메뉴 건너뛰기




Volumn 13, Issue 3, 2011, Pages 500-519

A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting

Author keywords

Bootstrap; Discharge; Forecasting; Resampling; Wavelet

Indexed keywords


EID: 79959790257     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2010.142     Document Type: Article
Times cited : (124)

References (94)
  • 1
    • 33645204046 scopus 로고    scopus 로고
    • Neural network rainfall-runoff forecasting based on continuous resampling
    • Abrahart, R. J. 2003 Neural network rainfall-runoff forecasting based on continuous resampling. J. Hydroinf. 5(1), 51-61.
    • (2003) J. Hydroinf , vol.5 , Issue.1 , pp. 51-61
    • Abrahart, R.J.1
  • 2
    • 67650321039 scopus 로고    scopus 로고
    • River flow forecasting using wavelet and crosswavelet transform models
    • Adamowski, J. F. 2008a River flow forecasting using wavelet and crosswavelet transform models. Hydrol. Processes 22(25), 4877-4891.
    • (2008) Hydrol. Processes , vol.22 , Issue.25 , pp. 4877-4891
    • Adamowski, J.F.1
  • 3
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski, J. F. 2008b Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. J. Hydrol. 353(3-4), 247-266.
    • (2008) J. Hydrol , vol.353 , Issue.3-4 , pp. 247-266
    • Adamowski, J.F.1
  • 4
    • 34547728744 scopus 로고    scopus 로고
    • Discussion of 'generalized regression neural networks for evapotranspiration modelling'
    • DOI 10.1623/hysj.52.4.825
    • Aksoy, H., Guven, A., Aytek, A., Yuce, M. I. & Unal, N. E. 2007 Discussion of generalized regression neural networks for evapotranspiration modelling by O Kisi (2006). Hydrol. Sci. J. 52(4), 825-828. (Pubitemid 47241729)
    • (2007) Hydrological Sciences Journal , vol.52 , Issue.4 , pp. 825-828
    • Aksoy, H.1    Guven, A.2    Aytek, A.3    Yuce, M.I.4    Unal, N.E.5
  • 5
    • 33846458992 scopus 로고    scopus 로고
    • Forecasting surface water level fluctuations of lake van by artificial neural networks
    • DOI 10.1007/s11269-006-9022-6
    • Altunkaynak, A. 2007 Forecasting surface water level fluctuations of Lake Van by artificial neural networks. Wat. Res. Mngmnt. 21(2), 399-408. (Pubitemid 46140253)
    • (2007) Water Resources Management , vol.21 , Issue.2 , pp. 399-408
    • Altunkaynak, A.1
  • 6
    • 14344261493 scopus 로고    scopus 로고
    • Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions
    • Anctil, F & Lauzon, N. 2004 Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions. Hydrol. Earth Syst. Sci. 8(5), 940-958. (Pubitemid 40294956)
    • (2004) Hydrology and Earth System Sciences , vol.8 , Issue.5 , pp. 940-958
    • Anctil, F.1    Lauzon, N.2
  • 7
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition
    • Anctil, F. & Tape, D. G. 2004 An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. J. Environ. Engng. Sci. 3(1), 121-128.
    • (2004) J. Environ. Engng. Sci , vol.3 , Issue.1 , pp. 121-128
    • Anctil, F.1    Tape, D.G.2
  • 8
    • 0027594152 scopus 로고    scopus 로고
    • ASCE1993 Criteria for evaluation of watershed models. J. Irrig. Drain. E
    • ASCE1993 Criteria for evaluation of watershed models. J. Irrig. Drain. E 119(3), 429-442.
    • , vol.119 , Issue.3 , pp. 429-442
  • 9
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology I: Preliminary concepts. J
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 2000a Artificial neural networks in hydrology I: preliminary concepts. J. Hydrol. Engng. 5(2), 115-123.
    • (2000) Hydrol. Engng , vol.5 , Issue.2 , pp. 115-123
  • 10
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 2000b Artificial neural networks in hydrology II: hydrologic applications. J. Hydrol. Engng. 5(2), 124-137.
    • (2000) J. Hydrol. Engng , vol.5 , Issue.2 , pp. 124-137
  • 11
    • 0002378584 scopus 로고    scopus 로고
    • Wavelet-based feature extraction and decomposition strategies for financial forecasting
    • Aussem, A., Campbell, J. & Murtagh, F. 1998 Wavelet-based feature extraction and decomposition strategies for financial forecasting. J. Comput. Intel. Finance 6(2), 5-12.
