메뉴 건너뛰기




Volumn 161-162, Issue , 2015, Pages 65-81

Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia

Author keywords

Artificial Neural Network; Data driven model; Drought prediction in Australia; Standardized Precipitation and Evapotranspiration Index (SPEI)

Indexed keywords

ATMOSPHERIC PRESSURE; ATMOSPHERIC TEMPERATURE; BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; CHEMICAL ACTIVATION; DROUGHT; EVAPOTRANSPIRATION; FORECASTING; FUNCTION EVALUATION; LEARNING ALGORITHMS; MEAN SQUARE ERROR; NEURAL NETWORKS; NEURONS; NONLINEAR PROGRAMMING; OCEANOGRAPHY; RAIN; SURFACE WATERS;

EID: 84928136722     PISSN: 01698095     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.atmosres.2015.03.018     Document Type: Article
Times cited : (235)

References (120)
  • 1
    • 84862685995 scopus 로고    scopus 로고
    • Application of artificial neural networks to rainfall forecasting in Queensland, Australia
    • Abbot J., Marohasy J. Application of artificial neural networks to rainfall forecasting in Queensland, Australia. Adv. Atmos. Sci. 2012, 29:717-730.
    • (2012) Adv. Atmos. Sci. , vol.29 , pp. 717-730
    • Abbot, J.1    Marohasy, J.2
  • 2
    • 84889646990 scopus 로고    scopus 로고
    • Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks
    • Abbot J., Marohasy J. Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmos. Res. 2014, 138:166-178.
    • (2014) Atmos. Res. , vol.138 , pp. 166-178
    • Abbot, J.1    Marohasy, J.2
  • 4
    • 84908652188 scopus 로고    scopus 로고
    • Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine
    • Acharya N., Shrivastava N.A., Panigrahi B., Mohanty U. Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine. Clim. Dyn. 2013, 1-8.
    • (2013) Clim. Dyn. , pp. 1-8
    • Acharya, N.1    Shrivastava, N.A.2    Panigrahi, B.3    Mohanty, U.4
  • 5
    • 0023999822 scopus 로고
    • Log-logistic flood frequency analysis
    • Ahmad M., Sinclair C., Werritty A. Log-logistic flood frequency analysis. J. Hydrol. 1988, 98:205-224.
    • (1988) J. Hydrol. , vol.98 , pp. 205-224
    • Ahmad, M.1    Sinclair, C.2    Werritty, A.3
  • 6
    • 33646344974 scopus 로고    scopus 로고
    • Global observed changes in daily climate extremes of temperature and precipitation
    • 1984-2012
    • Alexander L., et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. - Atmos. 2006, 1984-2012:111.
    • (2006) J. Geophys. Res. - Atmos. , pp. 111
    • Alexander, L.1
  • 7
    • 0022823251 scopus 로고
    • A homogeneity test applied to precipitation data
    • Alexandersson H. A homogeneity test applied to precipitation data. J. Climatol. 1986, 6:661-675.
    • (1986) J. Climatol. , vol.6 , pp. 661-675
    • Alexandersson, H.1
  • 8
    • 0002086548 scopus 로고
    • An update for the calculation of reference evapotranspiration
    • Allen R., Smith M., Pereira L., Perrier A. An update for the calculation of reference evapotranspiration. ICID Bull. 1994, 43:35-92.
    • (1994) ICID Bull. , vol.43 , pp. 35-92
    • Allen, R.1    Smith, M.2    Pereira, L.3    Perrier, A.4
  • 9
    • 0037199734 scopus 로고    scopus 로고
    • The use of the aridity index to assess climate change effect on annual runoff
    • Arora V.K. The use of the aridity index to assess climate change effect on annual runoff. J. Hydrol. 2002, 265:164-177.
    • (2002) J. Hydrol. , vol.265 , pp. 164-177
    • Arora, V.K.1
  • 10
    • 0242337482 scopus 로고    scopus 로고
    • Influence of the Indian Ocean Dipole on the Australian winter rainfall
    • Ashok K., Guan Z., Yamagata T. Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett. 2003, 30(15). 10.1029/2003GL017926.
    • (2003) Geophys. Res. Lett. , vol.30 , Issue.15
    • Ashok, K.1    Guan, Z.2    Yamagata, T.3
  • 11
    • 84875895891 scopus 로고    scopus 로고
    • Drought forecasting using an aggregated drought index and artificial neural network
    • Barua S., Perera B.J.C., Ng A.W.M., Tran D. Drought forecasting using an aggregated drought index and artificial neural network. J. Water Clim. Chang. 2010, 1(3):193-206.
    • (2010) J. Water Clim. Chang. , vol.1 , Issue.3 , pp. 193-206
    • Barua, S.1    Perera, B.J.C.2    Ng, A.W.M.3    Tran, D.4
  • 12
    • 84876820915 scopus 로고    scopus 로고
    • Artificial neural network-based drought forecasting using a non-linear aggregated drought index
    • Barua S., Ng A.W.M., Perera B.J.C. Artificial neural network-based drought forecasting using a non-linear aggregated drought index. J. Hydrol. Eng. 2012, 17(12):1408-1413.
