메뉴 건너뛰기




Volumn 153, Issue , 2015, Pages 512-525

Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia

Author keywords

Artificial neural network; Drought prediction; Effective Drought Index; Extreme learning machine

Indexed keywords

DROUGHT INDICES; EASTERN AUSTRALIA; EXTREME LEARNING MACHINE;

EID: 84908611342     PISSN: 01698095     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.atmosres.2014.10.016     Document Type: Article
Times cited : (264)

References (76)
  • 1
    • 84862685995 scopus 로고    scopus 로고
    • Application of artificial neural networks to rainfall forecasting in Queensland, Australia
    • Abbot J., Marohasy J. Application of artificial neural networks to rainfall forecasting in Queensland, Australia. Adv. Atmos. Sci. 2012, 29(4):717-730.
    • (2012) Adv. Atmos. Sci. , vol.29 , Issue.4 , pp. 717-730
    • Abbot, J.1    Marohasy, J.2
  • 2
    • 84889646990 scopus 로고    scopus 로고
    • Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks
    • Abbot J., Marohasy J. Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmos. Res. 2014, 138:166-178.
    • (2014) Atmos. Res. , vol.138 , pp. 166-178
    • Abbot, J.1    Marohasy, J.2
  • 3
    • 84908652188 scopus 로고    scopus 로고
    • Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine
    • Acharya N., Shrivastava N.A., Panigrahi B., Mohanty U. Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine. Clim. Dyn. 2013, 1-8.
    • (2013) Clim. Dyn.
    • Acharya, N.1    Shrivastava, N.A.2    Panigrahi, B.3    Mohanty, U.4
  • 4
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski J., Chan H.F. A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 2011, 407(1):28-40.
    • (2011) J. Hydrol. , vol.407 , Issue.1 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 5
    • 33646344974 scopus 로고    scopus 로고
    • Global observed changes in daily climate extremes of temperature and precipitation
    • Alexander L., et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. (1984-2012) 2006, 111(D5).
    • (2006) J. Geophys. Res. Atmos. (1984-2012) , vol.111 , Issue.D5
    • Alexander, L.1
  • 6
    • 79958063688 scopus 로고    scopus 로고
    • Rainfall events prediction using rule-based fuzzy inference system
    • Asklany S.A., Elhelow K., Youssef I., Abd El-wahab M. Rainfall events prediction using rule-based fuzzy inference system. Atmos. Res. 2011, 101(1):228-236.
    • (2011) Atmos. Res. , vol.101 , Issue.1 , pp. 228-236
    • Asklany, S.A.1    Elhelow, K.2    Youssef, I.3    Abd El-wahab, M.4
  • 7
    • 84888875654 scopus 로고    scopus 로고
    • Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression
    • Belayneh A., Adamowski J. Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression. Appl. Comput. Intell. Soft Comput. 2012, 2012:6.
    • (2012) Appl. Comput. Intell. Soft Comput. , vol.2012 , pp. 6
    • Belayneh, A.1    Adamowski, J.2
  • 8
    • 4244200171 scopus 로고    scopus 로고
    • Quantified diagnosis of flood possibility by using effective precipitation index
    • Byun H., Jung J. Quantified diagnosis of flood possibility by using effective precipitation index. J. Korean Water Res. Assoc. 1998, 31(6):657-665.
    • (1998) J. Korean Water Res. Assoc. , vol.31 , Issue.6 , pp. 657-665
    • Byun, H.1    Jung, J.2
  • 9
    • 0033190381 scopus 로고    scopus 로고
    • Objective quantification of drought severity and duration
    • Byun H.-R., Wilhite D.A. Objective quantification of drought severity and duration. J. Clim. 1999, 12(9):2747-2756.
    • (1999) J. Clim. , vol.12 , Issue.9 , pp. 2747-2756
    • Byun, H.-R.1    Wilhite, D.A.2
  • 10
    • 57349115308 scopus 로고    scopus 로고
    • Study on the periodicities of droughts in Korea
    • Byun H.-R., et al. Study on the periodicities of droughts in Korea. Asia-Pac. J. Atmos. Sci. 2008, 44(4):417-441.
