.2
  • 7
    • 0001078433 scopus 로고    scopus 로고
    • Bayesian Model Averaging and Model Search Strategies
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, London: Oxford University Press
    • Clyde, M. (1999), “Bayesian Model Averaging and Model Search Strategies,” in Bayesian Statistics 6, eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, London: Oxford University Press.
    • (1999) Bayesian Statistics , vol.6
    • Clyde, M.1
  • 8
    • 0001477056 scopus 로고    scopus 로고
    • Empirical Bayes Estimation in Wavelet Nonparametric Regression
    • P. Muller and B. Vidakovic, New York: SpringerVerlag
    • Clyde, M., and George, E. I. (1999), “Empirical Bayes Estimation in Wavelet Nonparametric Regression,” in Bayesian Inference in Wavelet-Based Models, eds. P. Muller and B. Vidakovic, New York: SpringerVerlag, pp. 309-322.
    • (1999) Bayesian Inference in Wavelet-Based Models , pp. 309-322
    • Clyde, M.1    George, E.I.2
  • 10
    • 0001682758 scopus 로고    scopus 로고
    • Multiple Shrinkage and Subset Selection in Wavelets
    • Clyde, M., Parmigiani, G., and Vidakovic, B. (1998), “Multiple Shrinkage and Subset Selection in Wavelets,” Biometrika, 85, 391-402.
    • (1998) Biometrika , vol.85 , pp. 391-402
    • Clyde, M.1    Parmigiani, G.2    Vidakovic, B.3
  • 11
    • 0013326060 scopus 로고    scopus 로고
    • Feature Selection for Classification
    • Dash, M., and Liu, H. (1997), “Feature Selection for Classification,” Intelligent Data Analysis, 1, 131-156.
    • (1997) Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 12
    • 0041958932 scopus 로고
    • Ideal Spatial Adaptation by Wavelet Shrinkage
    • Donoho, D. L., and Johnstone, I. M. (1994), “Ideal Spatial Adaptation by Wavelet Shrinkage,” Biometrika, 81, 425-456.
    • (1994) Biometrika , vol.81 , pp. 425-456
    • Donoho, D.L.1    Johnstone, I.M.2
  • 14
    • 0002276308 scopus 로고
    • “Assessment and Propagation of Model Uncertainty
    • Draper, D. (1995), “Assessment and Propagation of Model Uncertainty” (with discussion), Journal of the Royal Statistical Society, Ser. B, 57, 45-97.
    • (1995) Journal of the Royal Statistical Society, Ser. B , vol.57 , pp. 45-97
    • Draper, D.1
  • 15
    • 84950461478 scopus 로고
    • Estimating the Error Rate of a Predictive Rule: Im-provement Over Cross-Validation
    • Efron, B. (1983), “Estimating the Error Rate of a Predictive Rule: Im-provement Over Cross-Validation,” Journal of the American Statistical Association, 78, 316-331.
    • (1983) Journal of the American Statistical Association , vol.78 , pp. 316-331
    • Efron, B.1
  • 16
    • 0001878035 scopus 로고
    • Multiple Regression Analysis
    • A. Ralston and H. S. Wilf, New York: Wiley
    • Efroymson, M. A. (1960), “Multiple Regression Analysis,” in Mathematical Methods for Digital Computers, eds. A. Ralston and H. S. Wilf, New York: Wiley, pp. 191-203.
    • (1960) Mathematical Methods for Digital Computers , pp. 191-203
    • Efroymson, M.A.1
  • 17
    • 21844523862 scopus 로고
    • The Risk Inflation Criterion for Multiple Regression
    • Foster, D. P., and George, E. I. (1994), “The Risk Inflation Criterion for Multiple Regression,” The Annals of Statistics, 22, 1947-1975.
    • (1994) The Annals of Statistics , vol.22 , pp. 1947-1975
    • Foster, D.P.1    George, E.I.2
  • 18
    • 0016128505 scopus 로고
    • Regression by Leaps and Bounds
    • Furnival, G. M., and Wilson, R. W. (1974), “Regression by Leaps and Bounds,” Technometrics, 16, 499-511.
    • (1974) Technometrics , vol.16 , pp. 499-511
    • Furnival, G.M.1    Wilson, R.W.2
  • 19
    • 0030296512 scopus 로고    scopus 로고
    • Quantifying and Using Expert Opinion for Variable-Selection Problems in Regression” (With discussion)
    • Garthwaite, P. H., and Dickey, J. M. (1996), “Quantifying and Using Expert Opinion for Variable-Selection Problems in Regression” (with discussion), Chemometrics and Intelligent Laboratory Systems, 35, 1-34.