    • (2012) J. Hydrol. Eng. , vol.17 , Issue.12 , pp. 1408-1413
    • Barua, S.1    Ng, A.W.M.2    Perera, B.J.C.3
  • 13
    • 84905038793 scopus 로고    scopus 로고
    • Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring
    • Beguería S., Vicente-Serrano S.M., Reig F., Latorre B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2013, 34(10):3001-3023.
    • (2013) Int. J. Climatol. , vol.34 , Issue.10 , pp. 3001-3023
    • Beguería, S.1    Vicente-Serrano, S.M.2    Reig, F.3    Latorre, B.4
  • 14
    • 84888875654 scopus 로고    scopus 로고
    • Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression
    • Belayneh A., Adamowski J. Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression. Appl. Comput. Intell. Soft Comput. 2012, (Article ID 794061, 13 pp).
    • (2012) Appl. Comput. Intell. Soft Comput. , pp. 13
    • Belayneh, A.1    Adamowski, J.2
  • 15
    • 80052812875 scopus 로고    scopus 로고
    • Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall
    • Cai W., Rensch P.V., Cowan T., Hendon H.H. Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Clim. 2011, 24:3910-3923.
    • (2011) J. Clim. , vol.24 , pp. 3910-3923
    • Cai, W.1    Rensch, P.V.2    Cowan, T.3    Hendon, H.H.4
  • 16
    • 34447256610 scopus 로고    scopus 로고
    • Feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India
    • Chattopadhyay S. Feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India. Acta Geophys. 2007, 55:369-382.
    • (2007) Acta Geophys. , vol.55 , pp. 369-382
    • Chattopadhyay, S.1
  • 17
    • 47049108092 scopus 로고    scopus 로고
    • Comparative study among different neural net learning algorithms applied to rainfall time series
    • Chattopadhyay S., Chattopadhyay G. Comparative study among different neural net learning algorithms applied to rainfall time series. Meteorol. Appl. 2008, 15:273-280.
    • (2008) Meteorol. Appl. , vol.15 , pp. 273-280
    • Chattopadhyay, S.1    Chattopadhyay, G.2
  • 18
    • 0036027846 scopus 로고    scopus 로고
    • Global optimization of absorption chiller system by genetic algorithm and neural network
    • Chow T., Zhang G., Lin Z., Song C. Global optimization of absorption chiller system by genetic algorithm and neural network. Energy Build. 2002, 34:103-109.
    • (2002) Energy Build. , vol.34 , pp. 103-109
    • Chow, T.1    Zhang, G.2    Lin, Z.3    Song, C.4
  • 22
    • 84908611342 scopus 로고    scopus 로고
    • Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia
    • Deo R.C., Sahin M. Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmos. Res. 2015, 153:512-525.
    • (2015) Atmos. Res. , vol.153 , pp. 512-525
    • Deo, R.C.1    Sahin, M.2
  • 23
    • 67449138340 scopus 로고    scopus 로고
    • Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia
    • Deo R.C., et al. Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia. Geophys. Res. Lett. 2009, 36(8). 10.1029/2009GL037666.
    • (2009) Geophys. Res. Lett. , vol.36 , Issue.8
    • Deo, R.C.1
  • 24
    • 84876561292 scopus 로고    scopus 로고
    • The Millennium Drought in southeast Australia (2001-2009): natural and human causes and implications for water resources, ecosystems, economy, and society
    • Dijk A.I., et al. The Millennium Drought in southeast Australia (2001-2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 2013, 49:1040-1057.
    • (2013) Water Resour. Res. , vol.49 , pp. 1040-1057
    • Dijk, A.I.1
  • 25
    • 0019657520 scopus 로고
    • Judging air quality model performance
    • Fox D.G. Judging air quality model performance. Bull. Am. Meteorol. Soc. 1981, 62:599-609.
    • (1981) Bull. Am. Meteorol. Soc. , vol.62 , pp. 599-609
    • Fox, D.G.1
  • 26
    • 0036563430 scopus 로고    scopus 로고
    • Flood frequency analysis: evidence and implications of secular climate variability, New South Wales
    • Franks S.W., Kuczera G. Flood frequency analysis: evidence and implications of secular climate variability, New South Wales. Water Resour. Res. 2002, 38. (20-21-20-27).
    • (2002) Water Resour. Res. , vol.38 , pp. 2021-2027
    • Franks, S.W.1    Kuczera, G.2
  • 27
    • 0028543366 scopus 로고
    • Training feed-forward networks with the Marquardt algorithm
    • Hagan M.T., Menhaj M. Training feed-forward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 1994, 5(6):989-993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 28
    • 44049107159 scopus 로고
    • Evapotranspiration and droughts
    • R.W. Paulson, E.B. Chase, R.S. Roberts, D.W. Moody (Eds.)
    • Hanson R.L. Evapotranspiration and droughts. Compilers, National Water Summary 1988, 99-104. R.W. Paulson, E.B. Chase, R.S. Roberts, D.W. Moody (Eds.).
    • (1988) Compilers, National Water Summary , pp. 99-104
    • Hanson, R.L.1
  • 29
    • 0028667116 scopus 로고
    • Defining and using reference evapotranspiration
    • Hargreaves G.H. Defining and using reference evapotranspiration. J. Irrig. Drain. Eng. 1994, 120:1132-1139.