    • (2008) Asia-Pac. J. Atmos. Sci. , vol.44 , Issue.4 , pp. 417-441
    • Byun, H.-R.1
  • 11
    • 34447256610 scopus 로고    scopus 로고
    • Feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India
    • Chattopadhyay S. Feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India. Acta Geophys. 2007, 55(3):369-382.
    • (2007) Acta Geophys. , vol.55 , Issue.3 , pp. 369-382
    • Chattopadhyay, S.1
  • 13
    • 79952064966 scopus 로고    scopus 로고
    • Links between native forest and climate in Australia
    • Deo R.C. Links between native forest and climate in Australia. Weather 2011, 66(3):64-69.
    • (2011) Weather , vol.66 , Issue.3 , pp. 64-69
    • Deo, R.C.1
  • 14
    • 67449138340 scopus 로고    scopus 로고
    • Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia
    • Deo R.C., et al. Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia. Geophys. Res. Lett. 2009, 36(8).
    • (2009) Geophys. Res. Lett. , vol.36 , Issue.8
    • Deo, R.C.1
  • 15
    • 84876561292 scopus 로고    scopus 로고
    • The Millennium Drought in southeast Australia (2001-2009): natural and human causes and implications for water resources, ecosystems, economy, and society
    • Dijk A.I., et al. The Millennium Drought in southeast Australia (2001-2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 2013, 49(2):1040-1057.
    • (2013) Water Resour. Res. , vol.49 , Issue.2 , pp. 1040-1057
    • Dijk, A.I.1
  • 16
    • 84868359013 scopus 로고    scopus 로고
    • Comparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, Turkey
    • Dogan S., Berktay A., Singh V.P. Comparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, Turkey. J. Hydrol. 2012, 470:255-268.
    • (2012) J. Hydrol. , vol.470 , pp. 255-268
    • Dogan, S.1    Berktay, A.2    Singh, V.P.3
  • 17
    • 1542315512 scopus 로고    scopus 로고
    • Temperature response of Earth to the annual solar irradiance cycle
    • Douglass D.H., Blackman E.G., Knox R.S. Temperature response of Earth to the annual solar irradiance cycle. Phys. Lett. A 2004, 323(3):315-322.
    • (2004) Phys. Lett. A , vol.323 , Issue.3 , pp. 315-322
    • Douglass, D.H.1    Blackman, E.G.2    Knox, R.S.3
  • 18
    • 80054980531 scopus 로고    scopus 로고
    • A comparison of two seasonal rainfall forecasting systems for Australia
    • Fawcett R., Stone R. A comparison of two seasonal rainfall forecasting systems for Australia. Aust. Meteorol. Oceanogr. J. 2010, 60(1):15.
    • (2010) Aust. Meteorol. Oceanogr. J. , vol.60 , Issue.1 , pp. 15
    • Fawcett, R.1    Stone, R.2
  • 19
    • 67349260019 scopus 로고    scopus 로고
    • Prediction of flashover voltage of insulators using least squares support vector machines
    • Gencoglu M.T., Uyar M. Prediction of flashover voltage of insulators using least squares support vector machines. Expert Syst. Appl. 2009, 36(7):10789-10798.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.7 , pp. 10789-10798
    • Gencoglu, M.T.1    Uyar, M.2
  • 20
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: hydrologic applications
    • Govindaraju R.S. Artificial neural networks in hydrology. II: hydrologic applications. J. Hydrol. Eng. 2000, 5(2):124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
    • Govindaraju, R.S.1
  • 21
    • 0033663339 scopus 로고    scopus 로고
    • Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910-1998
    • Haylock M., Nicholls N. Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910-1998. Int. J. Climatol. 2000, 20(13):1533-1541.
    • (2000) Int. J. Climatol. , vol.20 , Issue.13 , pp. 1533-1541
    • Haylock, M.1    Nicholls, N.2
  • 22
    • 34250856833 scopus 로고    scopus 로고
    • Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode
    • Hendon H.H., Thompson D.W., Wheeler M.C. Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J. Clim. 2007, 20(11):2452-2467.