    • (1996) Chemometrics and Intelligent Laboratory Systems , vol.35 , pp. 1-34
    • Garthwaite, P.H.1    Dickey, J.M.2
  • 21
    • 0009314775 scopus 로고    scopus 로고
    • Bayesian Model Selection
    • S. Kotz, C. Read, and D. Banks, New York: Wiley
    • George, E. I. (1999), “Bayesian Model Selection,” in Encyclopedia of Statistical Sciences, Update Vol. 3, eds. S. Kotz, C. Read, and D. Banks, New York: Wiley, pp. 39-46.
    • (1999) Encyclopedia of Statistical Sciences, Update , vol.3 , pp. 39-46
    • George, E.I.1
  • 22
    • 0001729472 scopus 로고    scopus 로고
    • Calibration and Empirical Bayes Variable Selection
    • (forthcoming)
    • George, E. I., and Foster, D. P. (2000), “Calibration and Empirical Bayes Variable Selection,” Biometrika, 87 (forthcoming).
    • (2000) Biometrika , pp. 87
    • George, E.I.1    Foster, D.P.2
  • 24
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian Variable Selection
    • George, E. I., and McCulloch, R. E. (1997), “Approaches for Bayesian Variable Selection,” Statistica Sinica, 7(2), 339-373.
    • (1997) Statistica Sinica , vol.7 , Issue.2 , pp. 339-373
    • George, E.I.1    McCulloch, R.E.2
  • 25
    • 0001552995 scopus 로고
    • Cross-Validation, the Jackknife, and the Bootstrap: Excess Error Estimation in Forward Logistic Regression
    • Gong, G. (1986), “Cross-Validation, the Jackknife, and the Bootstrap: Excess Error Estimation in Forward Logistic Regression,” Journal of the American Statistical Association, 393, 108-113.
    • (1986) Journal of the American Statistical Association , vol.393 , pp. 108-113
    • Gong, G.1
  • 26
    • 77956889087 scopus 로고
    • Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination
    • Green, P. (1995), “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination,” Biometrika, 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 27
    • 0000554045 scopus 로고
    • On the Choice of a Model to Fit Data From an Exponential Family
    • Haughton, D. (1988), “On the Choice of a Model to Fit Data From an Exponential Family,” The Annals of Statistics, 16, 342-355.
    • (1988) The Annals of Statistics , vol.16 , pp. 342-355
    • Haughton, D.1
  • 28
    • 0017280570 scopus 로고
    • The Analysis and Selection of Variables in Linear Regression
    • Hocking
    • Hocking (1976), “The Analysis and Selection of Variables in Linear Regression,” Biometrics, 32, 1-49.
    • (1976) Biometrics , vol.32 , pp. 1-49
  • 30
    • 70349119250 scopus 로고
    • Regression and Time Series Model Selection in Small Samples
    • Hurvich, C. M., and Tsai, C. L. (1989), “Regression and Time Series Model Selection in Small Samples,” Biometrika, 76, 297-307.
    • (1989) Biometrika , vol.76 , pp. 297-307
    • Hurvich, C.M.1    Tsai, C.L.2
  • 31
    • 0002339781 scopus 로고    scopus 로고
    • A Cross-Validatory AIC for Hard Wavelet Thresholding in Spatially Adaptive Function Estimation
    • Hurvich, C. M., and Tsai, C. L. (1998), “A Cross-Validatory AIC for Hard Wavelet Thresholding in Spatially Adaptive Function Estimation,” Biometrika, 85, 701-710.
    • (1998) Biometrika , vol.85 , pp. 701-710
    • Hurvich, C.M.1    Tsai, C.L.2
  • 33
    • 27944462549 scopus 로고
    • A Reference Bayesian Test for Nested Hypotheses and Its Relationship to the Schwarz Criterion
    • Kass, R. E., and Wasserman, L. (1995), “A Reference Bayesian Test for Nested Hypotheses and Its Relationship to the Schwarz Criterion,” Journal of the American Statistical Association, 90, 928-934.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 928-934
    • Kass, R.E.1    Wasserman, L.2
  • 36
    • 84915425007 scopus 로고
    • SomeComments on Cv
    • Mallows, C. L. (1973), “SomeComments on Cv" Technometrics, 15, 661-676.
    • (1973) Technometrics , vol.15 , pp. 661-676
    • Mallows, C.L.1
  • 37
    • 84952082933 scopus 로고
    • More Comments on Cp
    • Mallows, C. L. (1995), “More Comments on Cp,” Technometrics, 37, 362-372.
    • (1995) Technometrics , vol.37 , pp. 362-372
    • Mallows, C.L.1
  • 40
    • 0002648792 scopus 로고    scopus 로고
    • The Schwarz Criterion and Related Methods for the Normal Linear Model
    • Pauler, D. (1998), “The Schwarz Criterion and Related Methods for the Normal Linear Model,” Biometrika, 85, 13-27.
    • (1998) Biometrika , vol.85 , pp. 13-27
    • Pauler, D.1
  • 41
    • 0000297493 scopus 로고    scopus 로고
    • Approximate Bayes Factors and Accounting for Model Uncertainty in Generalized Linear Models
    • Raftery, A. E. (1996), “Approximate Bayes Factors and Accounting for Model Uncertainty in Generalized Linear Models,” Biometrika, 83,251-266.