    • (1994) J. Irrig. Drain. Eng. , vol.120 , pp. 1132-1139
    • Hargreaves, G.H.1
  • 30
    • 0000508643 scopus 로고
    • Sigmoid transfer functions in backpropagation neural networks
    • Harrington P.B. Sigmoid transfer functions in backpropagation neural networks. Anal. Chem. 1993, 65:2167-2168.
    • (1993) Anal. Chem. , vol.65 , pp. 2167-2168
    • Harrington, P.B.1
  • 32
    • 0033663339 scopus 로고    scopus 로고
    • Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910-1998
    • Haylock M., Nicholls N. Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910-1998. Int. J. Climatol. 2000, 20:1533-1541.
    • (2000) Int. J. Climatol. , vol.20 , pp. 1533-1541
    • Haylock, M.1    Nicholls, N.2
  • 33
    • 34250856833 scopus 로고    scopus 로고
    • Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode
    • Hendon H.H., Thompson D.W., Wheeler M.C. Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J. Clim. 2007, 20:2452-2467.
    • (2007) J. Clim. , vol.20 , pp. 2452-2467
    • Hendon, H.H.1    Thompson, D.W.2    Wheeler, M.C.3
  • 35
    • 77954858267 scopus 로고    scopus 로고
    • Associations between rainfall variability in the southwest and southeast of Australia and their evolution through time
    • Hope P., Timbal B., Fawcett R. Associations between rainfall variability in the southwest and southeast of Australia and their evolution through time. Int. J. Climatol. 2010, 30:1360-1371.
    • (2010) Int. J. Climatol. , vol.30 , pp. 1360-1371
    • Hope, P.1    Timbal, B.2    Fawcett, R.3
  • 36
    • 0000310360 scopus 로고
    • L-moments: analysis and estimation of distributions using linear combinations of order statistics
    • Hosking J.R. L-moments: analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. Ser. B Methodol. 1990, 105-124.
    • (1990) J. R. Stat. Soc. Ser. B Methodol. , pp. 105-124
    • Hosking, J.R.1
  • 37
    • 79955482055 scopus 로고    scopus 로고
    • Bridging the gap between weather and seasonal forecasting: intraseasonal forecasting for Australia
    • Hudson D., Alves O., Hendon H.H., Marshall A.G. Bridging the gap between weather and seasonal forecasting: intraseasonal forecasting for Australia. Q. J. R. Meteorol. Soc. 2011, 137:673-689.
    • (2011) Q. J. R. Meteorol. Soc. , vol.137 , pp. 673-689
    • Hudson, D.1    Alves, O.2    Hendon, H.H.3    Marshall, A.G.4
  • 40
    • 84859981445 scopus 로고    scopus 로고
    • Performance analysis of various activation functions in generalized MLP architectures of neural networks
    • Karlik B., Olgac A.V. Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artif. Intell. Expert Syst. 2011, 1:111-122.
    • (2011) Int. J. Artif. Intell. Expert Syst. , vol.1 , pp. 111-122
    • Karlik, B.1    Olgac, A.V.2
  • 41
    • 4243187637 scopus 로고    scopus 로고
    • Multi-decadal variability of drought risk, eastern Australia
    • Kiem A.S., Franks S.W. Multi-decadal variability of drought risk, eastern Australia. Hydrol. Process. 2004, 18:2039-2050.
    • (2004) Hydrol. Process. , vol.18 , pp. 2039-2050
    • Kiem, A.S.1    Franks, S.W.2
  • 42
  • 43
    • 70349973175 scopus 로고    scopus 로고
    • Evaluation, modification, and application of the Effective Drought Index to 200-Year drought climatology of Seoul, Korea
    • Kim D.-W., Byun H.-R., Choi K.-S. Evaluation, modification, and application of the Effective Drought Index to 200-Year drought climatology of Seoul, Korea. J. Hydrol. 2009, 378:1-12.
    • (2009) J. Hydrol. , vol.378 , pp. 1-12
    • Kim, D.-W.1    Byun, H.-R.2    Choi, K.-S.3
  • 44
    • 33748913014 scopus 로고    scopus 로고
    • Comparison of different efficiency criteria for hydrological model assessment
    • Krause P., Boyle D., Bäse F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5:89-97.
    • (2005) Adv. Geosci. , vol.5 , pp. 89-97
    • Krause, P.1    Boyle, D.2    Bäse, F.3
  • 45
    • 0000632352 scopus 로고    scopus 로고
    • Experiments in short-term precipitation forecasting using artificial neural networks
    • Kuligowski R.J., Barros A.P. Experiments in short-term precipitation forecasting using artificial neural networks. Mon. Weather Rev. 1998, 126:470-482.
    • (1998) Mon. Weather Rev. , vol.126 , pp. 470-482
    • Kuligowski, R.J.1    Barros, A.P.2
  • 46
    • 78650734426 scopus 로고    scopus 로고
    • Artificial neural networks approach in evapotranspiration modeling: a review
    • Kumar M., Raghuwanshi N., Singh R. Artificial neural networks approach in evapotranspiration modeling: a review. Irrig. Sci. 2011, 29:11-25.