    • (2007) J. Clim. , vol.20 , Issue.11 , pp. 2452-2467
    • Hendon, H.H.1    Thompson, D.W.2    Wheeler, M.C.3
  • 23
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden-layer feedforward networks
    • Huang G.-B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural. Netw. 2003, 14(2):274-281.
    • (2003) IEEE Trans. Neural. Netw. , vol.14 , Issue.2 , pp. 274-281
    • Huang, G.-B.1
  • 24
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 25
    • 79955482055 scopus 로고    scopus 로고
    • Bridging the gap between weather and seasonal forecasting: intraseasonal forecasting for Australia
    • Hudson D., Alves O., Hendon H.H., Marshall A.G. Bridging the gap between weather and seasonal forecasting: intraseasonal forecasting for Australia. Q. J. R. Meteorol. Soc. 2011, 137(656):673-689.
    • (2011) Q. J. R. Meteorol. Soc. , vol.137 , Issue.656 , pp. 673-689
    • Hudson, D.1    Alves, O.2    Hendon, H.H.3    Marshall, A.G.4
  • 28
    • 84879122714 scopus 로고    scopus 로고
    • Climate projections for Australia: a first glance at CMIP5
    • Irving D.B., Whetton P., Moise A.F. Climate projections for Australia: a first glance at CMIP5. Aust. Meteorol. Oceanogr. J. 2012, 62(4):211-225.
    • (2012) Aust. Meteorol. Oceanogr. J. , vol.62 , Issue.4 , pp. 211-225
    • Irving, D.B.1    Whetton, P.2    Moise, A.F.3
  • 29
    • 77749330125 scopus 로고    scopus 로고
    • High-quality spatial climate data-sets for Australia
    • Jones D.A., Wang W., Fawcett R. High-quality spatial climate data-sets for Australia. Aust. Meteorol. Oceanogr. J. 2009, 58(4):233.
    • (2009) Aust. Meteorol. Oceanogr. J. , vol.58 , Issue.4 , pp. 233
    • Jones, D.A.1    Wang, W.2    Fawcett, R.3
  • 30
    • 17444452535 scopus 로고    scopus 로고
    • Cointegration analysis of hemispheric temperature relations
    • (ACL 8-1-ACL)
    • Kaufmann R.K., Stern D.I. Cointegration analysis of hemispheric temperature relations. J. Geophys. Res. Atmos. (1984-2012) 2002, 107(D2):8-10. (ACL 8-1-ACL).
    • (2002) J. Geophys. Res. Atmos. (1984-2012) , vol.107 , Issue.D2 , pp. 8-10
    • Kaufmann, R.K.1    Stern, D.I.2
  • 31
    • 79961065567 scopus 로고    scopus 로고
    • Reconciling anthropogenic climate change with observed temperature 1998-2008
    • Kaufmann R.K., Kauppi H., Mann M.L., Stock J.H. Reconciling anthropogenic climate change with observed temperature 1998-2008. Proc. Natl. Acad. Sci. 2011, 108(29):11790-11793.
    • (2011) Proc. Natl. Acad. Sci. , vol.108 , Issue.29 , pp. 11790-11793
    • Kaufmann, R.K.1    Kauppi, H.2    Mann, M.L.3    Stock, J.H.4
  • 32
    • 69049090850 scopus 로고    scopus 로고
    • Future pattern of Asian drought under global warming scenario
    • Kim D.-W., Byun H.-R. Future pattern of Asian drought under global warming scenario. Theor. Appl. Climatol. 2009, 98(1-2):137-150.
    • (2009) Theor. Appl. Climatol. , vol.98 , Issue.1-2 , pp. 137-150
    • Kim, D.-W.1    Byun, H.-R.2
  • 33
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim T.-W., Valdés J.B. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J. Hydrol. Eng. 2003, 8(6):319-328.
