메뉴 건너뛰기




Volumn 507, Issue , 2013, Pages 186-200

Multiscale streamflow forecasting using a new Bayesian Model Average based ensemble multi-wavelet Volterra nonlinear method

Author keywords

Bayesian Model Averaging; Ensemble forecasting; Multiscale streamflow forecasting; Wavelet based nonlinear models

Indexed keywords

BAYESIAN MODEL AVERAGING; ENSEMBLE FORECASTING; FORECASTING PURPOSE; HYDROLOGIC FORECASTING; HYDROLOGICAL PROCESS; NON-LINEAR MODEL; STREAMFLOW FORECASTING; UNCERTAINTY ESTIMATION;

EID: 84887548611     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2013.09.025     Document Type: Article
Times cited : (84)

References (57)
  • 1
    • 69249101676 scopus 로고    scopus 로고
    • Development of a new method of wavelet aided trend detection and estimation
    • Adamowski K., Prokoph A., Adamowski J. Development of a new method of wavelet aided trend detection and estimation. Hydrol. Process. 2009, 23(18):2686-2696.
    • (2009) Hydrol. Process. , vol.23 , Issue.18 , pp. 2686-2696
    • Adamowski, K.1    Prokoph, A.2    Adamowski, J.3
  • 2
    • 77956838672 scopus 로고    scopus 로고
    • Comparison of multivariate regression and artificial neural networks for peak urban water demand forecasting: evaluation of different ANN learning algorithms
    • Adamowski J., Karapataki C. Comparison of multivariate regression and artificial neural networks for peak urban water demand forecasting: evaluation of different ANN learning algorithms. J. Hydrol. Eng. 2010, 15(10):729-743.
    • (2010) J. Hydrol. Eng. , vol.15 , Issue.10 , pp. 729-743
    • Adamowski, J.1    Karapataki, C.2
  • 3
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J., Sun K. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J. Hydrol. 2010, 390(1-2):85-91.
    • (2010) J. Hydrol. , vol.390 , Issue.1-2 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 4
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski J., Fung Chan H. A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 2012, 407(1-4):28-40.
    • (2012) J. Hydrol. , vol.407 , Issue.1-4 , pp. 28-40
    • Adamowski, J.1    Fung Chan, H.2
  • 5
    • 33847624519 scopus 로고    scopus 로고
    • An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction
    • Ajami N.K., Duan Q., Sorooshian S. An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour. Res. 2007, 43:W01403. 10.1029/2005WR004745.
    • (2007) Water Resour. Res. , vol.43
    • Ajami, N.K.1    Duan, Q.2    Sorooshian, S.3
  • 6
    • 0000343833 scopus 로고
    • Nonlinear hydrologic analysis
    • Amorocho J. Nonlinear hydrologic analysis. Adv. Hydrosci. 1973, 9:203-251.
    • (1973) Adv. Hydrosci. , vol.9 , pp. 203-251
    • Amorocho, J.1
  • 7
    • 0001085145 scopus 로고
    • Determination of Nonlinear Functional Response Functions in Rainfall-Runoff Processes
    • Amorocho J., Brandstetter A. Determination of Nonlinear Functional Response Functions in Rainfall-Runoff Processes. Water Resour. Res. 1971, 7(5):1087-1101.
    • (1971) Water Resour. Res. , vol.7 , Issue.5 , pp. 1087-1101
    • Amorocho, J.1    Brandstetter, A.2
  • 8
    • 0005550747 scopus 로고
    • Non-linear analysis of hydrologic systems, Water Resources Center
    • Amorocho J., Orlob G.T. Non-linear analysis of hydrologic systems, Water Resources Center. Univ. California (Berkeley) 1961, 40:147.
    • (1961) Univ. California (Berkeley) , vol.40 , pp. 147
    • Amorocho, J.1    Orlob, G.T.2
  • 9
    • 68949135430 scopus 로고    scopus 로고
    • Tools for the assessment of hydrological ensemble forecasts obtained by neural networks
    • Boucher M.A., Perreault L., Anctil F. Tools for the assessment of hydrological ensemble forecasts obtained by neural networks. J. Hydroinform. 2009, 11(3-4):297-307.