    • (2011) Irrig. Sci. , vol.29 , pp. 11-25
    • Kumar, M.1    Raghuwanshi, N.2    Singh, R.3
  • 47
    • 0000948659 scopus 로고    scopus 로고
    • Greenhouse warming, decadal variability, or El Nino? An attempt to understand the anomalous 1990s
    • Latif M., Kleeman R., Eckert C. Greenhouse warming, decadal variability, or El Nino? An attempt to understand the anomalous 1990s. J. Clim. 1997, 10:2221-2239.
    • (1997) J. Clim. , vol.10 , pp. 2221-2239
    • Latif, M.1    Kleeman, R.2    Eckert, C.3
  • 48
    • 0031091818 scopus 로고    scopus 로고
    • An extended high-quality historical rainfall dataset for Australia
    • Lavery B., Joung G., Nicholls N. An extended high-quality historical rainfall dataset for Australia. Aust. Meteorol. Mag. 1997, 46:27-38.
    • (1997) Aust. Meteorol. Mag. , vol.46 , pp. 27-38
    • Lavery, B.1    Joung, G.2    Nicholls, N.3
  • 49
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation
    • Legates D.R., McCabe G.J. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35:233-241.
    • (1999) Water Resour. Res. , vol.35 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 50
    • 84905020628 scopus 로고    scopus 로고
    • Standardized precipitation evapotranspiration index shows drought trends in China
    • Li W.-G., Yi X., Hou M.-T., Chen H.-L., Chen Z.-L. Standardized precipitation evapotranspiration index shows drought trends in China. Chin. J. Eco-Agric. 2012, 5:021.
    • (2012) Chin. J. Eco-Agric. , vol.5 , pp. 021
    • Li, W.-G.1    Yi, X.2    Hou, M.-T.3    Chen, H.-L.4    Chen, Z.-L.5
  • 51
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippman R. An introduction to computing with neural nets. IEEE ASSP Mag. 1987, 4:4-22.
    • (1987) IEEE ASSP Mag. , vol.4 , pp. 4-22
    • Lippman, R.1
  • 53
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 1963, 11(2):431-441.
    • (1963) SIAM J. Appl. Math. , vol.11 , Issue.2 , pp. 431-441
    • Marquardt, D.1
  • 54
    • 1642561866 scopus 로고    scopus 로고
    • Trends in the Southern Annular Mode from observations and reanalyses
    • Marshall G.J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 2003, 16:4134-4143.
    • (2003) J. Clim. , vol.16 , pp. 4134-4143
    • Marshall, G.J.1
  • 55
    • 84908652187 scopus 로고    scopus 로고
    • Artificial neural networks models for predicting effective drought index: factoring effects of rainfall variability
    • Masinde M. Artificial neural networks models for predicting effective drought index: factoring effects of rainfall variability. Mitig. Adapt. Strateg. Glob. Chang. 2013, 1-24.
    • (2013) Mitig. Adapt. Strateg. Glob. Chang. , pp. 1-24
    • Masinde, M.1
  • 56
    • 68549135292 scopus 로고    scopus 로고
    • A continent under stress: interactions, feedbacks and risks associated with impact of modified land cover on Australia's climate
    • McAlpine C., et al. A continent under stress: interactions, feedbacks and risks associated with impact of modified land cover on Australia's climate. Glob. Chang. Biol. 2009, 15:2206-2223.
    • (2009) Glob. Chang. Biol. , vol.15 , pp. 2206-2223
    • McAlpine, C.1
  • 57
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch W.S., Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5:115-133.
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 58
    • 0001895140 scopus 로고
    • The relationship of drought frequency and duration to time scales
    • American Meteorological Society, Boston, MA
    • McKee T.B., Doesken N.J., Kleist J. The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology 1993, 179-183. American Meteorological Society, Boston, MA.
    • (1993) Proceedings of the 8th Conference on Applied Climatology , pp. 179-183
    • McKee, T.B.1    Doesken, N.J.2    Kleist, J.3
  • 59
    • 84958529690 scopus 로고    scopus 로고
    • Evaluating the effect of single and combined climate modes on rainfall predictability
    • Springer
    • Mekanik F., Imteaz M.A. Evaluating the effect of single and combined climate modes on rainfall predictability. IAENG Transactions on Engineering Technologies 2014, 571-581. Springer.
    • (2014) IAENG Transactions on Engineering Technologies , pp. 571-581
    • Mekanik, F.1    Imteaz, M.A.2
  • 60
    • 84884220216 scopus 로고    scopus 로고
    • Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes
    • Mekanik F., Imteaz M., Gato-Trinidad S., Elmahdi A. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. J. Hydrol. 2013, 503:11-21.
    • (2013) J. Hydrol. , vol.503 , pp. 11-21
    • Mekanik, F.1    Imteaz, M.2    Gato-Trinidad, S.3    Elmahdi, A.4
  • 61
    • 33846554136 scopus 로고    scopus 로고
    • Association between Australian rainfall and the southern annular mode
    • Meneghini B., Simmonds I., Smith I.N. Association between Australian rainfall and the southern annular mode. Int. J. Climatol. 2007, 27:109-121.