    • (2003) J. Hydrol. Eng. , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.-W.1    Valdés, J.B.2
  • 34
    • 70349973175 scopus 로고    scopus 로고
    • Evaluation, modification, and application of the Effective Drought Index to 200-Year drought climatology of Seoul, Korea
    • Kim D.-W., Byun H.-R., Choi K.-S. Evaluation, modification, and application of the Effective Drought Index to 200-Year drought climatology of Seoul, Korea. J. Hydrol. 2009, 378(1):1-12.
    • (2009) J. Hydrol. , vol.378 , Issue.1 , pp. 1-12
    • Kim, D.-W.1    Byun, H.-R.2    Choi, K.-S.3
  • 36
    • 0000632352 scopus 로고    scopus 로고
    • Experiments in short-term precipitation forecasting using artificial neural networks
    • Kuligowski R.J., Barros A.P. Experiments in short-term precipitation forecasting using artificial neural networks. Mon. Weather Rev. 1998, 126(2):470-482.
    • (1998) Mon. Weather Rev. , vol.126 , Issue.2 , pp. 470-482
    • Kuligowski, R.J.1    Barros, A.P.2
  • 37
    • 0031091818 scopus 로고    scopus 로고
    • An extended high-quality historical rainfall dataset for Australia
    • Lavery B., Joung G., Nicholls N. An extended high-quality historical rainfall dataset for Australia. Aust. Meteorol. Mag. 1997, 46(1):27-38.
    • (1997) Aust. Meteorol. Mag. , vol.46 , Issue.1 , pp. 27-38
    • Lavery, B.1    Joung, G.2    Nicholls, N.3
  • 38
    • 79953662678 scopus 로고    scopus 로고
    • Probabilistic prediction of tunnel geology using a Hybrid Neural-HMM
    • Leu S.-S., Adi T.J.W. Probabilistic prediction of tunnel geology using a Hybrid Neural-HMM. Eng. Appl. Artif. Intell. 2011, 24(4):658-665.
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , Issue.4 , pp. 658-665
    • Leu, S.-S.1    Adi, T.J.W.2
  • 39
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk K., Ball J., Sharma A. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 2000, 227(1):56-65.
    • (2000) J. Hydrol. , vol.227 , Issue.1 , pp. 56-65
    • Luk, K.1    Ball, J.2    Sharma, A.3
  • 40
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model Softw. 2000, 15(1):101-124.
    • (2000) Environ. Model Softw. , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 42
    • 1642561866 scopus 로고    scopus 로고
    • Trends in the Southern Annular Mode from observations and reanalyses
    • Marshall G.J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 2003, 16(24):4134-4143.
    • (2003) J. Clim. , vol.16 , Issue.24 , pp. 4134-4143
    • Marshall, G.J.1
  • 43
    • 84908652187 scopus 로고    scopus 로고
    • Artificial neural networks models for predicting effective drought index: factoring effects of rainfall variability
    • Masinde M. Artificial neural networks models for predicting effective drought index: factoring effects of rainfall variability. Mitig. Adapt. Strateg. Glob. Chang. 2013, 1-24.
    • (2013) Mitig. Adapt. Strateg. Glob. Chang.
    • Masinde, M.1
  • 44
    • 38949086176 scopus 로고    scopus 로고
    • Modeling the impact of historical land cover change on Australia's regional climate
    • McAlpine C., et al. Modeling the impact of historical land cover change on Australia's regional climate. Geophys. Res. Lett. 2007, 34(22).
    • (2007) Geophys. Res. Lett. , vol.34 , Issue.22
    • McAlpine, C.1
  • 45
    • 68549135292 scopus 로고    scopus 로고
    • A continent under stress: interactions, feedbacks and risks associated with impact of modified land cover on Australia's climate
    • McAlpine C., et al. A continent under stress: interactions, feedbacks and risks associated with impact of modified land cover on Australia's climate. Glob. Chang. Biol. 2009, 15(9):2206-2223.
    • (2009) Glob. Chang. Biol. , vol.15 , Issue.9 , pp. 2206-2223
    • McAlpine, C.1
  • 46
    • 84884220216 scopus 로고    scopus 로고
    • Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes
    • Mekanik F., Imteaz M., Gato-Trinidad S., Elmahdi A. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. J. Hydrol. 2013, 503:11-21.
