메뉴 건너뛰기




Volumn 48, Issue 1, 2012, Pages

Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE; COEFFICIENT OF DETERMINATION; DAILY WATER DEMAND; EFFICIENCY INDEX; KEY VARIABLES; LEAD TIME; MAXIMUM TEMPERATURE; MONTREAL , CANADA; MULTIPLE LINEAR REGRESSIONS; MULTIPLE NONLINEAR REGRESSION; NETWORK MODELS; NON-LINEAR REGRESSION; RELATIVE PERFORMANCE; ROOT MEAN SQUARE ERRORS; SUMMER MONTHS; SUSTAINABLE MANAGEMENT; TOTAL PRECIPITATION; URBAN WATER SUPPLY SYSTEM; URBAN WATERS;

EID: 84856246099     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2010WR009945     Document Type: Article
Times cited : (405)

References (71)
  • 1
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method based on wavelet analysis
    • doi:10.1016/j.jhydrol.2008.02.013
    • Adamowski, J. (2007), Development of a short-term river flood forecasting method based on wavelet analysis, J. Hydrol., 353(3-4), 247-266, doi:10.1016/j.jhydrol.2008.02.013.
    • (2007) J. Hydrol. , vol.353 , Issue.3-4 , pp. 247-266
    • Adamowski, J.1
  • 2
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • doi:10.1016/j.jhydrol.2008.02.013
    • Adamowski, J. (2008a), Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis, J. Hydrol., 353, 247-266, doi:10.1016/j.jhydrol.2008.02.013.
    • (2008) J. Hydrol. , vol.353 , pp. 247-266
    • Adamowski, J.1
  • 3
    • 39549095416 scopus 로고    scopus 로고
    • Peak daily water demand forecast modeling using artificial neural networks
    • DOI 10.1061/(ASCE)0733-9496(2008)134:2(119)
    • Adamowski, J. (2008b), Peak daily water demand forecast modeling using artificial neural networks, J. Water Resour. Plan. Manage., 134(2), 119-128, doi:10.1061/(ASCE)0733-9496(2008)134:2(19). (Pubitemid 351279617)
    • (2008) Journal of Water Resources Planning and Management , vol.134 , Issue.2 , pp. 119-128
    • Adamowski, J.F.1
  • 4
    • 67650321039 scopus 로고    scopus 로고
    • River flow forecasting using wavelet and cross-wavelet transform models
    • doi:10.1002/hyp.7107
    • Adamowski, J. (2008c), River flow forecasting using wavelet and cross-wavelet transform models, J. Hydrol. Processes, 22, 4877-4891, doi:10.1002/hyp.7107.
    • (2008) J. Hydrol. Processes , vol.22 , pp. 4877-4891
    • Adamowski, J.1
  • 5
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • doi:10.1016/j.jhydrol.2011.06.013
    • Adamowski, J., and H. F. Chan (2011), A wavelet neural network conjunction model for groundwater level forecasting, J. Hydrol., 407, 28-40, doi:10.1016/j.jhydrol.2011.06.013.
    • (2011) J. Hydrol. , vol.407 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 6
    • 77956838672 scopus 로고    scopus 로고
    • Comparison of multivariate regression and artificial neural networks for peak urban water demand forecasting : The evaluation of different ANN learning algorithms
    • doi:10.1061/(ASCE)HE.1943-5584.0000245
    • Adamowski, J., and C. Karapataki (2008), Comparison of multivariate regression and artificial neural networks for peak urban water demand forecasting : the evaluation of different ANN learning algorithms, J. Hydrol. Eng., 15(10), 729-743, doi:10.1061/(ASCE)HE.1943-5584.0000245.
    • (2008) J. Hydrol. Eng. , vol.15 , Issue.10 , pp. 729-743
    • Adamowski, J.1    Karapataki, C.2
  • 7
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • doi:10.1016/j.jhydrol.2010.06.033
    • Adamowski, J., and K. Sun (2010), Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds, J. Hydrol., 390, 85-90, doi:10.1016/j.jhydrol.2010.06. 033.
