메뉴 건너뛰기




Volumn 402, Issue 1-2, 2011, Pages 41-59

Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process

Author keywords

Artificial Neural Network; Lighvanchai and Aghchai watersheds; SARIMAX; Wavelet transform

Indexed keywords

ACCURATE MODELING; ADAPTIVE NEURAL FUZZY INFERENCE SYSTEMS; ANFIS MODEL; ARTIFICIAL NEURAL NETWORK; AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE; AZERBAIJAN; EXOGENOUS INPUT; INPUT DATAS; INPUT LAYERS; LIGHVANCHAI AND AGHCHAI WATERSHEDS; LONG TERM; MULTI FREQUENCY; MULTISCALES; NON-LINEAR RELATIONSHIPS; RAINFALL-RUNOFF MODELING; RAINFALL-RUNOFF PROCESS; RUNOFF DATA; RUNOFF DISCHARGE; SARIMAX; SEASONALITY; STOCHASTIC PROPERTIES; TIME STEP;

EID: 79955025170     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2011.03.002     Document Type: Article
Times cited : (298)

References (53)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network (NN) and auto regressive moving average (ARMA) techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart R.J., See L. Comparing neural network (NN) and auto regressive moving average (ARMA) techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol. Process. 2000, 14:2157-2172.
    • (2000) Hydrol. Process. , vol.14 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 2
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski J. Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. J. Hydrol. 2008, 353:247-266.
    • (2008) J. Hydrol. , vol.353 , pp. 247-266
    • Adamowski, J.1
  • 3
    • 67650321039 scopus 로고    scopus 로고
    • River flow forecasting using wavelet and cross-wavelet transform models
    • Adamowski J. River flow forecasting using wavelet and cross-wavelet transform models. Hydrol. Process. 2008, 22:4877-4891.
    • (2008) Hydrol. Process. , vol.22 , pp. 4877-4891
    • Adamowski, J.1
  • 4
    • 0034745667 scopus 로고    scopus 로고
    • Wavelet transform analysis of open channel wake flows
    • Addison P.S., Murrary K.B., Watson J.N. Wavelet transform analysis of open channel wake flows. J. Eng. Mech. 2001, 127(1):58-70.
    • (2001) J. Eng. Mech. , vol.127 , Issue.1 , pp. 58-70
    • Addison, P.S.1    Murrary, K.B.2    Watson, J.N.3
  • 5
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall runoff forecasting combined with wavelet decomposition
    • Anctil F., Tape G.D. An exploration of artificial neural network rainfall runoff forecasting combined with wavelet decomposition. J. Environ. Eng. Sci. 2004, 3:121-128.
    • (2004) J. Environ. Eng. Sci. , vol.3 , pp. 121-128
    • Anctil, F.1    Tape, G.D.2
  • 6
    • 34547131556 scopus 로고    scopus 로고
    • Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool
    • Aqil M., Kita I., Yano A., Nishiyama S. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool. J. Environ. Manage. 2007, 85:215-223.
    • (2007) J. Environ. Manage. , vol.85 , pp. 215-223
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 7
    • 33645158824 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks technique: a Blue Nile catchment case study
    • Antar M.A., Elassiouti I., Alam M.N. Rainfall-runoff modeling using artificial neural networks technique: a Blue Nile catchment case study. Hydrol. Process. 2006, 20(5):1201-1216.
    • (2006) Hydrol. Process. , vol.20 , Issue.5 , pp. 1201-1216
    • Antar, M.A.1    Elassiouti, I.2    Alam, M.N.3
  • 8
    • 0034174396 scopus 로고    scopus 로고
    • ASCE task Committee on Application of Artificial Neural Networks in hydrology Artificial Neural Networks in hydrology 1: hydrology application
    • ASCE task Committee on Application of Artificial Neural Networks in hydrology Artificial Neural Networks in hydrology 1: hydrology application. J. Hydrol. Eng. 2000, 5(2):124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 9
    • 0002378584 scopus 로고    scopus 로고
    • Wavelet-based feature extraction and decomposition strategies for financial forecasting
    • Aussem A., Campbell J., Murtagh F. Wavelet-based feature extraction and decomposition strategies for financial forecasting. J. Comput. Intell. Finance. 1998, 6(2):5-12.
    • (1998) J. Comput. Intell. Finance. , vol.6 , Issue.2 , pp. 5-12
    • Aussem, A.1    Campbell, J.2    Murtagh, F.3
  • 12