    • (2013) J. Hydrol. , vol.503 , pp. 11-21
    • Mekanik, F.1    Imteaz, M.2    Gato-Trinidad, S.3    Elmahdi, A.4
  • 47
    • 33745267737 scopus 로고    scopus 로고
    • Comparison of seven meteorological indices for drought monitoring in Iran
    • Morid S., Smakhtin V., Moghaddasi M. Comparison of seven meteorological indices for drought monitoring in Iran. Int. J. Climatol. 2006, 26(7):971-985.
    • (2006) Int. J. Climatol. , vol.26 , Issue.7 , pp. 971-985
    • Morid, S.1    Smakhtin, V.2    Moghaddasi, M.3
  • 48
    • 37249024658 scopus 로고    scopus 로고
    • Drought forecasting using artificial neural networks and time series of drought indices
    • Morid S., Smakhtin V., Bagherzadeh K. Drought forecasting using artificial neural networks and time series of drought indices. Int. J. Climatol. 2007, 27(15):2103-2111.
    • (2007) Int. J. Climatol. , vol.27 , Issue.15 , pp. 2103-2111
    • Morid, S.1    Smakhtin, V.2    Bagherzadeh, K.3
  • 49
    • 0036168268 scopus 로고    scopus 로고
    • Neural networks in forecasting electrical energy consumption: univariate and multivariate approaches
    • Nasr G., Badr E., Younes M. Neural networks in forecasting electrical energy consumption: univariate and multivariate approaches. Int. J. Energy Res. 2002, 26(1):67-78.
    • (2002) Int. J. Energy Res. , vol.26 , Issue.1 , pp. 67-78
    • Nasr, G.1    Badr, E.2    Younes, M.3
  • 50
    • 44949191403 scopus 로고    scopus 로고
    • Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network
    • Nasseri M., Asghari K., Abedini M. Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network. Expert Syst. Appl. 2008, 35(3):1415-1421.
    • (2008) Expert Syst. Appl. , vol.35 , Issue.3 , pp. 1415-1421
    • Nasseri, M.1    Asghari, K.2    Abedini, M.3
  • 51
    • 84899631944 scopus 로고    scopus 로고
    • Artificial neural networks modeling for forecasting the maximum daily total precipitation at Athens, Greece
    • Nastos P., Paliatsos A., Koukouletsos K., Larissi I., Moustris K. Artificial neural networks modeling for forecasting the maximum daily total precipitation at Athens, Greece. Atmos. Res. 2014, 144:141-150.
    • (2014) Atmos. Res. , vol.144 , pp. 141-150
    • Nastos, P.1    Paliatsos, A.2    Koukouletsos, K.3    Larissi, I.4    Moustris, K.5
  • 53
    • 84893386848 scopus 로고    scopus 로고
    • Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data
    • Ortiz-García E., Salcedo-Sanz S., Casanova-Mateo C. Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data. Atmos. Res. 2014, 139:128-136.
    • (2014) Atmos. Res. , vol.139 , pp. 128-136
    • Ortiz-García, E.1    Salcedo-Sanz, S.2    Casanova-Mateo, C.3
  • 54
    • 47249089593 scopus 로고    scopus 로고
    • Study of indices for drought characterization in KBK districts in Orissa (India)
    • Pandey R., Dash B., Mishra S., Singh R. Study of indices for drought characterization in KBK districts in Orissa (India). Hydrol. Process. 2008, 22(12):1895-1907.
    • (2008) Hydrol. Process. , vol.22 , Issue.12 , pp. 1895-1907
    • Pandey, R.1    Dash, B.2    Mishra, S.3    Singh, R.4
  • 55
    • 78751555202 scopus 로고    scopus 로고
    • A temperature-based model for global solar irradiance and its application to estimate daily irradiation values
    • Paulescu M., Tulcan-Paulescu E., Stefu N. A temperature-based model for global solar irradiance and its application to estimate daily irradiation values. Int. J. Energy Res. 2011, 35(6):520-529.