    • (2010) J. Hydrol. , vol.390 , pp. 85-90
    • Adamowski, J.1    Sun, K.2
  • 8
    • 84978572865 scopus 로고
    • Water savings from lawn watering restrictions during a drought year in fort collins, colorado
    • doi:10.1111/j.1752-1688. 1980.tb02443
    • Anderson, R., T. Miller, and M. Washburn (1980), Water savings from lawn watering restrictions during a drought year in Fort Collins, Colorado, Water Resour. Bull., 16(4), 642-645, doi:10.1111/j.1752-1688. 1980.tb02443.
    • (1980) Water Resour. Bull. , vol.16 , Issue.4 , pp. 642-645
    • Anderson, R.1    Miller, T.2    Washburn, M.3
  • 9
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: The support vector machines approach
    • DOI 10.1016/j.jhydrol.2005.06.001, PII S0022169405002908
    • Asefa, T., M. Kemblowski, M. McKee, and A. Khalil (2006), Multi-time scale stream flow predictions: The support vector machines approach, J. Hydrol., 318(1-4), 7-16, doi:10.1016/j.jhydrol.2005.06.001. (Pubitemid 43120784)
    • (2006) Journal of Hydrology , vol.318 , Issue.1-4 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 11
    • 70349866643 scopus 로고    scopus 로고
    • Forecasting of ground-water level in hard rock region using artificial neural network
    • doi:10.1007/s00254-008-1619-z
    • Banerjee, P., R. K. Prasad, and V. S. Singh (2009), Forecasting of ground-water level in hard rock region using artificial neural network, Environ. Geol., 58(6), 1239-1246, doi:10.1007/s00254-008-1619-z.
    • (2009) Environ. Geol. , vol.58 , Issue.6 , pp. 1239-1246
    • Banerjee, P.1    Prasad, R.K.2    Singh, V.S.3
  • 13
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning
    • DOI 10.1016/j.pce.2006.03.020, PII S1474706506002865
    • Cannas, B., A. Fanni, L. See, and G. Sias (2006), Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning, Phys. Chem. Earth, 31, 1164-1171, doi:10.1016/j.oce.2006.03.020. (Pubitemid 44817630)
    • (2006) Physics and Chemistry of the Earth , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 14
    • 0018454207 scopus 로고
    • Effect of price on the residential demand for water within an agency
    • Cassuto, A. E., and S. Ryan (1979), Effect of price on the residential demand for water within an agency, Water Resour. Bull., 15(2), 345-353, doi:10.1111/j.1752-1688.1979.tb00337. (Pubitemid 9441567)
    • (1979) Water Resour Bull , vol.15 , Issue.2 , pp. 345-353
    • Cassuto Alexander, E.1    Ryan Stuart2
  • 15
    • 70350511636 scopus 로고    scopus 로고
    • Comparison of two different data driven techniques in modeling surface water level fluctuations of Lake Van, Turkey
    • doi:10.1016/j.jhydrol.2009.09.029
    • Cimen, M., and O. Kisi (2009), Comparison of two different data driven techniques in modeling surface water level fluctuations of Lake Van, Turkey, J. Hydrol., 378(3-4), 253-262, doi:10.1016/j.jhydrol.2009.09.029.
    • (2009) J. Hydrol. , vol.378 , Issue.3-4 , pp. 253-262
    • Cimen, M.1    Kisi, O.2
  • 17
    • 84856254068 scopus 로고    scopus 로고
    • Nonlinear regression methods: A survey and extensions
    • doi:10.1002/isaf.311
    • Cogger, K. O. (2010), Nonlinear regression methods: A survey and extensions, Intell. Syst. Acc. Fin. Manage. 17, 19-39, doi:10.1002/isaf.311.
    • (2010) Intell. Syst. Acc. Fin. Manage. , vol.17 , pp. 19-39
    • Cogger, K.O.1
  • 18
    • 0026483426 scopus 로고
    • Tapping alternatives: The benefits of managing urban water demands
    • 35-41
    • Dziegielewski, B., and D. Baumann (1992), Tapping alternatives: The benefits of managing urban water demands, Environment, 34(9), 6-11, 35-41.