    • (1998) J. Comput. Intel. Finance , vol.6 , Issue.2 , pp. 5-12
    • Aussem, A.1    Campbell, J.2    Murtagh, F.3
  • 12
    • 0344394527 scopus 로고    scopus 로고
    • River flow forecast for reservoir management through neural networks
    • DOI 10.1016/S0925-2312(03)00387-4
    • Baratti, R., Cannas, B., Fanni, A., Pintus, M., Sechi, G. M. & Toreno, N. 2003 River flow forecast for reservoir management through neural networks. NeuroComputing 55(3-4), 421-437. (Pubitemid 37455468)
    • (2003) Neurocomputing , vol.55 , Issue.3-4 , pp. 421-437
    • Baratti, R.1    Cannas, B.2    Fanni, A.3    Pintus, M.4    Sechi, G.M.5    Toreno, N.6
  • 14
    • 0023823630 scopus 로고
    • Nonlinear, discrete flood event models. 3: Analysis of prediction uncertainty
    • Bates, B. C. & Townley L. R. 1988 Nonlinear, discrete flood event models. 3: Analysis of prediction uncertainty. J. Hydrol. 99(1-2), 91-101.
    • (1988) J. Hydrol , vol.99 , Issue.1-2 , pp. 91-101
    • Bates, B.C.1    Townley, L.R.2
  • 15
    • 33644526990 scopus 로고    scopus 로고
    • A manifesto for the equifinality thesis
    • Beven, K. 2006 A manifesto for the equifinality thesis. J. Hydrol. 320(1-2), 18-36.
    • (2006) J. Hydrol , vol.320 , Issue.1-2 , pp. 18-36
    • Beven, K.1
  • 17
    • 68949135430 scopus 로고    scopus 로고
    • Tools for the assessment of hydrological ensemble forecasts obtained by neural networks
    • Boucher, M. A., Perreault, L. & Anctil, F. 2009 Tools for the assessment of hydrological ensemble forecasts obtained by neural networks. J. Hydroinf. 11(3-4), 297-307.
    • (2009) J. Hydroinf , vol.11 , Issue.3-4 , pp. 297-307
    • Boucher, M.A.1    Perreault, L.2    Anctil, F.3
  • 18
    • 0032961025 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo, M., Andreussi, P. & Soldati, A. 1999 River flood forecasting with a neural network model. Wat. Res. Res. 35(4), 1191-1197.
    • (1999) Wat. Res. Res , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 19
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning
    • DOI 10.1016/j.pce.2006.03.020, PII S1474706506002865
    • Cannas, B., Fanni, A., See, L. & Sias, G 2006 Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys. Chem. Earth 31(18), 1164-1171. (Pubitemid 44817630)
    • (2006) Physics and Chemistry of the Earth , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 20
    • 0036499322 scopus 로고    scopus 로고
    • Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models
    • DOI 10.1016/S0022-1694(01)00581-9, PII S0022169401005819
    • Cannon, A. J. & Whitfield, P. H. 2002 Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. J. Hydrol. 259(1-4), 136-151. (Pubitemid 34175769)
    • (2002) Journal of Hydrology , vol.259 , Issue.1-4 , pp. 136-151
    • Cannon, A.J.1    Whitfield, P.H.2
  • 21
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • Cigizoglu, H. K. 2003a Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrol. Sci. J. 48(3), 349-361.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 22
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • DOI 10.1002/env.596
    • Cigizoglu, H. K. 2003b Incorporation of ARMA models into flow forecasting by artificial neural networks. Environmetrics 14(4), 417-427. (Pubitemid 36695747)
    • (2003) Environmetrics , vol.14 , Issue.4 , pp. 417-427
    • Cigizoglu, H.K.1
  • 23
    • 34250818666 scopus 로고    scopus 로고
    • Comparison of neural network methods for infilling missing daily weather records
    • DOI 10.1016/j.jhydrol.2007.04.020, PII S0022169407002557
    • Coulibaly, P. & Evora, N. D. 2007 Comparison of neural network methods for infilling missing daily weather records. J. Hydrol. 341(1-2), 27-41. (Pubitemid 46990403)
    • (2007) Journal of Hydrology , vol.341 , Issue.1-2 , pp. 27-41
    • Coulibaly, P.1    Evora, N.D.2
  • 24
    • 0025482241 scopus 로고
    • The wavelet transform, time-frequency localization and signal analysis
    • Daubechies, I. 1990 The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 6-7.
    • (1990) IEEE Trans. Inf. Theory , vol.36 , Issue.5 , pp. 6-7
    • Daubechies, I.1
  • 25
    • 33846798345 scopus 로고    scopus 로고
    • HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
    • DOI 10.1016/j.envsoft.2006.06.008, PII S1364815206001642
    • Dawson, C. W., Abrahart, R. J. & See, L. M. 2007 HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Modell. Software 22(7), 1034-1052. (Pubitemid 46209837)
    • (2007) Environmental Modelling and Software , vol.22 , Issue.7 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 26
    • 62949110142 scopus 로고    scopus 로고
    • Flow forecast by SWAT model and ANN in Pracana basin, Portugal
    • Demirel, M. C., Venancio, A. & Kahya, E. 2009 Flow forecast by SWAT model and ANN in Pracana basin, Portugal. J. Hydrol. 40(7), 467-473.