    • (2011) Int. J. Energy Res. , vol.35 , Issue.6 , pp. 520-529
    • Paulescu, M.1    Tulcan-Paulescu, E.2    Stefu, N.3
  • 56
    • 84868252729 scopus 로고    scopus 로고
    • Extreme learning machines-a review and state-of-the-art
    • Rajesh R., Prakash J.S. Extreme learning machines-a review and state-of-the-art. Int. J. Wisdom Based Comput. 2011, 1(1):35-49.
    • (2011) Int. J. Wisdom Based Comput. , vol.1 , Issue.1 , pp. 35-49
    • Rajesh, R.1    Prakash, J.S.2
  • 57
    • 84864764050 scopus 로고    scopus 로고
    • Modelling of air temperature using remote sensing and artificial neural network in Turkey
    • Şahin M. Modelling of air temperature using remote sensing and artificial neural network in Turkey. Adv. Space Res. 2012, 50(7):973-985.
    • (2012) Adv. Space Res. , vol.50 , Issue.7 , pp. 973-985
    • Şahin, M.1
  • 58
    • 84873411994 scopus 로고    scopus 로고
    • Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data
    • Şahin M., Kaya Y., Uyar M. Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data. Adv. Space Res. 2013, 51(5):891-904.
    • (2013) Adv. Space Res. , vol.51 , Issue.5 , pp. 891-904
    • Şahin, M.1    Kaya, Y.2    Uyar, M.3
  • 59
    • 84892552548 scopus 로고    scopus 로고
    • Application of extreme learning machine for estimating solar radiation from satellite data
    • Şahin M., Kaya Y., Uyar M., Yildirim S. Application of extreme learning machine for estimating solar radiation from satellite data. Int. J. Energy Res. 2014, 38(2):205-212.
    • (2014) Int. J. Energy Res. , vol.38 , Issue.2 , pp. 205-212
    • Şahin, M.1    Kaya, Y.2    Uyar, M.3    Yildirim, S.4
  • 60
    • 17544373059 scopus 로고    scopus 로고
    • Indian Ocean Dipole mode events and austral surface air temperature anomalies
    • Saji N., Ambrizzi T., Ferraz S. Indian Ocean Dipole mode events and austral surface air temperature anomalies. Dyn. Atmos. Oceans 2005, 39(1):87-101.
    • (2005) Dyn. Atmos. Oceans , vol.39 , Issue.1 , pp. 87-101
    • Saji, N.1    Ambrizzi, T.2    Ferraz, S.3
  • 63
    • 80052840333 scopus 로고    scopus 로고
    • Prediction of Indian summer monsoon rainfall using Niño indices: a neural network approach
    • Shukla R.P., Tripathi K.C., Pandey A.C., Das I. Prediction of Indian summer monsoon rainfall using Niño indices: a neural network approach. Atmos. Res. 2011, 102(1):99-109.
    • (2011) Atmos. Res. , vol.102 , Issue.1 , pp. 99-109
    • Shukla, R.P.1    Tripathi, K.C.2    Pandey, A.C.3    Das, I.4
  • 64
    • 53649101806 scopus 로고    scopus 로고
    • Characteristics of the northern Australian rainy season
    • Smith I., Wilson L., Suppiah R. Characteristics of the northern Australian rainy season. J. Clim. 2008, 21(17):4298-4311.
    • (2008) J. Clim. , vol.21 , Issue.17 , pp. 4298-4311
    • Smith, I.1    Wilson, L.2    Suppiah, R.3
  • 65
    • 3543128236 scopus 로고    scopus 로고
    • Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle
    • Sözen A., Ali Akçayol M. Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle. Appl. Energy 2004, 79(3):309-325.
    • (2004) Appl. Energy , vol.79 , Issue.3 , pp. 309-325
    • Sözen, A.1    Ali Akçayol, M.2
  • 66
    • 27744489308 scopus 로고    scopus 로고
    • Attribution of global surface warming without dynamical models
    • Stone D.A., Allen M. Attribution of global surface warming without dynamical models. Geophys. Res. Lett. 2005, 32(18).