    • (1992) Environment , vol.34 , Issue.9 , pp. 6-11
    • Dziegielewski, B.1    Baumann, D.2
  • 19
    • 77956618089 scopus 로고    scopus 로고
    • Neural networks for estimation of discharge capacity of triangular labyrinth side-weir located on a straight channel
    • doi:10.1016/j.eswa.2010.07.058
    • Emiroglu, M., O. Bilhan, and O. Kisi (2011), Neural networks for estimation of discharge capacity of triangular labyrinth side-weir located on a straight channel, Expert Syst. Appl., 38(1), 867-874, doi:10.1016/j.eswa.2010. 07.058.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.1 , pp. 867-874
    • Emiroglu, M.1    Bilhan, O.2    Kisi, O.3
  • 20
    • 84856279461 scopus 로고    scopus 로고
    • Environment Canada CESI
    • Environment Canada (2010), Environmental Trends, CESI, 1(3).
    • (2010) Environmental Trends , vol.1 , Issue.3
  • 21
    • 39549111033 scopus 로고    scopus 로고
    • Urban water demand forecasting with a dynamic artificial neural network model
    • DOI 10.1061/(ASCE)0733-9496(2008)134:2(138)
    • Ghiassi, M., D. K. Zimbra, and H. Saidane (2008), Urban water demand forecasting with a dynamic artificial neural network model, J. Water Resour. Plan. Manage., 134(2), 138-146, doi10.1061/(ASCE)0733-9496(2008)134:2(138). (Pubitemid 351279619)
    • (2008) Journal of Water Resources Planning and Management , vol.134 , Issue.2 , pp. 138-146
    • Ghiassi, G.1    Zimbra, D.K.2    Saidane, H.3
  • 22
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • doi:10.1109/72.329697
    • Hagan, M. T., and M. Menhaj (1994), Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Networks, 5(6), 989-993, doi:10.1109/72.329697.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 23
    • 35348956876 scopus 로고    scopus 로고
    • Flood forecasting using support vector machines
    • doi:10.2166/hydro.2007.027
    • Han, D., L. Chan, and N. Zhu (2007), Flood forecasting using support vector machines, Journal of Hydroinformatics, 9(4), 267-276, doi:10.2166/hydro.2007.027.
    • (2007) Journal of Hydroinformatics , vol.9 , Issue.4 , pp. 267-276
    • Han, D.1    Chan, L.2    Zhu, N.3
  • 25
    • 84978586843 scopus 로고
    • Peak period design standards for small western U.S. water supply
    • doi:10.1111/j.1752-1688.1980.tb02446
    • Hughes, T. (1980), Peak period design standards for small western U.S. water supply, Water Resour. Bull., 16(4), 661-667, doi:10.1111/j.1752-1688.1980. tb02446.
    • (1980) Water Resour. Bull. , vol.16 , Issue.4 , pp. 661-667
    • Hughes, T.1
  • 26
    • 0001618197 scopus 로고
    • Heuristic self-organization in problems of engineering cybernetics
    • doi:10.1016/0005-1098(70)90092-0
    • Ivakhnenko, A. G. (1970), Heuristic self-organization in problems of engineering cybernetics, Automatica, 6(2), 207-219, doi:10.1016/0005-1098(70) 90092-0.
    • (1970) Automatica , vol.6 , Issue.2 , pp. 207-219
    • Ivakhnenko, A.G.1
  • 27
    • 0036640826 scopus 로고    scopus 로고
    • Short-term water demand forecast modeling techniques - Conventional methods versus AI
    • Jain, A., and L. Ormsbee (2002), Short-term water demand forecast modeling techniques: Conventional methods versus AI, J. Am. Water Works Assoc., 94(7), 64-72. (Pubitemid 34799823)
    • (2002) Journal / American Water Works Association , vol.94 , Issue.7 , pp. 64-72
    • Jain, A.1    Ormsbee, L.E.2
  • 28
    • 0034735692 scopus 로고    scopus 로고
    • Case studies on the use of neural networks in eutrophication modeling
    • doi:10.1016/S0304-3800(00)00360-4
    • Karul, C., S. Soyupak, A. F. Cilesiz, N. Akbay, and E. Germen (2000), Case studies on the use of neural networks in eutrophication modeling, Ecol. Model., 134(2-3), 145-152, doi:10.1016/S0304-3800(00)00360-4.