    • (2009) J. Hydrol , vol.40 , Issue.7 , pp. 467-473
    • Demirel, M.C.1    Venancio, A.2    Kahya, E.3
  • 27
    • 8644262601 scopus 로고    scopus 로고
    • Confidence intervals and prediction intervals for feed forward neural networks
    • Dybowski, R & Gant, V. Cambridge University Press, Cambridge
    • Dybowski, R. & Roberts, S. J. 2001 Confidence intervals and prediction intervals for feed forward neural networks. In: Clinical Applications of Artificial Neural Networks (Dybowski, R & Gant, V.). Cambridge University Press, Cambridge, pp. 298-326.
    • (2001) Clinical Applications of Artificial Neural Networks , pp. 298-326
    • Dybowski, R.1    Roberts, S.J.2
  • 28
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron, B. 1979 Bootstrap methods: another look at the jackknife. Ann. Statist. 7(1), 1-26.
    • (1979) Ann. Statist , vol.7 , Issue.1 , pp. 1-26
    • Efron, B.1
  • 30
    • 33846419128 scopus 로고    scopus 로고
    • Uncertainties in real-time flood forecasting with neural networks
    • DOI 10.1002/hyp.6184
    • Han, D., Kwong, T. & Li, S. 2007a Uncertainties in real-time flood forecasting with neural networks. Hydrol. Processes 21(2), 223-228. (Pubitemid 46140036)
    • (2007) Hydrological Processes , vol.21 , Issue.2 , pp. 223-228
    • Han, D.1    Kwong, T.2    Li, S.3
  • 32
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • DOI 10.1029/95WR01955
    • Hsu, K., Gupta, H. V. & Sorooshian, S. 1995 Artificial neural network modeling of the rainfall-runoff process. Wat. Res. Res. 31(10), 2517-2530. (Pubitemid 26475080)
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Kuo-Lin Hsu1    Gupta, H.V.2    Sorooshian, S.3
  • 33
    • 68949105694 scopus 로고    scopus 로고
    • Review of the application of fuzzy inference systems in river flow forecasting
    • Jacquin, A. P. & Shamseldin, A. Y. 2009 Review of the application of fuzzy inference systems in river flow forecasting. J. Hydroinf. 11(3-4), 202-210.
    • (2009) J. Hydroinf , vol.11 , Issue.3-4 , pp. 202-210
    • Jacquin, A.P.1    Shamseldin, A.Y.2
  • 34
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, realcoded genetic algorithms and artificial neural network techniques
    • Jain, A. & Srinivasulu, S. 2004 Development of effective and efficient rainfall-runoff models using integration of deterministic, realcoded genetic algorithms and artificial neural network techniques. Wat. Res. Res. 40, W04302.
    • (2004) Wat. Res. Res , vol.40
    • Jain, A.1    Srinivasulu, S.2
  • 35
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • DOI 10.1002/hyp.5502
    • Jain, A., Sudheer, K. P. & Srinivasulu, S. 2004 Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol. Processes 18(3), 571-581. (Pubitemid 38300814)
    • (2004) Hydrological Processes , vol.18 , Issue.3 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 36
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain, S. K., Das, D. & Srivastava, D. K. 1999 Application of ANN for reservoir inflow prediction and operation. J. Wat. Res. Plann. Mngmnt. 125(5), 263-271.
    • (1999) J. Wat. Res. Plann. Mngmnt , vol.125 , Issue.5 , pp. 263-271
    • Jain, S.K.1    Das, D.2    Srivastava, D.K.3
  • 37
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction
    • DOI 10.1002/hyp.5983
    • Jeong, D. & Kim, Y. O. 2005 Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrol. Processes 19(19), 3819-3835. (Pubitemid 43072808)
    • (2005) Hydrological Processes , vol.19 , Issue.19 , pp. 3819-3835
    • Jeong, D.-I.1    Kim, Y.-O.2
  • 38
    • 33750682003 scopus 로고    scopus 로고
    • Bootstrapped artificial neural networks for synthetic flow generation with a small data sample
    • DOI 10.1016/j.jhydrol.2006.06.005, PII S0022169406003180
    • Jia, Y. & Culver, T. B. 2006 Bootstrapped artificial neural networks for synthetic flow generation with a small data sample. J. Hydrol. 331(3-4), 580-590. (Pubitemid 44709050)
    • (2006) Journal of Hydrology , vol.331 , Issue.3-4 , pp. 580-590
    • Jia, Y.1    Culver, T.B.2
  • 39
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • DOI 10.1061/(ASCE)1084-0699(2003)8:6(319)
    • Kim, T. W. & Valdes, J. B. 2003 Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J. Hydrol. Engng. 8(6), 319-328. (Pubitemid 37436445)
    • (2003) Journal of Hydrologic Engineering , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.-W.1    Valdes, J.B.2
  • 40
    • 61849131098 scopus 로고    scopus 로고
    • Stream flow forecasting using neuro-wavelet technique
    • Kisi, O. 2008 Stream flow forecasting using neuro-wavelet technique. Hydrol. Processes 22(20), 4142-4152.