    • (2009) J. Hydroinform. , vol.11 , Issue.3-4 , pp. 297-307
    • Boucher, M.A.1    Perreault, L.2    Anctil, F.3
  • 10
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • Chen S., Billings S.A., Luo W. Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control 1989, 50(5):1873-1896.
    • (1989) Int. J. Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 11
    • 34047234605 scopus 로고    scopus 로고
    • Pattern recognition with SVM and dual-tree complex wavelets
    • Chen G.Y., Xie W.F. Pattern recognition with SVM and dual-tree complex wavelets. Image and Vision Computing 2007, 25(6):960-966.
    • (2007) Image and Vision Computing , vol.25 , Issue.6 , pp. 960-966
    • Chen, G.Y.1    Xie, W.F.2
  • 12
    • 33845703865 scopus 로고    scopus 로고
    • Efficient nonlinear modeling of rainfall-runoff process using wavelet compression
    • Chou C. Efficient nonlinear modeling of rainfall-runoff process using wavelet compression. J. Hydrol. 2007, 332(3-4):442-455.
    • (2007) J. Hydrol. , vol.332 , Issue.3-4 , pp. 442-455
    • Chou, C.1
  • 13
    • 0012372503 scopus 로고
    • Properties of the kernels for time invariant, initially relaxed, second order, surface runoff systems
    • Diskin M.H., Boneh A. Properties of the kernels for time invariant, initially relaxed, second order, surface runoff systems. J. Hydrol 1972, 17(1):115-141.
    • (1972) J. Hydrol , vol.17 , Issue.1 , pp. 115-141
    • Diskin, M.H.1    Boneh, A.2
  • 14
    • 79956340139 scopus 로고    scopus 로고
    • Predictive uncertainty of chaotic daily streamflow using ensemble wavelet networks approach
    • Dhanya Kumar D. Predictive uncertainty of chaotic daily streamflow using ensemble wavelet networks approach. Water Resour. Res. 2011, W06507.
    • (2011) Water Resour. Res.
    • Dhanya, K.D.1
  • 15
    • 33847274843 scopus 로고    scopus 로고
    • Multimodel ensemble hydrologic prediction using Bayesian model averaging
    • Duan Q., Ajami N.K., Gao X., Sorooshian S. Multimodel ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Resour. 2007, 30:1371-1386.
    • (2007) Adv. Water Resour. , vol.30 , pp. 1371-1386
    • Duan, Q.1    Ajami, N.K.2    Gao, X.3    Sorooshian, S.4
  • 16
    • 18044404766 scopus 로고    scopus 로고
    • Benchmark priors for Bayesian model averaging
    • Fernandez C., Ley E., Steel M.F.J. Benchmark priors for Bayesian model averaging. J. Econometrics 2001, 100:381-427.
    • (2001) J. Econometrics , vol.100 , pp. 381-427
    • Fernandez, C.1    Ley, E.2    Steel, M.F.J.3
  • 17
    • 80053351623 scopus 로고    scopus 로고
    • Hydrological ensemble forecasting in mesoscale catchments: Sensitivity to initial conditions and value of reforecasts
    • Fundel F., Zappa M. Hydrological ensemble forecasting in mesoscale catchments: Sensitivity to initial conditions and value of reforecasts. Water Resour. Res. 2011, 47:W09520.
    • (2011) Water Resour. Res. , vol.47
    • Fundel, F.1    Zappa, M.2
  • 18
    • 4143139874 scopus 로고    scopus 로고
    • Characterizing streamflow simulation uncertainty through multimodel ensembles
    • Georgakakos K.P., Seo D.J., Gupta H., Schake J., Butts M.B. Characterizing streamflow simulation uncertainty through multimodel ensembles. J. Hydrol. 2004, 298:222-241.
    • (2004) J. Hydrol. , vol.298 , pp. 222-241
    • Georgakakos, K.P.1    Seo, D.J.2    Gupta, H.3    Schake, J.4    Butts, M.B.5
  • 19
    • 0035270069 scopus 로고    scopus 로고
    • Interpretation of Rank Histograms for Verifying Ensemble Forecasts
    • Hamil, Thomas M. Interpretation of Rank Histograms for Verifying Ensemble Forecasts. Mon. Wea. Rev. 2001, 129:550-560.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 550-560
    • Hamil1    Thomas, M.2
  • 22
    • 14944353773 scopus 로고    scopus 로고
    • Trend assessment: Applications for hydrology and climate research
    • Kallache M., Rust H.W., Kropp J. Trend assessment: Applications for hydrology and climate research. Nonlinear Processes Geophys. 2005, 12:201-210.