    • (2000) Ecol. Model. , vol.134 , Issue.2-3 , pp. 145-152
    • Karul, C.1    Soyupak, S.2    Cilesiz, A.F.3    Akbay, N.4    Germen, E.5
  • 29
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • doi:10.1061/(ASCE)1084-0699(2006)11:3(199)
    • Khan, M. S., and P. Coulibaly (2006), Application of support vector machine in lake water level prediction, J. Hydrol. Eng., 11(3), 199-205, doi:10.1061/(ASCE)1084-0699(2006)11:3(199).
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.3 , pp. 199-205
    • Khan, M.S.1    Coulibaly, P.2
  • 30
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • DOI 10.1061/(ASCE)1084-0699(2003)8:6(319)
    • Kim, T. W., and J. B. Valdes (2003), Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks, J. Hydrol. Eng., 8(6), 319-328, doi:10.1061/(ASCE)1084-0699(2003)8: 6(319). (Pubitemid 37436445)
    • (2003) Journal of Hydrologic Engineering , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.-W.1    Valdes, J.B.2
  • 31
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • DOI 10.1061/(ASCE)1084-0699(2004)9:1(60)
    • Kisi, O. (2004), River flow modeling using artificial neural networks, J. Hydrol. Eng., 9(1), 60-63, doi:10.1061/(ASCE)1084-0699(2004)9:1(60). (Pubitemid 38122771)
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 32
    • 61849131098 scopus 로고    scopus 로고
    • Stream flow forecasting using neuro-wavelet technique
    • doi:10.1002/hyp.7014
    • Kisi, O. (2008), Stream flow forecasting using neuro-wavelet technique, Hydrol. Processes, 22, 4142-4152, doi:10.1002/hyp.7014.
    • (2008) Hydrol. Processes , vol.22 , pp. 4142-4152
    • Kisi, O.1
  • 33
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent streamflow forecasting
    • doi:10.1061/(ASCE)HE.1943-5584.0000053
    • Kisi, O. (2009), Neural networks and wavelet conjunction model for intermittent streamflow forecasting, J. Hydrol. Eng., 14(8), 773-782, doi:10.1061/(ASCE)HE.1943-5584.0000053.
    • (2009) J. Hydrol. Eng. , vol.14 , Issue.8 , pp. 773-782
    • Kisi, O.1
  • 34
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly streamflow forecasting
    • doi:10.1016/j.jhydrol.2010.12.041
    • Kisi, O. and M. Cimen (2011), A wavelet-support vector machine conjunction model for monthly streamflow forecasting, J. Hydrol., 399(1-2), 132-140, doi:10.1016/j.jhydrol.2010.12.041.
    • (2011) J. Hydrol. , vol.399 , Issue.1-2 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 37
    • 0022739463 scopus 로고
    • Daily water use in nine cities
    • Maidment, D., and S. Miaou (1986), Daily water use in nine cities, Water Resour. Res., 22(6), 845-851, doi:10.1029/WR022i006p00845. (Pubitemid 16586899)
    • (1986) Water Resources Research , vol.22 , Issue.6 , pp. 845-851
    • Maidment David, R.1    Miaou Shaw-Pin2
  • 38
    • 2042547542 scopus 로고
    • Monthly water use and its relationship to climatic variables in Texas
    • Maidment, D., and E. Parzen (1984), Monthly water use and its relationship to climatic variables in Texas, Water Resour. Bull., 19(8), 409-418.