    • (2008) Hydrol. Processes , vol.22 , Issue.20 , pp. 4142-4152
    • Kisi, O.1
  • 41
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent streamflow forecasting
    • Kisi, O. 2009 Neural networks and wavelet conjunction model for intermittent streamflow forecasting. J. Hydrol. Engng. 14(8), 773-782.
    • (2009) J. Hydrol. Engng , vol.14 , Issue.8 , pp. 773-782
    • Kisi, O.1
  • 42
    • 0019227948 scopus 로고
    • Real-time forecasting with a conceptual hydrologic model: 2. Applications and results
    • Kitanidis, P. K. & Bras, R. L. 1980 Real-time forecasting with a conceptual hydrologic model: 2. Applications and results. Wat. Res. Res. 16(6), 1034-1044.
    • (1980) Wat. Res. Res , vol.16 , Issue.6 , pp. 1034-1044
    • Kitanidis, P.K.1    Bras, R.L.2
  • 43
    • 34547756974 scopus 로고    scopus 로고
    • Discussion of 'generalized regression neural networks for evapotranspiration modelling'
    • DOI 10.1623/hysj.52.4.832
    • Koutsoyiannis, D. 2007 Discussion of "generalized regression neural networks for evapotranspiration modelling" by O Kisi (2006). Hydrol. Sci. J. 52(4), 832-835. (Pubitemid 47241730)
    • (2007) Hydrological Sciences Journal , vol.52 , Issue.4 , pp. 832-835
    • Koutsoyiannis, D.1
  • 44
    • 33748913014 scopus 로고    scopus 로고
    • Comparison of different efficiency criteria for hydrological model assessment
    • Krause, P., Boyle, D. P. & Base, F. 2005 Comparison of different efficiency criteria for hydrological model assessment. In: Proc. 8th Workshop for Large Scale Hydrological Modelling, Oppurg 2004 (Krause, P., Bongartz, K. & Flugel, W.-A. (Eds.)). Adv. Geosci. 5, 89-97. (Pubitemid 44424450)
    • (2005) Advances in Geosciences , vol.5 , pp. 89-97
    • Krause, P.1    Boyle, D.P.2    Base, F.3
  • 45
    • 33751581359 scopus 로고    scopus 로고
    • Wavelet regression technique for streamflow prediction
    • DOI 10.1080/02664760600744298, PII TX2M512111593438
    • Kucuk, M. & Agiralloglu, N. 2006 Regression technique for stream flow prediction. J. Appl. Stat. 33(9), 943-960. (Pubitemid 44842185)
    • (2006) Journal of Applied Statistics , vol.33 , Issue.9 , pp. 943-960
    • Kucuk, M.1    Agiralioglu, N.2
  • 46
    • 0029663871 scopus 로고    scopus 로고
    • A nearest neighbor bootstrap for resampling hydrologic time series
    • Lall, U. & Sharma, A. 1996 A nearest neighbor bootstrap for resampling hydrologic time series. Wat. Res. Res. 32(3), 679-693.