    • (2005) Nonlinear Processes Geophys. , vol.12 , pp. 201-210
    • Kallache, M.1    Rust, H.W.2    Kropp, J.3
  • 23
    • 71649094330 scopus 로고    scopus 로고
    • Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting
    • Kisi Ö. Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting. Hydrol. Process. 2009, 23(25):3583-3597.
    • (2009) Hydrol. Process. , vol.23 , Issue.25 , pp. 3583-3597
    • Kisi, Ö.1
  • 24
    • 78751591071 scopus 로고    scopus 로고
    • Wavelet regression model as an alternative to neural networks for river stage forecasting
    • Kisi O. Wavelet regression model as an alternative to neural networks for river stage forecasting. Water Resour. Manage. 2011, 25:579-600.
    • (2011) Water Resour. Manage. , vol.25 , pp. 579-600
    • Kisi, O.1
  • 25
    • 28444499418 scopus 로고    scopus 로고
    • Recent advances in wavelet analyses: Part 1. A review of concepts
    • Labat D. Recent advances in wavelet analyses: Part 1. A review of concepts. J. Hydrol. 2005, 314(1-4):275-288.
    • (2005) J. Hydrol. , vol.314 , Issue.1-4 , pp. 275-288
    • Labat, D.1
  • 26
    • 0034931357 scopus 로고    scopus 로고
    • Introduction of wavelet analyses to rainfall/runoffs relationship for a karstic basin: the case of Licq-Atherey karstic system (France)
    • Labat D., Ababou R. Introduction of wavelet analyses to rainfall/runoffs relationship for a karstic basin: the case of Licq-Atherey karstic system (France). Ground Water 2001, 39(4):605-615.
    • (2001) Ground Water , vol.39 , Issue.4 , pp. 605-615
    • Labat, D.1    Ababou, R.2
  • 27
    • 0034610444 scopus 로고    scopus 로고
    • Rainfall-runoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses
    • Labat D., Ababou R., Mangin A. Rainfall-runoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses. J. Hydrol. 2000, 238(3):149-178.
    • (2000) J. Hydrol. , vol.238 , Issue.3 , pp. 149-178
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 29
    • 67651246919 scopus 로고    scopus 로고
    • On the effect of prior assumptions in Bayesian model averaging with applications to growth regression
    • Ley E., Steel M.F.J. On the effect of prior assumptions in Bayesian model averaging with applications to growth regression. J. Appl. Econometrics 2009, 24:651-674.
    • (2009) J. Appl. Econometrics , vol.24 , pp. 651-674
    • Ley, E.1    Steel, M.F.J.2
  • 30
    • 84862663945 scopus 로고    scopus 로고
    • Multiscale nonlinear model for monthly stream flow forecasting: a wavelet based approach
    • Maheswaran R., Khosa R. Multiscale nonlinear model for monthly stream flow forecasting: a wavelet based approach. J. Hydroinform. 2011, 14(2):424-442.
    • (2011) J. Hydroinform. , vol.14 , Issue.2 , pp. 424-442
    • Maheswaran, R.1    Khosa, R.2
  • 31
    • 84862642100 scopus 로고    scopus 로고
    • Comparative study of different wavelets for hydrologic forecasting
    • Maheswaran R., Khosa R. Comparative study of different wavelets for hydrologic forecasting. Comput. Geosci. 2011, 46:284-295.
    • (2011) Comput. Geosci. , vol.46 , pp. 284-295
    • Maheswaran, R.1    Khosa, R.2
  • 32
    • 84862648048 scopus 로고    scopus 로고
    • Wavelet-Volterra coupled model for monthly stream flow forecasting
    • Maheswaran R., Khosa R. Wavelet-Volterra coupled model for monthly stream flow forecasting. J. Hydrol. 2011, 450-451:320-335.
    • (2011) J. Hydrol. , pp. 320-335
    • Maheswaran, R.1    Khosa, R.2
  • 33
    • 0001858216 scopus 로고
    • Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates
    • Min C., Zellner A. Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates. J. Econometrics 1993, 56(1-2):89-118.