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas B., Fanni A., See L., Sias G. Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys. Chem. Earth. 2006, 31(18):1164-1171.
    • (2006) Phys. Chem. Earth. , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 13
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson C.W., Wilby R. An artificial neural network approach to rainfall-runoff modeling. J. Hydrol. 1998, 43:47-66.
    • (1998) J. Hydrol. , vol.43 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 14
    • 79955044950 scopus 로고
    • Academic Press, New York, E. Foufoula-Georgiou, P. Kumar (Eds.)
    • Wavelet in Geophysics, first ed 1995, Academic Press, New York. E. Foufoula-Georgiou, P. Kumar (Eds.).
    • (1995) Wavelet in Geophysics, first ed
  • 15
    • 11144315254 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using adaptive neuro fuzzy systems
    • Gautam D.K., Holz K.P. Rainfall-runoff modeling using adaptive neuro fuzzy systems. J. Hydroinf. 2001, 3(1):3-10.
    • (2001) J. Hydroinf. , vol.3 , Issue.1 , pp. 3-10
    • Gautam, D.K.1    Holz, K.P.2
  • 16
    • 0000562670 scopus 로고
    • Decomposition of hardy function into square integrable wavelets of constant shape
    • Grossmann A., Morlet J. Decomposition of hardy function into square integrable wavelets of constant shape. J. Math. Anal. 1984, 5:723-736.
    • (1984) J. Math. Anal. , vol.5 , pp. 723-736
    • Grossmann, A.1    Morlet, J.2
  • 17
    • 0024880831 scopus 로고
    • Multilayer feed-forward networks are universal approximators
    • Hornik K. Multilayer feed-forward networks are universal approximators. Neural Networks 1988, 2(5):359-366.
    • (1988) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1
  • 18
    • 0029413797 scopus 로고
    • Artificial neural network modeling of rainfall runoff process
    • Hsu K., Gupta H.V., Sorooshian S. Artificial neural network modeling of rainfall runoff process. Water Resour. Res. 1995, 31:2517-2530.
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 19
    • 77049088061 scopus 로고    scopus 로고
    • Rainfall-runoff models using adaptive neuro-fuzzy inference system (ANFIS) for an intermittent rive
    • Jothiprakash V., Magar R.B., Kalkutki S. Rainfall-runoff models using adaptive neuro-fuzzy inference system (ANFIS) for an intermittent rive. Int. J. Artif. Intell. 2009, 3:1-23.
    • (2009) Int. J. Artif. Intell. , vol.3 , pp. 1-23
    • Jothiprakash, V.1    Magar, R.B.2    Kalkutki, S.3
  • 20
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall-runoff models
    • Jain A., Sudheer K.P., Srinivasulu S. Identification of physical processes inherent in artificial neural network rainfall-runoff models. Hydrol. Process. 2004, 18:571-581.
    • (2004) Hydrol. Process. , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 21
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang J.S.R., Sun C.T. Neuro-fuzzy modeling and control. Proc. IEEE. 1995, 83:378-406.
    • (1995) Proc. IEEE. , vol.83 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 23
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim T., Valdes J.B. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J. Hydrol. Eng. 2003, 8(6):319-328.
    • (2003) J. Hydrol. Eng. , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.1    Valdes, J.B.2
  • 24
    • 61849131098 scopus 로고    scopus 로고
    • Stream flow forecasting using neuro-wavelet technique
    • Kisi O. Stream flow forecasting using neuro-wavelet technique. Hydrol. Process. 2008, 22(20):4142-4152.
    • (2008) Hydrol. Process. , vol.22 , Issue.20 , pp. 4142-4152
    • Kisi, O.1
  • 25
    • 28444499418 scopus 로고    scopus 로고
    • Recent advances in wavelet analyses: part 1 - a review of concepts
    • Labat D. Recent advances in wavelet analyses: part 1 - a review of concepts. J. Hydrol. 2005, 314:275-288.
    • (2005) J. Hydrol. , vol.314 , pp. 275-288
    • Labat, D.1
  • 26
    • 0034610444 scopus 로고    scopus 로고
    • Rainfall-runoff relation for karstic spring. Part 2: continuous wavelet and discrete orthogonal multi resolution analyses
    • Labat D., Ababou R., Mangin A. Rainfall-runoff relation for karstic spring. Part 2: continuous wavelet and discrete orthogonal multi resolution analyses. J. Hydrol 2000, 238:149-178.