    • (1996) Biometrika , vol.83 , pp. 251-266
    • Raftery, A.E.1
  • 42
    • 0000070978 scopus 로고
    • A Strongly Consistent Procedure for Model Selection in a Regression Problem
    • Rao, C. R., and Wu, Y. (1989), “A Strongly Consistent Procedure for Model Selection in a Regression Problem,” Biometrika, 76, 369-374.
    • (1989) Biometrika , vol.76 , pp. 369-374
    • Rao, C.R.1    Wu, Y.2
  • 43
    • 0018015137 scopus 로고
    • Modeling by Shortest Data Description
    • Rissanen, J. (1978), “Modeling by Shortest Data Description,” Automatica, 14, 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 45
    • 85011194189 scopus 로고
    • Estimating the Dimension of a Model
    • Schwarz, G. (1978), “Estimating the Dimension of a Model,” The Annals of Statistics, 6, 461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 46
    • 0642336882 scopus 로고    scopus 로고
    • An Asymptotic Theory for Linear Model Selection
    • Shao, J. (1997), “An Asymptotic Theory for Linear Model Selection,” Statistica Sinica, 7(2), 221-264.
    • (1997) Statistica Sinica , vol.7 , Issue.2 , pp. 221-264
    • Shao, J.1
  • 48
    • 77956887130 scopus 로고
    • An Optimal Selection of Regression Variables
    • Shibata, R. (1981), “An Optimal Selection of Regression Variables,” Biometrika, 68, 45-54.
    • (1981) Biometrika , vol.68 , pp. 45-54
    • Shibata, R.1
  • 49
    • 0000859675 scopus 로고
    • An Asymptotic Equivalence of Choice of Model by Cross-Validation and Akaikes Criterion,”
    • Stone, M. (1977), “An Asymptotic Equivalence of Choice of Model by Cross-Validation and Akaike’s Criterion,” Journal of the Royal Statistical Society, Ser. B, 39, 44-47.
    • (1977) Journal of the Royal Statistical Society, Ser. B , vol.39 , pp. 44-47
    • Stone, M.1
  • 50
    • 0001588455 scopus 로고
    • Comments on Model Selection Criteria of Akaike and Schwarz
    • Stone, M. (1979), “Comments on Model Selection Criteria of Akaike and Schwarz,” Journal of the Royal Statistical Society, Ser. B, 41, 276-278.
    • (1979) Journal of the Royal Statistical Society, Ser. B , vol.41 , pp. 276-278
    • Stone, M.1
  • 51
    • 0002583992 scopus 로고
    • Selection of Variables in Multiple Regression: Part I. A Review and Evaluation
    • Thompson, M. L. (1978), “Selection of Variables in Multiple Regression: Part I. A Review and Evaluation,” International Statistical Review, 46, 1-19.
    • (1978) International Statistical Review , vol.46 , pp. 1-19
    • Thompson, M.L.1
  • 54
    • 0002914571 scopus 로고
    • On Predictive Least Squares Principles
    • Wei, C. Z. (1992), “On Predictive Least Squares Principles,” The Annals of Statistics, 29, 1-42.
    • (1992) The Annals of Statistics , vol.29 , pp. 1-42
    • Wei, C.Z.1
  • 55
    • 0032351389 scopus 로고    scopus 로고
    • On Measuring and Correcting the Effects of Data Mining and Model Selection
    • Ye, J. (1998), “On Measuring and Correcting the Effects of Data Mining and Model Selection,” Journal of the American Statistical Association, 93, 120-131.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 120-131
    • Ye, J.1
  • 56
    • 0037827949 scopus 로고
    • Inference After Variable Selection in Linear Regression Models
    • Zhang, P. (1992), “Inference After Variable Selection in Linear Regression Models,” Biometrika, 79, 741-746.
    • (1992) Biometrika , vol.79 , pp. 741-746
    • Zhang, P.1
  • 57
    • 21144472438 scopus 로고
    • Model Selection via Multifold Cross-Validation
    • Zhang, P. (1993), “Model Selection via Multifold Cross-Validation,” The Annals of Statistics, 21, 299-313.
    • (1993) The Annals of Statistics , vol.21 , pp. 299-313
    • Zhang, P.1
  • 58
    • 0031524613 scopus 로고    scopus 로고
    • A Consistent Variable Selection Criterion for Linear Models for Linear Models With High-Dimensional Covariates
    • Zheng, X., and Loh, W. Y. (1997), “A Consistent Variable Selection Criterion for Linear Models for Linear Models With High-Dimensional Covariates,” Statistica Sinica, 7(2), 311-325.
    • (1997) Statistica Sinica , vol.7 , Issue.2 , pp. 311-325
    • Zheng, X.1    Loh, W.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.