    • (1984) Water Resour. Bull. , vol.19 , Issue.8 , pp. 409-418
    • Maidment, D.1    Parzen, E.2
  • 39
    • 0022046045 scopus 로고
    • Transfer function models of daily urban water use
    • doi:10.1029/WR021i004p00425
    • Maidment, D., S. Miaou, and M. Crawford (1985), Transfer function models of daily urban water use, Water Resour. Res., 21(4), 425-432, doi:10.1029/WR021i004p00425.
    • (1985) Water Resour. Res. , vol.21 , Issue.4 , pp. 425-432
    • Maidment, D.1    Miaou, S.2    Crawford, M.3
  • 40
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions
    • Maier, H., A. Jain, G. C. Dandy, and K. P. Sudheer (2010), Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions, Environ. Model. Software, 25, 891-909.
    • (2010) Environ. Model. Software , vol.25 , pp. 891-909
    • Maier, H.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 41
    • 77951662436 scopus 로고    scopus 로고
    • Potential of support vector regression for prediction of monthly streamflow using endogenous property
    • doi:10.1002/hyp.7535
    • Maity, R., P. P. Bhagwat, and A. Bhatnagar (2010), Potential of support vector regression for prediction of monthly streamflow using endogenous property, Hydrol. Processes, 24(7), 917-923, doi:10.1002/hyp.7535.
    • (2010) Hydrol. Processes , vol.24 , Issue.7 , pp. 917-923
    • Maity, R.1    Bhagwat, P.P.2    Bhatnagar, A.3
  • 43
    • 0025119669 scopus 로고
    • A class of time series urban water demand models with non-linear climatic effects
    • Miaou, S. (1990), A class of time series urban water demand models with non-linear climatic effects, Water Resour. Res., 26, 169-178.
    • (1990) Water Resour. Res. , vol.26 , pp. 169-178
    • Miaou, S.1
  • 44
    • 78149474590 scopus 로고    scopus 로고
    • Wavelet neural networks for nonlinear time series analysis
    • Minu, K. K., M. C. Lineesh, and C. Jessy John (2010), Wavelet neural networks for nonlinear time series analysis, Appl. Math. Sci., 4(50), 2485-2495.
    • (2010) Appl. Math. Sci. , vol.4 , Issue.50 , pp. 2485-2495
    • Minu, K.K.1    Lineesh, M.C.2    John, C.J.3
  • 46
    • 70350743663 scopus 로고    scopus 로고
    • Water demand prediction using artificial neural networks and support vector regression
    • doi:10.4304/jcp.3.11.1-8
    • Msiza, I. S., F. V. Nelwamondo, and T. Marwala (2008), Water demand prediction using artificial neural networks and support vector regression, J. Comput., 3(11), 1-8, doi:10.4304/jcp.3.11.1-8.
    • (2008) J. Comput. , vol.3 , Issue.11 , pp. 1-8
    • Msiza, I.S.1    Nelwamondo, F.V.2    Marwala, T.3
  • 47
    • 79954824135 scopus 로고    scopus 로고
    • Estimation of pesticides usage in the agricultural sector in Turkey using artificial neural network (ANN
    • Ozbek, F. S., and H. Fidan (2009), Estimation of pesticides usage in the agricultural sector in Turkey using artificial neural network (ANN), J. Animal Plant Sci., 4(3), 373-378.
    • (2009) J. Animal Plant Sci. , vol.4 , Issue.3 , pp. 373-378
    • Ozbek, F.S.1    Fidan, H.2
  • 48
    • 65249094814 scopus 로고    scopus 로고
    • River flow forecasting using different artificial neural network algorithms and wavelet transform
    • doi:10.1139/L08-090
    • Partal, T. (2009), River flow forecasting using different artificial neural network algorithms and wavelet transform, Can. J. Civil Eng., 36(1), 26-38, doi:10.1139/L08-090.