    • (1996) Wat. Res. Res , vol.32 , Issue.3 , pp. 679-693
    • Lall, U.1    Sharma, A.2
  • 47
    • 34548176313 scopus 로고    scopus 로고
    • Non-stationary regional flood frequency analysis at ungauged sites
    • DOI 10.1016/j.jhydrol.2007.06.021, PII S0022169407003824
    • Leclerca, M. & Ouarda, T. B. M. J. 2007 Non-stationary regional flood frequency analysis at ungauged sites. J. Hydrol. 343(3-4), 254-265. (Pubitemid 47304443)
    • (2007) Journal of Hydrology , vol.343 , Issue.3-4 , pp. 254-265
    • Leclerc, M.1    Ouarda, T.B.M.J.2
  • 48
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation
    • DOI 10.1029/1998WR900018
    • Legates, D. R. & McCabe, G. J. 1999 Evaluating the use the goodness-offit measure in hydrologic and hydroclimatic model validation. Wat. Res. Res. 35(1), 233-241. (Pubitemid 29054163)
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe Jr., G.J.2
  • 49
    • 7244245534 scopus 로고    scopus 로고
    • Physics-based hydrologic response simulation: Platinum bridge, 1958 Edsel, or useful tool
    • DOI 10.1002/hyp.5737
    • Loague, L. & VanderKwaak, J. E. 2004 Physics-based hydrologic response simulation: platinum bridge, 1958 Edsel, or useful tool. Hydrol. Processes 18(15), 2949-2956. (Pubitemid 39437693)
    • (2004) Hydrological Processes , vol.18 , Issue.15 , pp. 2949-2956
    • Loague, K.1    VanderKwaak, J.E.2
  • 50
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • DOI 10.1016/S1364-8152(99)00007-9, PII S1364815299000079
    • Maier, H. R. & Dandy, G. C. 2000 Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Modell. Software 15(1), 101-124. (Pubitemid 30018318)
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 51
    • 0024700097 scopus 로고
    • A theory for multi resolution signal decomposition: The wavelet representation
    • Mallat, S. G. 1989 A theory for multi resolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intel. 11(7), 674-693.
    • (1989) IEEE Trans. Pattern Anal. Machine Intel , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 52
    • 66249107437 scopus 로고    scopus 로고
    • Flood forecasting using ann, neuro-fuzzy, and neuro-GA models
    • Mukerji, A., Chatterjee, C. & Raghuwanshi, N. S. 2009 Flood forecasting using ann, neuro-fuzzy, and neuro-GA models. J. Hydrol. Engng. 14(6), 647-652.
    • (2009) J. Hydrol. Engng , vol.14 , Issue.6 , pp. 647-652
    • Mukerji, A.1    Chatterjee, C.2    Raghuwanshi, N.S.3
  • 54
    • 0014776873 scopus 로고
    • River flow forcasting through conceptual models
    • Nash, J. E. & Sutcliffe, J. V. 1970 River flow forcasting through conceptual models. I. J. Hydrol. 10(3), 282-290.
    • (1970) I. J. Hydrol , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 56
    • 14844352523 scopus 로고    scopus 로고
    • Fuzzy computing based rainfall-runoff model for real time flood forecasting
    • DOI 10.1002/hyp.5553
    • Nayak, P. C., Sudheer, K. P. & Ramasastri, K. S. 2005a Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrol. Processes 19(4), 955-968. (Pubitemid 40355776)
    • (2005) Hydrological Processes , vol.19 , Issue.4 , pp. 955-968
    • Nayak, P.C.1    Sudheer, K.P.2    Ramasastri, K.S.3
  • 57
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • DOI 10.1016/j.jhydrol.2003.12.010, PII S0022169403005134
    • Nayak, P. C., Sudheer, K. P., Rangan, D. M. & Ramasastri, K. S. 2004 A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 291(1-2), 52-66. (Pubitemid 38492436)
    • (2004) Journal of Hydrology , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 59
    • 79959774932 scopus 로고
    • NERC, Natural Environment Research Council, London
    • NERC 1975 Flood Studies Report. Hydrological Studies vol. 1. Natural Environment Research Council, London.
    • (1975) Flood Studies Report. Hydrological Studies , vol.1
  • 60
    • 13844307562 scopus 로고    scopus 로고
    • An ANN and wavelet transformation based method for short term load forecast. Energy management and power delivery
    • Ning, M., & Yunping, C. 1998 An ANN and wavelet transformation based method for short term load forecast. Energy management and power delivery. Int. Conf. 2, 405-410.
    • (1998) Int. Conf , vol.2 , pp. 405-410
    • Ning, M.1    Yunping, C.2
  • 61
    • 38749142907 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of watershed precipitation, Ligvanchai, Iran
    • Nourani, V., Alami, M. T. & Aminfar, M. H. 2008 A combined neuralwavelet model for prediction of watershed precipitation, Ligvanchai, Iran. J. Environ. Hydrol. 16(2), 1-12. (Pubitemid 351177465)
    • (2008) Journal of Environmental Hydrology , vol.16 , pp. 1-12
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 62
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani, V., Komasi, M. & Mano, A. 2009 A multivariate ANN-wavelet approach for rainfall-runoff modeling. Wat. Res. Mngmnt. 23(14), 2877-2894.
    • (2009) Wat. Res. Mngmnt , vol.23 , Issue.14 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 63
    • 65249094814 scopus 로고    scopus 로고
    • River flow forecasting using different artificial neural network algorithms and wavelet transform
    • Partal, T. 2009 River flow forecasting using different artificial neural network algorithms and wavelet transform. Can. J. Civil Engng. 36(1), 26-38.
