메뉴 건너뛰기




Volumn 410, Issue 1-2, 2011, Pages 134-140

Catchment flow estimation using Artificial Neural Networks in the mountainous Euphrates Basin

Author keywords

Artificial Intelligence; Euphrates Basin; Hydrological modelling; Streamflow prediction

Indexed keywords

ARTIFICIAL INTELLIGENCE; CATCHMENTS; FORECASTING; NEURAL NETWORKS; RUNOFF; SNOW MELTING SYSTEMS; STREAM FLOW;

EID: 80054871623     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2011.09.031     Document Type: Article
Times cited : (45)

References (46)
  • 2
    • 79954992730 scopus 로고    scopus 로고
    • Forecasting monthly streamflow of spring-summer runoff season in Rio Grande Headwaters Basin using stochastic hybrid modeling approach
    • Abudu S., King P., Bawazir A.S. Forecasting monthly streamflow of spring-summer runoff season in Rio Grande Headwaters Basin using stochastic hybrid modeling approach. J. Hydrol. Eng. 2011, 16(4):384-390.
    • (2011) J. Hydrol. Eng. , vol.16 , Issue.4 , pp. 384-390
    • Abudu, S.1    King, P.2    Bawazir, A.S.3
  • 3
    • 77951015838 scopus 로고    scopus 로고
    • River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin
    • Akhtar M.K., Corzo G.A., Van Andel S.J., Jonoski A. River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin. Hydrol. Earth Syst. Sci. 2009, 13:1607-1618.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1607-1618
    • Akhtar, M.K.1    Corzo, G.A.2    Van Andel, S.J.3    Jonoski, A.4
  • 4
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modelling of the daily and hourly behaviour of runoff
    • Aqil M., Kita I., Yano A., Nishiyama S. A comparative study of artificial neural networks and neuro-fuzzy in continuous modelling of the daily and hourly behaviour of runoff. J. Hydrol. 2007, 337:22-34.
    • (2007) J. Hydrol. , vol.337 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 5
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology - I: Preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee Artificial neural networks in hydrology - I: Preliminary concepts. J. Hydrol. Eng. 2000, 5:115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 115-123
  • 6
    • 0000773990 scopus 로고
    • Designing and analyzing fixedbed adsorption systems with artificial neural networks
    • Basheer I.A., Najjar Y.M. Designing and analyzing fixedbed adsorption systems with artificial neural networks. J. Environ. Syst. 1995, 23(3):291-312.
    • (1995) J. Environ. Syst. , vol.23 , Issue.3 , pp. 291-312
    • Basheer, I.A.1    Najjar, Y.M.2
  • 7
  • 8
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo M., Andreussi P., Soldati A. River flood forecasting with a neural network model. Water Resour. Res. 1999, 35:1191-1197.
    • (1999) Water Resour. Res. , vol.35 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 9
    • 1842426595 scopus 로고    scopus 로고
    • Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling
    • Chiang Y.M., Chang L.C., Chang F.J. Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling. J. Hydrol. 2004, 290:297-311.
    • (2004) J. Hydrol. , vol.290 , pp. 297-311
    • Chiang, Y.M.1    Chang, L.C.2    Chang, F.J.3
  • 10
    • 65949109499 scopus 로고    scopus 로고
    • Integrating hydrometeorological information for rainfall-runoff modelling by artificial neural networks
    • Chiang Y.M., Chang F.J. Integrating hydrometeorological information for rainfall-runoff modelling by artificial neural networks. Hydrol. Process. 2009, 23:1650-1659.
    • (2009) Hydrol. Process. , vol.23 , pp. 1650-1659
    • Chiang, Y.M.1    Chang, F.J.2
  • 11
    • 38349000857 scopus 로고    scopus 로고
    • Comparison of ice-affected streamflow estimates computed using artificial neural networks and multiple regression techniques
    • Chokmani K., Ouarda T.B.M.J., Hamilton S., Ghedira M.H., Gingras H. Comparison of ice-affected streamflow estimates computed using artificial neural networks and multiple regression techniques. J. Hydrol. 2008, 349:383-396.