    • (2000) J. Hydrol , vol.238 , pp. 149-178
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 27
    • 0038010337 scopus 로고    scopus 로고
    • A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media
    • Lallahem S., Maina J. A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media. Math. Comput. Model. 2003, 37:1047-1061.
    • (2003) Math. Comput. Model. , vol.37 , pp. 1047-1061
    • Lallahem, S.1    Maina, J.2
  • 28
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness of fit measures in hydrologic and hydroclimatic model validation
    • Legates D.R., McCabe G.J. Evaluating the use of goodness of fit measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35:233-241.
    • (1999) Water Resour. Res. , vol.35 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 29
    • 26844569500 scopus 로고    scopus 로고
    • Long-term prediction of discharges in Manwan hydropower using adaptive-network-based fuzzy inference systems models
    • Lin J.Y., Cheng C.T., Sun Y.G., Chau K. Long-term prediction of discharges in Manwan hydropower using adaptive-network-based fuzzy inference systems models. Lect. Notes Comput. Sci. 2005, 3612:1152-1161.
    • (2005) Lect. Notes Comput. Sci. , vol.3612 , pp. 1152-1161
    • Lin, J.Y.1    Cheng, C.T.2    Sun, Y.G.3    Chau, K.4
  • 31
    • 36348930024 scopus 로고    scopus 로고
    • Drought forecasting using a hybrid stochastic and neural network model
    • Mishra A.K., Desai V.R., Singh V.P. Drought forecasting using a hybrid stochastic and neural network model. J. Hydrol. Eng. 2007, 12(6):626-638.
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.6 , pp. 626-638
    • Mishra, A.K.1    Desai, V.R.2    Singh, V.P.3
  • 33
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak P.C., Sudheer K.P., Rangan D.M., Ramasastri K.S. A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 2004, 29:52-66.
    • (2004) J. Hydrol. , vol.29 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 34
    • 77949584352 scopus 로고    scopus 로고
    • Reply to comment on " an ANN-based model for spatiotemporal groundwater level forecasting''
    • Nourani V. Reply to comment on " an ANN-based model for spatiotemporal groundwater level forecasting''. Hydrol. Process. 2009, 24(3):370-371.
    • (2009) Hydrol. Process. , vol.24 , Issue.3 , pp. 370-371
    • Nourani, V.1
  • 35
    • 36148941807 scopus 로고    scopus 로고
    • Semi-distributed flood runoff model at the sub continental scale for southwestern Iran
    • Nourani V., Mano A. Semi-distributed flood runoff model at the sub continental scale for southwestern Iran. Hydrol. Process. 2007, 21:3173-3180.
    • (2007) Hydrol. Process. , vol.21 , pp. 3173-3180
    • Nourani, V.1    Mano, A.2
  • 36
    • 34247205944 scopus 로고    scopus 로고
    • Liquid analog model for laboratory simulation of rainfall-runoff process
    • Nourani V., Monadjemi P., Singh V.P. Liquid analog model for laboratory simulation of rainfall-runoff process. J. Hydrol. Eng. 2007, 12(3):246-255.
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.3 , pp. 246-255
    • Nourani, V.1    Monadjemi, P.2    Singh, V.P.3
  • 37
    • 67649122251 scopus 로고    scopus 로고
    • An ANN based model for spatiotemporal groundwater level forecasting
    • Nourani V., Mogaddam A.A., Nadiri A.O. An ANN based model for spatiotemporal groundwater level forecasting. Hydrol. Process. 2008, 22:5054-5066.
    • (2008) Hydrol. Process. , vol.22 , pp. 5054-5066
    • Nourani, V.1    Mogaddam, A.A.2    Nadiri, A.O.3
  • 38
    • 38749142907 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of watershed precipitation, Lighvanchai, Iran
    • Nourani V., Alami M.T., Aminfar M.H. A combined neural-wavelet model for prediction of watershed precipitation, Lighvanchai, Iran. Eng. Appl. Artif. Intell. 2009, 16:1-12.
    • (2009) Eng. Appl. Artif. Intell. , vol.16 , pp. 1-12
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 39
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani V., Komasi M., Mano A. A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resour. Manage. 2009, 23:2877-2894.
    • (2009) Water Resour. Manage. , vol.23 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 40
    • 77952374286 scopus 로고    scopus 로고