    • (2009) Can. J. Civil Engng , vol.36 , Issue.1 , pp. 26-38
    • Partal, T.1
  • 64
    • 48649085521 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data using wavelet-neural networks
    • Partal, T. & Cigizoglu, H. K. 2008 Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. J. Hydrol. 358(3-4), 317-331.
    • (2008) J. Hydrol , vol.358 , Issue.3-4 , pp. 317-331
    • Partal, T.1    Cigizoglu, H.K.2
  • 65
    • 69949188486 scopus 로고    scopus 로고
    • Prediction of daily precipitation using wavelet-neural networks
    • Partal, T. & Cigizoglu, H. K. 2009 Prediction of daily precipitation using wavelet-neural networks. Hydrol. Sci. J. 54(2), 234-246.
    • (2009) Hydrol. Sci. J , vol.54 , Issue.2 , pp. 234-246
    • Partal, T.1    Cigizoglu, H.K.2
  • 66
    • 33751399443 scopus 로고    scopus 로고
    • Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey)
    • DOI 10.1016/j.pce.2006.04.043, PII S1474706506002981
    • Partal, T. & Kucuk, M. 2006 Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey). Phys. Chem. Earth 31(18), 1189-1200. (Pubitemid 44817637)
    • (2006) Physics and Chemistry of the Earth , vol.31 , Issue.18 , pp. 1189-1200
    • Partal, T.1    Kucuk, M.2
  • 67
    • 69949143939 scopus 로고    scopus 로고
    • Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction
    • Pramanik, N. & Panda, R. K. 2009 Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrol. Sci. J. 54(2), 247-260.
    • (2009) Hydrol. Sci. J , vol.54 , Issue.2 , pp. 247-260
    • Pramanik, N.1    Panda, R.K.2
  • 69
    • 2442443238 scopus 로고    scopus 로고
    • Signal separation with almost periodic components: A wavelets based method
    • Rosso, O. A., Figliola, A., Blanco, S. & Jacovkis, P. M. 2004 Signal separation with almost periodic components: a wavelets based method. Revista Mexicana de Fisica 50(2), 179-186. (Pubitemid 38614226)
    • (2004) Revista Mexicana de Fisica , vol.50 , Issue.2 , pp. 179-186
    • Rosso, O.A.1    Figliola, A.2    Blanco, S.3    Jacovkis, P.M.4
  • 70
    • 28844470729 scopus 로고    scopus 로고
    • Flow forecasting for a Hawaii stream using rating curves and neural networks
    • DOI 10.1016/j.jhydrol.2005.05.008, PII S0022169405002611
    • Sahoo, G. B. & Ray, C. 2006 Flow forecasting for a Hawaii stream using rating curves and neural networks. J. Hydrol. 317(1), 63-80. (Pubitemid 41771018)
    • (2006) Journal of Hydrology , vol.317 , Issue.1-2 , pp. 63-80
    • Sahoo, G.B.1    Ray, C.2
  • 71
    • 70350495365 scopus 로고    scopus 로고
    • Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models
    • Sahoo, G. B., Schladow, S. G. & Reuter, J. E. 2009 Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. J. Hydrol. 378(3-4), 325-342.
    • (2009) J. Hydrol , vol.378 , Issue.3-4 , pp. 325-342
    • Sahoo, G.B.1    Schladow, S.G.2    Reuter, J.E.3
  • 72
    • 78751672705 scopus 로고    scopus 로고
    • Modelling hydrological time series data using wavelet neural network analysis
    • Satyajirao, Y. R. & Krishna, B. 2009 Modelling hydrological time series data using wavelet neural network analysis. IAHS Publ. 333, 101-111.
    • (2009) IAHS Publ , vol.333 , pp. 101-111
    • Satyajirao, Y.R.1    Krishna, B.2
  • 73
    • 0030619326 scopus 로고    scopus 로고
    • Streamflow simulation: A nonparametric approach
    • Sharma, A., Tarboton, D. G. & Lall, U. 1997 Streamflow simulation: a nonparametric approach. Wat. Res. Res. 33(3), 291-308.
    • (1997) Wat. Res. Res , vol.33 , Issue.3 , pp. 291-308
    • Sharma, A.1    Tarboton, D.G.2    Lall, U.3
  • 74
    • 68349123741 scopus 로고    scopus 로고
    • Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment
    • Sharma, S. K. & Tiwari, K. N. 2009 Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment. J. Hydrol. 374(3-4), 209-222.
    • (2009) J. Hydrol , vol.374 , Issue.3-4 , pp. 209-222
    • Sharma, S.K.1    Tiwari, K.N.2
  • 75
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: Some past experiences and new approaches
    • Solomatine, D. P. & Ostfeld, A. 2008 Data-driven modelling: some past experiences and new approaches. J. Hydroinf. 10(1), 3-22.