    • (2007) Int. J. Climatol. , vol.27 , pp. 109-121
    • Meneghini, B.1    Simmonds, I.2    Smith, I.N.3
  • 62
    • 65449173855 scopus 로고    scopus 로고
    • Homogenization of temperature series via pairwise comparisons
    • Menne M.J., Williams C.N. Homogenization of temperature series via pairwise comparisons. J. Clim. 2009, 22:1700-1717.
    • (2009) J. Clim. , vol.22 , pp. 1700-1717
    • Menne, M.J.1    Williams, C.N.2
  • 63
    • 37249024658 scopus 로고    scopus 로고
    • Drought forecasting using artificial neural networks and time series of drought indices
    • Morid S., Smakhtin V., Bagherzadeh K. Drought forecasting using artificial neural networks and time series of drought indices. Int. J. Climatol. 2007, 27:2103-2111.
    • (2007) Int. J. Climatol. , vol.27 , pp. 2103-2111
    • Morid, S.1    Smakhtin, V.2    Bagherzadeh, K.3
  • 65
    • 79956141353 scopus 로고    scopus 로고
    • Precipitation forecast using artificial neural networks in specific regions of Greece
    • Moustris K.P., Larissi I.K., Nastos P.T., Paliatsos A.G. Precipitation forecast using artificial neural networks in specific regions of Greece. Water Resour. Manag. 2011, 25:1979-1993.
    • (2011) Water Resour. Manag. , vol.25 , pp. 1979-1993
    • Moustris, K.P.1    Larissi, I.K.2    Nastos, P.T.3    Paliatsos, A.G.4
  • 66
    • 49549121058 scopus 로고    scopus 로고
    • Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management
    • Mpelasoka F., Hennessy K., Jones R., Bates B. Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management. Int. J. Climatol. 2008, 28:1283-1292.
    • (2008) Int. J. Climatol. , vol.28 , pp. 1283-1292
    • Mpelasoka, F.1    Hennessy, K.2    Jones, R.3    Bates, B.4
  • 67
    • 47049103597 scopus 로고    scopus 로고
    • A review of recent climate variability and climate change in southeastern Australia
    • Murphy B.F., Timbal B. A review of recent climate variability and climate change in southeastern Australia. Int. J. Climatol. 2008, 28:859-879.
    • (2008) Int. J. Climatol. , vol.28 , pp. 859-879
    • Murphy, B.F.1    Timbal, B.2
  • 68
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I-a discussion of principles
    • Nash J., Sutcliffe J. River flow forecasting through conceptual models part I-a discussion of principles. J. Hydrol. 1970, 10:282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.1    Sutcliffe, J.2
  • 69
    • 84899631944 scopus 로고    scopus 로고
    • Artificial neural networks modeling for forecasting the maximum daily total precipitation at Athens, Greece
    • Nastos P., Paliatsos A., Koukouletsos K., Larissi I., Moustris K. Artificial neural networks modeling for forecasting the maximum daily total precipitation at Athens, Greece. Atmos. Res. 2014, 144:141-150.
    • (2014) Atmos. Res. , vol.144 , pp. 141-150
    • Nastos, P.1    Paliatsos, A.2    Koukouletsos, K.3    Larissi, I.4    Moustris, K.5
  • 70
    • 84893386848 scopus 로고    scopus 로고
    • Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data
    • Ortiz-García E., Salcedo-Sanz S., Casanova-Mateo C. Accurate precipitation prediction with support vector classifiers: a study including novel predictive variables and observational data. Atmos. Res. 2014, 139:128-136.
    • (2014) Atmos. Res. , vol.139 , pp. 128-136
    • Ortiz-García, E.1    Salcedo-Sanz, S.2    Casanova-Mateo, C.3
  • 71
    • 78751555202 scopus 로고    scopus 로고
    • A temperature-based model for global solar irradiance and its application to estimate daily irradiation values
    • Paulescu M., Tulcan-Paulescu E., Stefu N. A temperature-based model for global solar irradiance and its application to estimate daily irradiation values. Int. J. Energy Res. 2011, 35:520-529.
    • (2011) Int. J. Energy Res. , vol.35 , pp. 520-529
    • Paulescu, M.1    Tulcan-Paulescu, E.2    Stefu, N.3
  • 74
    • 0032942688 scopus 로고    scopus 로고
    • Decadal climate variability in Australia during the twentieth century
    • Power S., et al. Decadal climate variability in Australia during the twentieth century. Int. J. Climatol. 1999, 19:169-184.
    • (1999) Int. J. Climatol. , vol.19 , pp. 169-184
    • Power, S.1
  • 76
    • 84864764050 scopus 로고    scopus 로고
    • Modelling of air temperature using remote sensing and artificial neural network in Turkey
    • Şahin M. Modelling of air temperature using remote sensing and artificial neural network in Turkey. Adv. Space Res. 2012, 50:973-985.
    • (2012) Adv. Space Res. , vol.50 , pp. 973-985
    • Şahin, M.1
  • 77
    • 84884493877 scopus 로고    scopus 로고
    • Comparison of modelling ANN and ELM to estimate solar radiation over Turkey using NOAA satellite data
    • Şahin M. Comparison of modelling ANN and ELM to estimate solar radiation over Turkey using NOAA satellite data. Int. J. Remote Sens. 2013, 34:7508-7533.