    • Integrated artificial neural network for spatiotemporal modeling of rainfall-runoff-sediment processes
    • Nourani V., Kalantari O. Integrated artificial neural network for spatiotemporal modeling of rainfall-runoff-sediment processes. Environ. Eng. Sci. 2010, 27(5):411-422.
    • (2010) Environ. Eng. Sci. , vol.27 , Issue.5 , pp. 411-422
    • Nourani, V.1    Kalantari, O.2
  • 41
    • 48649085521 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data using wavelet-neural networks
    • Partal T., Cigizoglu H.K. Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. J. Hydrol. 2008, 358(3-4):317-331.
    • (2008) J. Hydrol. , vol.358 , Issue.3-4 , pp. 317-331
    • Partal, T.1    Cigizoglu, H.K.2
  • 42
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T., Kisi O. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol. 2007, 342:199-212.
    • (2007) J. Hydrol. , vol.342 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 43
    • 67649111107 scopus 로고    scopus 로고
    • Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models
    • Rajaee T., Mirbagheri S.A., Zounemat-Kermani M., Nourani V. Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci. Total Environ. 2009, 407:4916-4927.
    • (2009) Sci. Total Environ. , vol.407 , pp. 4916-4927
    • Rajaee, T.1    Mirbagheri, S.A.2    Zounemat-Kermani, M.3    Nourani, V.4
  • 44
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumara N., Thandaveswara B.S. A non-linear rainfall-runoff model using an artificial neural network. J. Hydrol. 1999, 216:32-55.
    • (1999) J. Hydrol. , vol.216 , pp. 32-55
    • Sajikumara, N.1    Thandaveswara, B.S.2
  • 46
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural network: comparison of networks types
    • Senthil Kumar A.R., Sudheer K.P., Jain S.K., Agarwal P.K. Rainfall-runoff modeling using artificial neural network: comparison of networks types. Hydrol. Process. 2004, 19(6):1277-1291.
    • (2004) Hydrol. Process. , vol.19 , Issue.6 , pp. 1277-1291
    • Senthil Kumar, A.R.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 47
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer K.P., Gosain A.K., Ramasastri K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 2000, 16(6):1325-1330.
    • (2000) Hydrol. Process. , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 48
    • 0027836314 scopus 로고
    • Comparison of univariate and transfer function models of groundwater fluctuations
    • Tankersley C., Graham W., Hatfield K. Comparison of univariate and transfer function models of groundwater fluctuations. Water Resour. Res. 1993, 29(10):3517-3533.
    • (1993) Water Resour. Res. , vol.29 , Issue.10 , pp. 3517-3533
    • Tankersley, C.1    Graham, W.2    Hatfield, K.3
  • 49
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar A.S., Johnson P.A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 1999, 4:232-239.
    • (1999) J. Hydrol. Eng. , vol.4 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 50
    • 33751081243 scopus 로고    scopus 로고
    • ANN and fuzzy logic models for simulating event-based rainfall-runoff
    • Tayfur G., Singh V.P. ANN and fuzzy logic models for simulating event-based rainfall-runoff. J. Hydraul. Eng. 2006, 132(12):1321-1330.
    • (2006) J. Hydraul. Eng. , vol.132 , Issue.12 , pp. 1321-1330
    • Tayfur, G.1    Singh, V.P.2
  • 51
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the predication of hydrology
    • Wang W., Ding S. Wavelet network model and its application to the predication of hydrology. Nat. Sci. 2003, 1(1):67-71.
    • (2003) Nat. Sci. , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, S.2
  • 52
    • 0035964832 scopus 로고    scopus 로고
    • An adaptive neural wavelet model for short term load forecasting
    • Zhang B.L., Dong Z.Y. An adaptive neural wavelet model for short term load forecasting. Electr. Power Syst. Res. 2001, 59:121-129.
    • (2001) Electr. Power Syst. Res. , vol.59 , pp. 121-129
    • Zhang, B.L.1    Dong, Z.Y.2
  • 53
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using hybrid ARIMA and neural network model
    • Zhang G.P. Time series forecasting using hybrid ARIMA and neural network model. Neurocomputing 2003, 50:159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.