    • (2008) J. Hydrol. , vol.349 , pp. 383-396
    • Chokmani, K.1    Ouarda, T.B.M.J.2    Hamilton, S.3    Ghedira, M.H.4    Gingras, H.5
  • 12
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P., Anctil F., Bobe'e B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 2000, 230:244-257.
    • (2000) J. Hydrol. , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobe'e, B.3
  • 13
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • Coulibaly P., Anctil F., Aravena R., Bobe'e B. Artificial neural network modeling of water table depth fluctuations. Water Resour. Res. 2001, 37:885-896.
    • (2001) Water Resour. Res. , vol.37 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobe'e, B.4
  • 14
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Daliakopoulos I.N., Coulibalya P., Tsanis I.K. Groundwater level forecasting using artificial neural networks. J. Hydrol. 2005, 309:229-240.
    • (2005) J. Hydrol. , vol.309 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibalya, P.2    Tsanis, I.K.3
  • 15
    • 0033512986 scopus 로고    scopus 로고
    • A comparison of artificial neural networks used for river flow forecasting
    • Dawson C.W., Wilby R. A comparison of artificial neural networks used for river flow forecasting. Hydrol. Earth Syst. Sci. 2006, 3:529-540.
    • (2006) Hydrol. Earth Syst. Sci. , vol.3 , pp. 529-540
    • Dawson, C.W.1    Wilby, R.2
  • 16
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson C.W., Wilby R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 2001, 25:80-108.
    • (2001) Prog. Phys. Geogr. , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 17
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation
    • De Vos N.J., Rientjes T.H.M. Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation. Hydrol. Earth Sci. 2005, 9:111-126.
    • (2005) Hydrol. Earth Sci. , vol.9 , pp. 111-126
    • De Vos, N.J.1    Rientjes, T.H.M.2
  • 18
    • 0038502200 scopus 로고    scopus 로고
    • Artificial neural networks for streamflow prediction
    • Dolling O.R., Varas E.A. Artificial neural networks for streamflow prediction. J. Hydraul. Res. 2002, 40(5):547-554.
    • (2002) J. Hydraul. Res. , vol.40 , Issue.5 , pp. 547-554
    • Dolling, O.R.1    Varas, E.A.2
  • 19
    • 34249943593 scopus 로고    scopus 로고
    • River flow estimation using adaptive neuro fuzzy inference system
    • Firat M., Gungor M. River flow estimation using adaptive neuro fuzzy inference system. Math. Comput. Simul. 2007, 75:87-96.
    • (2007) Math. Comput. Simul. , vol.75 , pp. 87-96
    • Firat, M.1    Gungor, M.2
  • 20
    • 0029413797 scopus 로고
    • Artificial neural network modelling of the rainfall-runoff process
    • Hsu K., Gupta H.V., Sorooshian S. Artificial neural network modelling of the rainfall-runoff process. Water Resour. Res. 1995, 31:2517-2530.
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 21
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: generalisation beyond calibration range
    • Imrie C.E., Durucan S., Korre A. River flow prediction using artificial neural networks: generalisation beyond calibration range. J. Hydrol. 2000, 233:138-153.
    • (2000) J. Hydrol. , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 23
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • Kisi O. Suspended sediment estimation using neuro-fuzzy and neural network approaches. J. Hydrol. Sci. 2005, 50:683-696.
    • (2005) J. Hydrol. Sci. , vol.50 , pp. 683-696
    • Kisi, O.1
  • 24
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kisi O. Streamflow forecasting using different artificial neural network algorithms. J. Hydrol. Eng. 2007, 12(5):532-539.
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.5 , pp. 532-539
    • Kisi, O.1
  • 25
    • 0035104376 scopus 로고    scopus 로고
    • An application of artificial neural networks for rainfall forecasting