    • (2013) Int. J. Remote Sens. , vol.34 , pp. 7508-7533
    • Şahin, M.1
  • 78
    • 84873411994 scopus 로고    scopus 로고
    • Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data
    • Şahin M., Kaya Y., Uyar M. Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data. Adv. Space Res. 2013, 51:891-904.
    • (2013) Adv. Space Res. , vol.51 , pp. 891-904
    • Şahin, M.1    Kaya, Y.2    Uyar, M.3
  • 79
    • 84892552548 scopus 로고    scopus 로고
    • Application of extreme learning machine for estimating solar radiation from satellite data
    • Şahin M., Kaya Y., Uyar M., Yildirim S. Application of extreme learning machine for estimating solar radiation from satellite data. Int. J. Energy Res. 2014, 38:205-212.
    • (2014) Int. J. Energy Res. , vol.38 , pp. 205-212
    • Şahin, M.1    Kaya, Y.2    Uyar, M.3    Yildirim, S.4
  • 81
    • 17544373059 scopus 로고    scopus 로고
    • Indian Ocean Dipole mode events and austral surface air temperature anomalies
    • Saji N., Ambrizzi T., Ferraz S. Indian Ocean Dipole mode events and austral surface air temperature anomalies. Dyn. Atmos. Oceans 2005, 39:87-101.
    • (2005) Dyn. Atmos. Oceans , vol.39 , pp. 87-101
    • Saji, N.1    Ambrizzi, T.2    Ferraz, S.3
  • 82
    • 78649852700 scopus 로고    scopus 로고
    • Modeling of solar radiation using remote sensing and artificial neural network in Turkey
    • Şenkal O. Modeling of solar radiation using remote sensing and artificial neural network in Turkey. Energy 2010, 35:4795-4801.
    • (2010) Energy , vol.35 , pp. 4795-4801
    • Şenkal, O.1
  • 83
    • 61749096808 scopus 로고    scopus 로고
    • Estimation of solar radiation over Turkey using artificial neural network and satellite data
    • Şenkal O., Kuleli T. Estimation of solar radiation over Turkey using artificial neural network and satellite data. Appl. Energy 2009, 86:1222-1228.
    • (2009) Appl. Energy , vol.86 , pp. 1222-1228
    • Şenkal, O.1    Kuleli, T.2
  • 84
    • 82255163990 scopus 로고    scopus 로고
    • Precipitable water modelling using artificial neural network in Cukurova region
    • Şenkal O., Yildiz B.Y., Şahin M., Pestemalci V. Precipitable water modelling using artificial neural network in Cukurova region. Environ. Monit. Assess. 2012, 184:141-147.
    • (2012) Environ. Monit. Assess. , vol.184 , pp. 141-147
    • Şenkal, O.1    Yildiz, B.Y.2    Şahin, M.3    Pestemalci, V.4
  • 85
    • 84863877149 scopus 로고    scopus 로고
    • January 2011 Flood Event: Report on the Operation of Somerset Dam and Wivenhoe Dam REVIEW OF HYDROLOGICAL ISSUES Queensland Government
    • Melbourne, Australia Seqwater
    • Seqwater January 2011 Flood Event: Report on the Operation of Somerset Dam and Wivenhoe Dam REVIEW OF HYDROLOGICAL ISSUES Queensland Government 2011, (Melbourne, Australia, (p. 77pp.)).
    • (2011) , pp. 77
  • 86
    • 0000330151 scopus 로고
    • Parameter estimation for 3-parameter log-logistic distribution (LLD3) by Pome
    • Singh V., Guo H., Yu F. Parameter estimation for 3-parameter log-logistic distribution (LLD3) by Pome. Stoch. Hydrol. Hydraul. 1993, 7:163-177.
    • (1993) Stoch. Hydrol. Hydraul. , vol.7 , pp. 163-177
    • Singh, V.1    Guo, H.2    Yu, F.3
  • 87
    • 3543128236 scopus 로고    scopus 로고
    • Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle
    • Sözen A., Ali Akçayol M. Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle. Appl. Energy 2004, 79:309-325.
    • (2004) Appl. Energy , vol.79 , pp. 309-325
    • Sözen, A.1    Ali Akçayol, M.2
  • 88
    • 0032431315 scopus 로고    scopus 로고
    • Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910-1990
    • Suppiah R., Hennessy K.J. Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910-1990. Int. J. Climatol. 1998, 18:1141-1164.
    • (1998) Int. J. Climatol. , vol.18 , pp. 1141-1164
    • Suppiah, R.1    Hennessy, K.J.2
  • 89
    • 0002048389 scopus 로고
    • An approach toward a rational classification of climate
    • Thornthwaite C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 55-94.
    • (1948) Geogr. Rev.
    • Thornthwaite, C.W.1
  • 90
    • 84874881356 scopus 로고    scopus 로고
    • A historical perspective on southeastern Australian rainfall since 1865 using the instrumental record
    • Timbal B., Fawcett R. A historical perspective on southeastern Australian rainfall since 1865 using the instrumental record. J. Clim. 2013, 26:1112-1129.