    • (2005) Geophys. Res. Lett. , vol.32 , Issue.18
    • Stone, D.A.1    Allen, M.2
  • 67
    • 0032431315 scopus 로고    scopus 로고
    • Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910-1990
    • Suppiah R., Hennessy K.J. Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910-1990. Int. J. Climatol. 1998, 18(10):1141-1164.
    • (1998) Int. J. Climatol. , vol.18 , Issue.10 , pp. 1141-1164
    • Suppiah, R.1    Hennessy, K.J.2
  • 68
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four-layered feedforward neural network: four layers versus three
    • Tamura S.i, Tateishi M. Capabilities of a four-layered feedforward neural network: four layers versus three. IEEE Trans. Neural. Netw. 1997, 8(2):251-255.
    • (1997) IEEE Trans. Neural. Netw. , vol.8 , Issue.2 , pp. 251-255
    • Tamura, S.1    Tateishi, M.2
  • 69
    • 0000185413 scopus 로고    scopus 로고
    • A historical annual temperature dataset
    • Torok S., Nicholls N. A historical annual temperature dataset. Aust. Meteorol. Mag. 1996, 45(4).
    • (1996) Aust. Meteorol. Mag. , vol.45 , Issue.4
    • Torok, S.1    Nicholls, N.2
  • 70
    • 0021566070 scopus 로고
    • Signal versus noise in the Southern Oscillation
    • Trenberth K.E. Signal versus noise in the Southern Oscillation. Mon. Weather Rev. 1984, 112(2):326-332.
    • (1984) Mon. Weather Rev. , vol.112 , Issue.2 , pp. 326-332
    • Trenberth, K.E.1
  • 71
    • 0036535696 scopus 로고    scopus 로고
    • Comparison of solar radiation correlations for Izmir, Turkey
    • Ulgen K., Hepbasli A. Comparison of solar radiation correlations for Izmir, Turkey. Int. J. Energy Res. 2002, 26(5):413-430.
    • (2002) Int. J. Energy Res. , vol.26 , Issue.5 , pp. 413-430
    • Ulgen, K.1    Hepbasli, A.2
  • 72
    • 84863006296 scopus 로고    scopus 로고
    • The 2011 Brisbane floods: causes, impacts and implications
    • van den Honert R.C., McAneney J. The 2011 Brisbane floods: causes, impacts and implications. Water 2011, 3(4):1149-1173.
    • (2011) Water , vol.3 , Issue.4 , pp. 1149-1173
    • van den Honert, R.C.1    McAneney, J.2
  • 73
    • 0020386641 scopus 로고
    • Some comments on the evaluation of model performance
    • Willmott C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63(11):1309-1313.
    • (1982) Bull. Am. Meteorol. Soc. , vol.63 , Issue.11 , pp. 1309-1313
    • Willmott, C.J.1
  • 74
    • 77958035437 scopus 로고    scopus 로고
    • Data-driven models for monthly streamflow time series prediction
    • Wu C., Chau K. Data-driven models for monthly streamflow time series prediction. Eng. Appl. Artif. Intell. 2010, 23(8):1350-1367.
    • (2010) Eng. Appl. Artif. Intell. , vol.23 , Issue.8 , pp. 1350-1367
    • Wu, C.1    Chau, K.2
  • 75
    • 0030731329 scopus 로고    scopus 로고
    • ENSO-like interdecadal variability: 1900-93
    • Zhang Y., Wallace J.M., Battisti D.S. ENSO-like interdecadal variability: 1900-93. J. Clim. 1997, 10(5):1004-1020.
    • (1997) J. Clim. , vol.10 , Issue.5 , pp. 1004-1020
    • Zhang, Y.1    Wallace, J.M.2    Battisti, D.S.3
  • 76
    • 67649421237 scopus 로고    scopus 로고
    • Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model
    • Zhao M., Hendon H.H. Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Q. J. R. Meteorol. Soc. 2009, 135:337-352.
    • (2009) Q. J. R. Meteorol. Soc. , vol.135 , pp. 337-352
    • Zhao, M.1    Hendon, H.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.