    • (2008) J. Hydroinf , vol.10 , Issue.1 , pp. 3-22
    • Solomatine, D.P.1    Ostfeld, A.2
  • 76
    • 36749007877 scopus 로고    scopus 로고
    • A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models
    • Srivastav, R. K., Sudheer, K. P. & Chaubey, I. 2007 A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Wat. Res. Res. 43(10), W10407.
    • (2007) Wat. Res. Res , vol.43 , Issue.10
    • Srivastav, R.K.1    Sudheer, K.P.2    Chaubey, I.3
  • 77
    • 23044433719 scopus 로고    scopus 로고
    • Knowledge extraction from trained neural network river flow models
    • DOI 10.1061/(ASCE)1084-0699(2005)10:4(264)
    • Sudheer, K. P. 2005 Knowledge extraction from trained neural network river flow models. J. Hydrol. Engng. 10(4), 264-269. (Pubitemid 41070687)
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.4 , pp. 264-269
    • Sudheer, K.P.1
  • 78
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • DOI 10.1002/hyp.554, Modelling the Impact of Climate Change on Hydrological Regimes
    • Sudheer, K. P., Gosain, A. K. & Ramasastri, K. S. 2002 A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Processes 16(6), 1325-1330. (Pubitemid 34265014)
    • (2002) Hydrological Processes , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 79
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behaviour of artificial neural network river flow models
    • DOI 10.1002/hyp.5517, Hydrogeomorphology
    • Sudheer, K. P. & Jain, A. 2004 Explaining the internal behaviour of artificial neural network river flow models. Hydrol. Processes 18(4), 833-844. (Pubitemid 38381987)
    • (2004) Hydrological Processes , vol.18 , Issue.4 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 80
    • 0038105929 scopus 로고    scopus 로고
    • Radial basis function neural network for modeling rating curves
    • DOI 10.1061/(ASCE)1084-0699(2003)8:3(161)
    • Sudheer, K. P. & Jain, S. K. 2003 Radial basis function neural network for modeling rating curves. J. Hydrol. Engng. 8(3), 161-164. (Pubitemid 36608241)
    • (2003) Journal of Hydrologic Engineering , vol.8 , Issue.3 , pp. 161-164
    • Sudheer, K.P.1    Jain, S.K.2
  • 81
    • 0031280538 scopus 로고    scopus 로고
    • Bootstrap position analysis for forecasting low flow frequency
    • Tasker, G. D. & Dunne, P. 1997 Bootstrap position analysis for forecasting low flow frequency. J. Wat. Res. Plann. Mngmnt. 123(6), 359-367.
    • (1997) J. Wat. Res. Plann. Mngmnt , vol.123 , Issue.6 , pp. 359-367
    • Tasker, G.D.1    Dunne, P.2
  • 82
    • 75149131606 scopus 로고    scopus 로고
    • Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
    • Tiwari, M. K. & Chatterjee, C. 2010 Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J. Hydrol. 382(1-4), 20-33.
    • (2010) J. Hydrol , vol.382 , Issue.1-4 , pp. 20-33
    • Tiwari, M.K.1    Chatterjee, C.2
  • 83
    • 0032140934 scopus 로고    scopus 로고
    • Bias and variance of validation methods for function approximation neural networks under conditions of sparse data
    • PII S1094697798038929
    • Twomey, J. M. & Smith, A. E. 1998 Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Trans. Syst. Man Cybernet. Part C: Appl. Rev. 28(3), 417-430. (Pubitemid 128748640)
    • (1998) IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews , vol.28 , Issue.3 , pp. 417-430
    • Twomey, J.M.1    Smith, A.E.2
  • 84
    • 0033372412 scopus 로고    scopus 로고
    • Prediction uncertainty of conceptual rainfall-runoff models caused by problems to identify model parameters and structure
    • Uhlenbrook, S., Seibert, J., Leibundgut, C. & Rodhe, A. 1999 Prediction uncertainty of conceptual rainfall-runoff models caused by problems to identify model parameters and structure. Hydrol. Sci. J. 44(5), 779-798.
    • (1999) Hydrol. Sci. J , vol.44 , Issue.5 , pp. 779-798
    • Uhlenbrook, S.1    Seibert, J.2    Leibundgut, C.3    Rodhe, A.4
  • 85
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang, D. & Ding, J. 2003 Wavelet network model and its application to the prediction of hydrology. Nat. Sci. 1(1), 67-71.