    • Luk K.C., Ball J.E., Sharma A. An application of artificial neural networks for rainfall forecasting. Math. Comput. Model 2001, 33:683-693.
    • (2001) Math. Comput. Model , vol.33 , pp. 683-693
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 26
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the predictions and forecasting of water resources variables: review of modelling issues and applications
    • Maier H., Dandy G. Neural networks for the predictions and forecasting of water resources variables: review of modelling issues and applications. Environ. Modell. Softw. 2000, 15:101-124.
    • (2000) Environ. Modell. Softw. , vol.15 , pp. 101-124
    • Maier, H.1    Dandy, G.2
  • 27
    • 84858117558 scopus 로고    scopus 로고
    • The Importance of Snowmelt Runoff Modelling for Sustainable Development and Disaster Prevention
    • Regional Workshop on the Use of Space Technology for Environmental Security, Disaster Rehabilitation and Sustainable Development. Islamic Republic of Iran.
    • Malikov, M., 2004. The Importance of Snowmelt Runoff Modelling for Sustainable Development and Disaster Prevention. Regional Workshop on the Use of Space Technology for Environmental Security, Disaster Rehabilitation and Sustainable Development. Islamic Republic of Iran.
    • (2004)
    • Malikov, M.1
  • 28
    • 33645973241 scopus 로고    scopus 로고
    • Monthly runoff simulation: comparing and combining conceptual and neural network models
    • Nilsson P., Uvo C.B., Berndtsson R. Monthly runoff simulation: comparing and combining conceptual and neural network models. J. Hydrol. 2006, 321:344-363.
    • (2006) J. Hydrol. , vol.321 , pp. 344-363
    • Nilsson, P.1    Uvo, C.B.2    Berndtsson, R.3
  • 29
    • 69949143939 scopus 로고    scopus 로고
    • Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction
    • Pramanik N., Panda R.K. Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrol. Sci. 2009, 54(2):247-260.
    • (2009) Hydrol. Sci. , vol.54 , Issue.2 , pp. 247-260
    • Pramanik, N.1    Panda, R.K.2
  • 30
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region
    • Rami'rez M.C.P., Velho H.F.C., Ferreira N.J. Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. J. Hydrol. 2005, 301:146-162.
    • (2005) J. Hydrol. , vol.301 , pp. 146-162
    • Rami'rez, M.C.P.1    Velho, H.F.C.2    Ferreira, N.J.3
  • 31
    • 0027464578 scopus 로고
    • Neural network screening for groundwater reclamation under uncertainty
    • Ranjithan S., Eheart J.W., Rarret J.H. Neural network screening for groundwater reclamation under uncertainty. Water Resour. Res. 1993, 29(3):563-574.
    • (1993) Water Resour. Res. , vol.29 , Issue.3 , pp. 563-574
    • Ranjithan, S.1    Eheart, J.W.2    Rarret, J.H.3
  • 32
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modelling
    • Rogers L.L., Dowla F.U. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modelling. Water Resour. Res. 1994, 30(2):457-481.
    • (1994) Water Resour. Res. , vol.30 , Issue.2 , pp. 457-481
    • Rogers, L.L.1    Dowla, F.U.2
  • 33
    • 4644296256 scopus 로고    scopus 로고
    • Predicting catchment flow in a semi-arid region via an artificial neural network technique
    • Riad S., Mania J., Bouchaou L., Najjar Y. Predicting catchment flow in a semi-arid region via an artificial neural network technique. Hydrol. Process. 2004, 18:2387-2393.
    • (2004) Hydrol. Process. , vol.18 , pp. 2387-2393
    • Riad, S.1    Mania, J.2    Bouchaou, L.3    Najjar, Y.4
  • 34
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modelling. J. Hydrol. Amsterdam 1997, 199:272-294.
    • (1997) J. Hydrol. Amsterdam , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 35
    • 0029416249 scopus 로고
    • Neural-network models of rainfall runoff process
    • Smith J., Eli R.N. Neural-network models of rainfall runoff process. J. Water Resour. Plan. Manage. ASCE 1995, 121(6):499-508.
    • (1995) J. Water Resour. Plan. Manage. ASCE , vol.121 , Issue.6 , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 36