    • (2013) J. Clim. , vol.26 , pp. 1112-1129
    • Timbal, B.1    Fawcett, R.2
  • 92
    • 84885070735 scopus 로고    scopus 로고
    • Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models
    • Tiwari M.K., Adamowski J. Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models. Water Resour. Res. 2013, 49:6486-6507.
    • (2013) Water Resour. Res. , vol.49 , pp. 6486-6507
    • Tiwari, M.K.1    Adamowski, J.2
  • 94
    • 0021566070 scopus 로고
    • Signal versus noise in the Southern Oscillation
    • Trenberth K.E. Signal versus noise in the Southern Oscillation. Mon. Weather Rev. 1984, 112:326-332.
    • (1984) Mon. Weather Rev. , vol.112 , pp. 326-332
    • Trenberth, K.E.1
  • 95
    • 84890936362 scopus 로고    scopus 로고
    • Global warming and changes in drought
    • Trenberth K.E., et al. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4:17-22.
    • (2014) Nat. Clim. Chang. , vol.4 , pp. 17-22
    • Trenberth, K.E.1
  • 96
    • 0036535696 scopus 로고    scopus 로고
    • Comparison of solar radiation correlations for Izmir, Turkey
    • Ulgen K., Hepbasli A. Comparison of solar radiation correlations for Izmir, Turkey. Int. J. Energy Res. 2002, 26:413-430.
    • (2002) Int. J. Energy Res. , vol.26 , pp. 413-430
    • Ulgen, K.1    Hepbasli, A.2
  • 97
    • 66149185567 scopus 로고    scopus 로고
    • What causes southeast Australia's worst droughts?
    • Ummenhofer C.C., et al. What causes southeast Australia's worst droughts?. Geophys. Res. Lett. 2009, 36(4). 10.1029/2008GL036801.
    • (2009) Geophys. Res. Lett. , vol.36 , Issue.4
    • Ummenhofer, C.C.1
  • 98
    • 72049120774 scopus 로고    scopus 로고
    • On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall
    • Verdon-Kidd D.C., Kiem A. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall. Hydrol. Earth Syst. Sci. 2009, 13:467.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 467
    • Verdon-Kidd, D.C.1    Kiem, A.2
  • 99
    • 77958605749 scopus 로고    scopus 로고
    • Quantifying drought risk in a nonstationary climate
    • Verdon-Kidd D.C., Kiem A.S. Quantifying drought risk in a nonstationary climate. J. Hydrometeorol. 2010, 11:1019-1031.
    • (2010) J. Hydrometeorol. , vol.11 , pp. 1019-1031
    • Verdon-Kidd, D.C.1    Kiem, A.S.2
  • 100
    • 72049115485 scopus 로고    scopus 로고
    • Nature and causes of protracted droughts in southeast Australia: comparison between the Federation, WWII, and Big Dry droughts
    • Verdon-Kidd D.C., Kiem A.S. Nature and causes of protracted droughts in southeast Australia: comparison between the Federation, WWII, and Big Dry droughts. Geophys. Res. Lett. 2009, 36(22). 10.1029/2009GL041067.
    • (2009) Geophys. Res. Lett. , vol.36 , Issue.22
    • Verdon-Kidd, D.C.1    Kiem, A.S.2
  • 101
    • 77953696347 scopus 로고    scopus 로고
    • A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index
    • Vicente-Serrano S.M., Beguería S., López-Moreno J.I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 2010, 23:1696-1718.
    • (2010) J. Clim. , vol.23 , pp. 1696-1718
    • Vicente-Serrano, S.M.1    Beguería, S.2    López-Moreno, J.I.3
  • 102
    • 77958517401 scopus 로고    scopus 로고
    • A new global 0.5 gridded dataset (1901-2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index
    • Vicente-Serrano S.M., Beguería S., López-Moreno J.I., Angulo M., El Kenawy A. A new global 0.5 gridded dataset (1901-2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 2010, 11:1033-1043.
    • (2010) J. Hydrometeorol. , vol.11 , pp. 1033-1043
    • Vicente-Serrano, S.M.1    Beguería, S.2    López-Moreno, J.I.3    Angulo, M.4    El Kenawy, A.5
  • 103
    • 84867489004 scopus 로고    scopus 로고
    • Performance of drought indices for ecological, agricultural, and hydrological applications
    • Vicente-Serrano S.M., et al. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 2012, 16:1-27.
    • (2012) Earth Interact. , vol.16 , pp. 1-27
    • Vicente-Serrano, S.M.1
  • 104
    • 84871199645 scopus 로고    scopus 로고
    • Dryness is accelerating degradation of vulnerable shrublands in semiarid Mediterranean environments
    • Vicente-Serrano S.M., Zouber A., Lasanta T., Pueyo Y. Dryness is accelerating degradation of vulnerable shrublands in semiarid Mediterranean environments. Ecol. Monogr. 2012, 82:407-428.
    • (2012) Ecol. Monogr. , vol.82 , pp. 407-428
    • Vicente-Serrano, S.M.1    Zouber, A.2    Lasanta, T.3    Pueyo, Y.4
  • 105
    • 80054839187 scopus 로고    scopus 로고
    • Comment on "Characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during 1900-2008" by Aiguo Dai
    • 1984-2012
    • Vicente-Serrano S.M., Beguería S., López-Moreno J.I. Comment on "Characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during 1900-2008" by Aiguo Dai. J. Geophys. Res. Atmos. 2011, (1984-2012):116.