    • (1993) J. Econometrics , vol.56 , Issue.1-2 , pp. 89-118
    • Min, C.1    Zellner, A.2
  • 34
    • 84870234964 scopus 로고    scopus 로고
    • Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954-2008)
    • Nalley D., Adamowski J., Khalil B. Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954-2008). J. Hydrol. 2012, 475:204-228.
    • (2012) J. Hydrol. , vol.475 , pp. 204-228
    • Nalley, D.1    Adamowski, J.2    Khalil, B.3
  • 36
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani V., Alami M.T., Aminfar M.H. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intel. 2008, 22(3):466-472.
    • (2008) Eng. Appl. Artif. Intel. , vol.22 , Issue.3 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 37
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani V., Komasi M., Mano A. A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resour. Manage. 2009, 23(14):2877-2894.
    • (2009) Water Resour. Manage. , vol.23 , Issue.14 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 38
    • 84858823339 scopus 로고    scopus 로고
    • Toward reduction of model uncertainty: integration of Bayesian model averaging and data assimilation
    • Parrish M.A., Moradkhani H., DeChant C.M. Toward reduction of model uncertainty: integration of Bayesian model averaging and data assimilation. Water Resour. Res. 2012, 48:1-18.
    • (2012) Water Resour. Res. , vol.48 , pp. 1-18
    • Parrish, M.A.1    Moradkhani, H.2    DeChant, C.M.3
  • 39
    • 71649098140 scopus 로고    scopus 로고
    • Modelling evapotranspiration using discrete wavelet transform and neural networks
    • Partal T. Modelling evapotranspiration using discrete wavelet transform and neural networks. Hydrol. Process. 2009, 23:3545-3555.
    • (2009) Hydrol. Process. , vol.23 , pp. 3545-3555
    • Partal, T.1
  • 40
    • 33751399443 scopus 로고    scopus 로고
    • Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region Turkey
    • Partal T., Küçük M. Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region Turkey. Phys. Chem. Earth 2006, 31(18):1189-1200.
    • (2006) Phys. Chem. Earth , vol.31 , Issue.18 , pp. 1189-1200
    • Partal, T.1    Küçük, M.2
  • 41
    • 0031506560 scopus 로고    scopus 로고
    • Bayesian model averaging for linear regression models
    • Raftery A.E., Madigan D., Hoeting J. Bayesian model averaging for linear regression models. J. Am. Stat. Assoc. 1997, 92:179-191.
    • (1997) J. Am. Stat. Assoc. , vol.92 , pp. 179-191
    • Raftery, A.E.1    Madigan, D.2    Hoeting, J.3
  • 44
    • 84861123587 scopus 로고    scopus 로고
    • Bayesian model averaging using particle filtering and Gaussian mixture modeling: theory, concepts, and simulation experiments
    • Rings J., Vrugt J.A., Schoups G., Huisman J.A., Vereecken H. Bayesian model averaging using particle filtering and Gaussian mixture modeling: theory, concepts, and simulation experiments. Water Resour. Res. 2012, 48:W05520.
    • (2012) Water Resour. Res. , vol.48
    • Rings, J.1    Vrugt, J.A.2    Schoups, G.3    Huisman, J.A.4    Vereecken, H.5
  • 45
    • 78650462124 scopus 로고    scopus 로고
    • Wavelet cross-correlation method for hydrologic time series analysis
    • Sang Y.F., Wang D., Wu J.C., Zhu Q.P. Wavelet cross-correlation method for hydrologic time series analysis. J. Hydraul. Eng. 2010, 41(11):1172-1179.
    • (2010) J. Hydraul. Eng. , vol.41 , Issue.11 , pp. 1172-1179
    • Sang, Y.F.1    Wang, D.2    Wu, J.C.3    Zhu, Q.P.4
  • 46
    • 84887562165 scopus 로고    scopus 로고
    • Discrete wavelet-based trend identification in hydrologic time series. Hydrol. Process.
    • Sang, Y.F., Wang, Z.G., Liu, C.M., 2012. Discrete wavelet-based trend identification in hydrologic time series. Hydrol. Process.