    • (2003) Nat. Sci , vol.1 , Issue.1 , pp. 67-71
    • Wang, D.1    Ding, J.2
  • 86
    • 34548539378 scopus 로고    scopus 로고
    • Research on runoff variations based on wavelet analysis and wavelet neural network model: A case study of the Heihe River drainage basin (1944-2005)
    • Wang, J. & Meng, J. 2007 Research on runoff variations based on wavelet analysis and wavelet neural network model: a case study of the Heihe River drainage basin (1944-2005). J. Geog. Sci. 17(3), 327-338.
    • (2007) J. Geog. Sci , vol.17 , Issue.3 , pp. 327-338
    • Wang, J.1    Meng, J.2
  • 87
    • 70349237925 scopus 로고    scopus 로고
    • Prediction of inflow at Three Gorges dam in Yangtze River with wavelet network model
    • Wang, W., Jin, J. & Li, Y. 2009 Prediction of inflow at Three Gorges dam in Yangtze River with wavelet network model. Wat. Res. Mngmnt. 23(13), 2791-2803.
    • (2009) Wat. Res. Mngmnt , vol.23 , Issue.13 , pp. 2791-2803
    • Wang, W.1    Jin, J.2    Li, Y.3
  • 88
    • 33748078483 scopus 로고    scopus 로고
    • Testing for nonlinearity of streamflow processes at different timescales
    • DOI 10.1016/j.jhydrol.2005.02.045, PII S0022169405001198
    • Wang, W., Vrijling, J. K., Van Gelder, P. H. A. J. M. & Ma, J. 2006 Testing for nonlinearity of streamflow processes at different timescales. J. Hydrol. 322(1-4), 247-268. (Pubitemid 44294322)
    • (2006) Journal of Hydrology , vol.322 , Issue.1-4 , pp. 247-268
    • Wang, W.1    Vrijling, J.K.2    Van Gelder, P.H.A.J.M.3    Ma, J.4
  • 89
    • 33845421111 scopus 로고    scopus 로고
    • A flood forecasting neural network model with genetic algorithm
    • DOI 10.1504/IJEP.2006.011211
    • Wu, C. L. & Chau, K. W. 2006 A flood forecasting neural network model with genetic algorithm. Int. J. Environ. Pollut. 28(3-4), 261-273. (Pubitemid 44905990)
    • (2006) International Journal of Environment and Pollution , vol.28 , Issue.3-4 , pp. 261-273
    • Wu, C.L.1    Chau, K.W.2
  • 90
    • 65749118118 scopus 로고    scopus 로고
    • Methods to improve neural network performance in daily flows prediction
    • Wu, C. L., Chau, K. W. & Li, Y. S. 2009 Methods to improve neural network performance in daily flows prediction. J. Hydrol. 372(1-4), 80-93.
    • (2009) J. Hydrol , vol.372 , Issue.1-4 , pp. 80-93
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 91
    • 19544366488 scopus 로고    scopus 로고
    • Multiscale characteristics of the rainy season rainfall and interdecadal decaying of summer monsoon in North China
    • Xingang, D., Ping, W. & Jifan, C. 2003 Multiscale characteristics of the rainy season rainfall and interdecadal decaying of summer monsoon in North China. Chin. Sci. Bull. 48(24), 2730-2734.
    • (2003) Chin. Sci. Bull , vol.48 , Issue.24 , pp. 2730-2734
    • Xingang, D.1    Ping, W.2    Jifan, C.3
  • 92
    • 33845718138 scopus 로고    scopus 로고
    • Wavelet analysis of rainfall variation in the Hebei Plain
    • Yueqing, X., Shuangcheng, L. & Yunlong, C. 2004 Wavelet analysis of rainfall variation in the Hebei Plain. Sci. China Ser. D. 48(12), 2241-2250.
    • (2004) Sci. China Ser. D , vol.48 , Issue.12 , pp. 2241-2250
    • Yueqing, X.1    Shuangcheng, L.2    Yunlong, C.3
  • 93
    • 0035964832 scopus 로고    scopus 로고
    • An adaptive neural-wavelet model for short term load forecasting
    • Zhang, B. L. & Dong, Z. Y. 2001 An adaptive neural-wavelet model for short term load forecasting. Elec. Power Syst. Res. 59(2), 121-129.
    • (2001) Elec. Power Syst. Res , vol.59 , Issue.2 , pp. 121-129
    • Zhang, B.L.1    Dong, Z.Y.2
  • 94
    • 38149027113 scopus 로고    scopus 로고
    • The research of monthly discharge predictor-corrector model based on wavelet decomposition
    • Zhou, H. C., Peng, Y. & Liang, G.-H. 2008 The research of monthly discharge predictor-corrector model based on wavelet decomposition. Wat. Res. Mngmnt. 22(1), 217-227.
    • (2008) Wat. Res. Mngmnt , vol.22 , Issue.1 , pp. 217-227
    • Zhou, H.C.1    Peng, Y.2    Liang, G.-H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.