    • (2011) J. Geophys. Res. Atmos. , pp. 116
    • Vicente-Serrano, S.M.1    Beguería, S.2    López-Moreno, J.I.3
  • 106
    • 80155211762 scopus 로고    scopus 로고
    • A multiscalar global evaluation of the impact of ENSO on droughts
    • 1984-2012
    • Vicente-Serrano S.M., et al. A multiscalar global evaluation of the impact of ENSO on droughts. J. Geophys. Res. Atmos. 2011, (1984-2012):116.
    • (2011) J. Geophys. Res. Atmos. , pp. 116
    • Vicente-Serrano, S.M.1
  • 107
    • 34250094997 scopus 로고
    • Accelerating the convergence of the backpropagation method
    • Vogl T., Mangis J., Rigler A., Zink W., Alkon D. Accelerating the convergence of the backpropagation method. Biol. Cybern. 1988, 59:257-263.
    • (1988) Biol. Cybern. , vol.59 , pp. 257-263
    • Vogl, T.1    Mangis, J.2    Rigler, A.3    Zink, W.4    Alkon, D.5
  • 108
    • 0030473164 scopus 로고    scopus 로고
    • A methodology for drought preparedness
    • Wilhite D.A. A methodology for drought preparedness. Nat. Hazards 1996, 13:229-252.
    • (1996) Nat. Hazards , vol.13 , pp. 229-252
    • Wilhite, D.A.1
  • 109
    • 2142758827 scopus 로고    scopus 로고
    • Drought planning in the United States: status and future directions
    • Springer
    • Wilhite D.A., Hayes M.J. Drought planning in the United States: status and future directions. The Arid Frontier 1998, 33-54. Springer.
    • (1998) The Arid Frontier , pp. 33-54
    • Wilhite, D.A.1    Hayes, M.J.2
  • 111
    • 0019707668 scopus 로고
    • On the validation of models
    • Willmott C.J. On the validation of models. Phys. Geogr. 1981, 2:184-194.
    • (1981) Phys. Geogr. , vol.2 , pp. 184-194
    • Willmott, C.J.1
  • 112
    • 0020386641 scopus 로고
    • Some comments on the evaluation of model performance
    • Willmott C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63:1309-1313.
    • (1982) Bull. Am. Meteorol. Soc. , vol.63 , pp. 1309-1313
    • Willmott, C.J.1
  • 113
    • 0002575135 scopus 로고
    • On the evaluation of model performance in physical geography
    • Springer
    • Willmott C.J. On the evaluation of model performance in physical geography. Spatial Statistics and Models 1984, 443-460. Springer.
    • (1984) Spatial Statistics and Models , pp. 443-460
    • Willmott, C.J.1
  • 115
    • 0346347591 scopus 로고    scopus 로고
    • Forecasting monsoon precipitation using artificial neural networks
    • Wu X., Hongxing C., Flitman A., Fengying W., Guolin F. Forecasting monsoon precipitation using artificial neural networks. Adv. Atmos. Sci. 2011, 18:950-958.
    • (2011) Adv. Atmos. Sci. , vol.18 , pp. 950-958
    • Wu, X.1    Hongxing, C.2    Flitman, A.3    Fengying, W.4    Guolin, F.5
  • 116
    • 79955615242 scopus 로고    scopus 로고
    • Monitoring global land surface drought based on a hybrid evapotranspiration model
    • Yao Y., Liang S., Qin Q., Wang K., Zhao S. Monitoring global land surface drought based on a hybrid evapotranspiration model. Int. J. Appl. Earth Obs. Geoinf. 2011, 13:447-457.
    • (2011) Int. J. Appl. Earth Obs. Geoinf. , vol.13 , pp. 447-457
    • Yao, Y.1    Liang, S.2    Qin, Q.3    Wang, K.4    Zhao, S.5
  • 118
    • 84896690389 scopus 로고    scopus 로고
    • Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951-2010?
    • Yu M., Li Q., Hayes M.J., Svoboda M.D., Heim R.R. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951-2010?. Int. J. Climatol. 2014, 34:545-558.
    • (2014) Int. J. Climatol. , vol.34 , pp. 545-558
    • Yu, M.1    Li, Q.2    Hayes, M.J.3    Svoboda, M.D.4    Heim, R.R.5
  • 119
    • 0030731329 scopus 로고    scopus 로고
    • ENSO-like interdecadal variability: 1900-93
    • Zhang Y., Wallace J.M., Battisti D.S. ENSO-like interdecadal variability: 1900-93. J. Clim. 1997, 10:1004-1020.
    • (1997) J. Clim. , vol.10 , pp. 1004-1020
    • Zhang, Y.1    Wallace, J.M.2    Battisti, D.S.3
  • 120
    • 67649421237 scopus 로고    scopus 로고
    • Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model
    • Zhao M., Hendon H.H. Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Q. J. R. Meteorol. Soc. 2009, 135:337-352.
    • (2009) Q. J. R. Meteorol. Soc. , vol.135 , pp. 337-352
    • Zhao, M.1    Hendon, H.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.