    • (2009) Can. J. Civil Eng. , vol.36 , Issue.1 , pp. 26-38
    • Partal, T.1
  • 49
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • DOI 10.1016/j.jhydrol.2007.05.026, PII S0022169407003216
    • Partal, T., and O. Kisi (2007), Wavelet and neuro-fuzzy conjunction model for precipitation forecasting, J. Hydrol., 342(1-2), 199-212, doi:10.1016/j. jhydrol.2007.05.026. (Pubitemid 47069364)
    • (2007) Journal of Hydrology , vol.342 , Issue.1-2 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 51
    • 69949143939 scopus 로고    scopus 로고
    • Application of neural network and adaptive neuro fuzzy inference systems for stream flow prediction
    • doi:10.1623/hysj.54.2.247
    • Pramanik, N., and R. K. Panda (2009), Application of neural network and adaptive neuro fuzzy inference systems for stream flow prediction, Hydrol. Sci. J., 54(2), 247-260, doi:10.1623/hysj.54.2.247.
    • (2009) Hydrol. Sci. J. , vol.54 , Issue.2 , pp. 247-260
    • Pramanik, N.1    Panda, R.K.2
  • 52
    • 54549091989 scopus 로고    scopus 로고
    • Support vector regression methodology for storm surge predictions
    • doi:10.1016/j.oceaneng.2008.08.004
    • Rajasekaran, S., S. Gayathri, and T.-L. Lee (2008), Support vector regression methodology for storm surge predictions, Ocean Eng., 35, 1578-1587, doi:10.1016/j.oceaneng.2008.08.004.
    • (2008) Ocean Eng. , vol.35 , pp. 1578-1587
    • Rajasekaran, S.1    Gayathri, S.2    Lee, T.-L.3
  • 53
    • 84856242876 scopus 로고    scopus 로고
    • Down the drain: Dealing with Montreal's water wastage
    • Montreal, QC
    • Rubin, D. (2005), Down the drain: Dealing with Montreal's water wastage, McGill Reporter, 37(17), Montreal, QC.
    • (2005) McGill Reporter , vol.37 , Issue.17
    • Rubin, D.1
  • 54
    • 28844470729 scopus 로고    scopus 로고
    • Flow forecasting for a Hawaii stream using rating curves and neural networks
    • DOI 10.1016/j.jhydrol.2005.05.008, PII S0022169405002611
    • Sahoo, G. B., and C. Ray (2006), Flow forecasting for a Hawaii stream using rating curves and neural networks, J. Hydrol., 317, 63-80, doi:10.1016/j.jhydrol.2005.05.008. (Pubitemid 41771018)
    • (2006) Journal of Hydrology , vol.317 , Issue.1-2 , pp. 63-80
    • Sahoo, G.B.1    Ray, C.2
  • 55
    • 27944455097 scopus 로고    scopus 로고
    • Using GMDH in ecological and socio-economical monitoring problems
    • DOI 10.1080/02329290290024925, PII W0XX0QHE68816MY5
    • Sarycheva, L. (2003), Using GMDH in ecological and socio-economical monitoring problems, Syst. Anal. Model. Simul., 43(10), 1409-1414, doi:10.1080/02329290290024925. (Pubitemid 44112267)
    • (2003) Systems Analysis Modelling Simulation , vol.43 , Issue.10 , pp. 1409-1414
    • Sarycheva, L.1
  • 56
    • 80052031492 scopus 로고    scopus 로고
    • Prediction of water table depth in a hard rock basin by using artificial neural network
    • Sethi, R. R., A. Kumar, S. P. Sharma, and H. C. Verma (2010), Prediction of water table depth in a hard rock basin by using artificial neural network, Int. J. Water Resour. Environ. Eng., 2(4), 95-102.
    • (2010) Int. J. Water Resour. Environ. Eng. , vol.2 , Issue.4 , pp. 95-102
    • Sethi, R.R.1    Kumar, A.2    Sharma, S.P.3    Verma, H.C.4
  • 57
    • 78149414268 scopus 로고    scopus 로고
    • Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model
    • Shiri, J., and O. Kisi (2010), Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model, J. Hydrol., 394(3-4), 486-493.