    • (2012)
    • Sang, Y.F.1    Wang, Z.G.2    Liu, C.M.3
  • 47
    • 0033393056 scopus 로고    scopus 로고
    • A real-time combination method for the outputs of different rainfall-runoff models
    • Shamseldin A.Y., O'Connor K.M. A real-time combination method for the outputs of different rainfall-runoff models. Hydrological Sciences Journal 1999, 44(6):895-912.
    • (1999) Hydrological Sciences Journal , vol.44 , Issue.6 , pp. 895-912
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 48
    • 0026938667 scopus 로고
    • The discrete wavelet transform: wedding the a trous and Mallat algorithms
    • Shensa M.J. The discrete wavelet transform: wedding the a trous and Mallat algorithms. Signal Process., IEEE Trans. 1992, 40(10):2464-2482.
    • (1992) Signal Process., IEEE Trans. , vol.40 , Issue.10 , pp. 2464-2482
    • Shensa, M.J.1
  • 50
    • 0036005160 scopus 로고    scopus 로고
    • Macroeconomic forecasting using diffusion indexes
    • Stock J.H., Watson M.W. Macroeconomic forecasting using diffusion indexes. J. Business Econ. Stat. 2002, 20:147-162.
    • (2002) J. Business Econ. Stat. , vol.20 , pp. 147-162
    • Stock, J.H.1    Watson, M.W.2
  • 51
    • 84887564656 scopus 로고    scopus 로고
    • Evaluation of probabilistic prediction system. Proc. Workshop on Predictability, Reading, United Kingdom, ECMWF
    • Talagrand, O., Vautard, R., Strauss, B., 1999. Evaluation of probabilistic prediction system. Proc. Workshop on Predictability, Reading, United Kingdom, ECMWF, pp. 1-25.
    • (1999) , pp. 1-25
    • Talagrand, O.1    Vautard, R.2    Strauss, B.3
  • 52
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using Wavelet-Bootstrap-ANN hybrid approach
    • Tiwari M.K., Chatterjee C. Development of an accurate and reliable hourly flood forecasting model using Wavelet-Bootstrap-ANN hybrid approach. J. Hydrol. 2010, 394:458-470.
    • (2010) J. Hydrol. , vol.394 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 53
    • 33847624077 scopus 로고    scopus 로고
    • Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging
    • Vrugt J.A., Robinson B.A. Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging. Water Resour. Res. 2007, 43:W01411.
    • (2007) Water Resour. Res. , vol.43
    • Vrugt, J.A.1    Robinson, B.A.2
  • 54
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang W., Ding J. Wavelet network model and its application to the prediction of hydrology. Science 2003, 1(1):67-71.
    • (2003) Science , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 55
    • 2342418631 scopus 로고    scopus 로고
    • A unified wavelet-based modelling framework for nonlinear system identification: the WANARX model structure
    • Wei H.L., Billings S.A. A unified wavelet-based modelling framework for nonlinear system identification: the WANARX model structure. Int. J. Control 2004, 77(4):351-366.
    • (2004) Int. J. Control , vol.77 , Issue.4 , pp. 351-366
    • Wei, H.L.1    Billings, S.A.2
  • 56
    • 84871427016 scopus 로고    scopus 로고
    • Statistical processing of forecasts for hydrological ensemble prediction: a comparative study of different bias correction strategies
    • Zalachori I., Ramos M.H., Garçon R., Mathevet T., Gailhard J. Statistical processing of forecasts for hydrological ensemble prediction: a comparative study of different bias correction strategies. Advances in Science & Research 2012, 8.
    • (2012) Advances in Science & Research , pp. 8
    • Zalachori, I.1    Ramos, M.H.2    Garçon, R.3    Mathevet, T.4    Gailhard, J.5
  • 57
    • 84862789349 scopus 로고    scopus 로고
    • Bayesian Neural Networks for Uncertainty Analysis of Hydrologic Modeling: A Comparison of Two Schemes
    • Zhang X., Zhao K. Bayesian Neural Networks for Uncertainty Analysis of Hydrologic Modeling: A Comparison of Two Schemes. Water Resour. Manage. 2012, 26(8):2365-2382.
    • (2012) Water Resour. Manage. , vol.26 , Issue.8 , pp. 2365-2382
    • Zhang, X.1    Zhao, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.