    • 62249126159 scopus 로고    scopus 로고
    • Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey
    • Sorman A.A., Sensoy A., Tekeli A.E., Sorman A.U., Akyurek Z. Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey. Hydrol. Process. 2009, 23:1031-1040.
    • (2009) Hydrol. Process. , vol.23 , pp. 1031-1040
    • Sorman, A.A.1    Sensoy, A.2    Tekeli, A.E.3    Sorman, A.U.4    Akyurek, Z.5
  • 37
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm forconstructing artificial neural network rainfall-runoff models
    • Sudheer K.P., Gosain A.K., Ramasastri K.S. A data-driven algorithm forconstructing artificial neural network rainfall-runoff models. Hydrol. Process. 2002, 16(6):1325-1330.
    • (2002) Hydrol. Process. , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 38
    • 50049131375 scopus 로고    scopus 로고
    • Application of artificial neural networks to forecasting i{dotless}ce conditions of the Yellow River in the Inner Mongolia reach
    • Tao W., Kailin Y., Yongxin G. Application of artificial neural networks to forecasting i{dotless}ce conditions of the Yellow River in the Inner Mongolia reach. J. Hydrol. Eng. 2008, 13(9):811-816.
    • (2008) J. Hydrol. Eng. , vol.13 , Issue.9 , pp. 811-816
    • Tao, W.1    Kailin, Y.2    Yongxin, G.3
  • 39
    • 0003417291 scopus 로고    scopus 로고
    • Utah Energy Balance Snow Accumulation and Melt Model (UEB), Computer Model Technical Description and Users Guide
    • Tarboton, D.G., Luce, C.H., 1996. Utah Energy Balance Snow Accumulation and Melt Model (UEB), Computer Model Technical Description and Users Guide.
    • (1996)
    • Tarboton, D.G.1    Luce, C.H.2
  • 40
    • 22744451805 scopus 로고    scopus 로고
    • Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey
    • Tekeli A.E., Akyurek Z., Sorman A.A., Sensoy A., Sorman A.U. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens. Environ. 2005, 97:216-230.
    • (2005) Remote Sens. Environ. , vol.97 , pp. 216-230
    • Tekeli, A.E.1    Akyurek, Z.2    Sorman, A.A.3    Sensoy, A.4    Sorman, A.U.5
  • 41
    • 0000861221 scopus 로고
    • Rainfall estimation from GMS imagery data using neural networks
    • Computational Mechanics, Southampton, UK
    • Tohma S., Igata S. Rainfall estimation from GMS imagery data using neural networks. Hydraulic Engineering Software V 1994, vol. 1:121-130. Computational Mechanics, Southampton, UK.
    • (1994) Hydraulic Engineering Software V , vol.1 , pp. 121-130
    • Tohma, S.1    Igata, S.2
  • 42
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar A.S., Johnson P.A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. ASCE 1999, 4(3):232-239.
    • (1999) J. Hydrol. Eng. ASCE , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 43
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar A.S., Markus M. Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng. 2000, 5(2):156-161.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 44
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth E., Brath A., Montanari A. Comparison of short-term rainfall prediction models for real-time flood forecasting. J. Hydrol. 2000, 239:132-147.
    • (2000) J. Hydrol. , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 45
    • 63649151694 scopus 로고    scopus 로고
    • River flow estimation from upstream flow records by artificial intelligence methods
    • Turan M.E., Yurdusev M.A. River flow estimation from upstream flow records by artificial intelligence methods. J. Hydrol. 2009, 71-77.
    • (2009) J. Hydrol. , pp. 71-77
    • Turan, M.E.1    Yurdusev, M.A.2
  • 46
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang W., Chau K., Cheng C., Qiu L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374:294-306.
    • (2009) J. Hydrol. , vol.374 , pp. 294-306
    • Wang, W.1    Chau, K.2    Cheng, C.3    Qiu, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.