    • (2010) J. Hydrol. , vol.394 , Issue.3-4 , pp. 486-493
    • Shiri, J.1    Kisi, O.2
  • 58
    • 0023822847 scopus 로고
    • A model of daily municipal water use for short-term forecasting
    • Smith, J. (1988), A model of daily municipal water use for short-term forecasting, Water Resour. Res., 24(2), 201-206, doi:10.1029/WR024i002p 00201. (Pubitemid 18564923)
    • (1988) Water Resources Research , vol.24 , Issue.2 , pp. 201-206
    • Smith James, A.1
  • 59
    • 39449089195 scopus 로고    scopus 로고
    • Data driven modeling: Some past experiences and new approaches
    • Solomatine, D., and A. Ostfeld (2008), Data driven modeling: Some past experiences and new approaches, J. Hydroinf., 10(1), 3-22.
    • (2008) J. Hydroinf. , vol.10 , Issue.1 , pp. 3-22
    • Solomatine, D.1    Ostfeld, A.2
  • 62
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • DOI 10.1002/hyp.5103
    • Sudheer, K. P., P. C. Nayak, and K. S. Ramasastri (2003), Improving peak flow estimates in artificial neural network river flow models, Hydrol. Processes, 17(3), 677-686, doi:10.1002/hyp.5103. (Pubitemid 36257679)
    • (2003) Hydrological Processes , vol.17 , Issue.3 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 63
    • 79959790257 scopus 로고    scopus 로고
    • A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting
    • doi:10.2166/hydro.2010.142
    • Tiwari, M. K., and C. Chatterjee (2010a), A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting, J. Hydroinf., 13(3), 500-519, doi:10.2166/hydro.2010.142.
    • (2010) J. Hydroinf. , vol.13 , Issue.3 , pp. 500-519
    • Tiwari, M.K.1    Chatterjee, C.2
  • 64
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach
    • doi: 10.1016/j.jhydrol.2010.10.001
    • Tiwari, M. K., and C. Chatterjee (2010b), Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach, J. Hydrol., 394(3-4), 458-470, doi: 10.1016/j.jhydrol.2010.10. 001.
    • (2010) J. Hydrol. , vol.394 , Issue.3-4 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 66
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang, W., and J. Ding (2003), Wavelet network model and its application to the prediction of hydrology, Nat. Sci., 1(1), 67-71.
    • (2003) Nat. Sci. , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 67
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang, W. C., K. W. Chau, C. T. Cheng, and L. Qiu (2009). A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series, J. Hydrol. 374(3-4), 294-306.
    • (2009) J. Hydrol. , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 68
    • 77949596261 scopus 로고    scopus 로고
    • Statistical modeling of daily urban water consumption in Hong Kong: Trend, changing patterns, and forecast
    • doi:10.1029/2009WR008147
    • Wong, J. S., Q. Zhang, and Y. D. Chen (2010), Statistical modeling of daily urban water consumption in Hong Kong: Trend, changing patterns, and forecast, Water Resour. Res., 46, W03506, doi:10.1029/2009WR008147.
    • (2010) Water Resour. Res. , vol.46
    • Wong, J.S.1    Zhang, Q.2    Chen, Y.D.3
  • 70
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • DOI 10.1016/j.jhydrol.2006.01.021, PII S0022169406000473
    • Yu, P.-S., S.-T. Chen, and I.-F. Chang (2006), Support vector regression for real-time flood stage forecasting, J. Hydrol., 328(3-4), 704-716, doi:10.1016/j.jhydrol.2006.01.021. (Pubitemid 44188765)
    • (2006) Journal of Hydrology , vol.328 , Issue.3-4 , pp. 704-716
    • Yu, P.-S.1    Chen, S.-T.2    Chang, I.-F.3
  • 71
    • 0034734872 scopus 로고    scopus 로고
    • Forecasting daily urban water demand: A case study of Melbourne
    • doi:10.1016/S0022-1694(00)00287-0
    • Zhou, S., T. McMahon, A. Walton, and J. Lewis (2000), Forecasting daily urban water demand: A case study of Melbourne, J. Hydrol., 236(3), 153-164, doi:10.1016/S0022-1694(00)00287-0.
    • (2000) J. Hydrol. , vol.236 , Issue.3 , pp. 153-164
    • Zhou, S.1    McMahon, T.2    Walton, A.3    Lewis, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.