-
1
-
-
0036724870
-
Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis
-
Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol. 2002;55(9):693-698.
-
(2002)
J Clin Pathol
, vol.55
, Issue.9
, pp. 693-698
-
-
Verma, S.1
Rajaratnam, J.H.2
Denton, J.3
Hoyland, J.A.4
Byers, R.J.5
-
3
-
-
0036184457
-
Age-related bone loss: Old bone, new facts
-
Chan GK, Duque G. Age-related bone loss: old bone, new facts. Gerontology. 2002;48(2):62-71.
-
(2002)
Gerontology
, vol.48
, Issue.2
, pp. 62-71
-
-
Chan, G.K.1
Duque, G.2
-
4
-
-
0347627149
-
Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells
-
Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33(6):919-926.
-
(2003)
Bone
, vol.33
, Issue.6
, pp. 919-926
-
-
Stenderup, K.1
Justesen, J.2
Clausen, C.3
Kassem, M.4
-
5
-
-
77955646193
-
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
-
Méndez-Ferrer S, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829-834.
-
(2010)
Nature
, vol.466
, Issue.7308
, pp. 829-834
-
-
Méndez-Ferrer, S.1
-
6
-
-
84875000886
-
Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
-
Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495(7440):231-235.
-
(2013)
Nature
, vol.495
, Issue.7440
, pp. 231-235
-
-
Ding, L.1
Morrison, S.J.2
-
7
-
-
84905861462
-
Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow
-
Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014;15(2):154-168.
-
(2014)
Cell Stem Cell
, vol.15
, Issue.2
, pp. 154-168
-
-
Zhou, B.O.1
Yue, R.2
Murphy, M.M.3
Peyer, J.G.4
Morrison, S.J.5
-
8
-
-
65949113378
-
Marrow fat and the bone microenvironment: Developmental, functional, and pathological implications
-
Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM. Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr. 2009;19(2):109-124.
-
(2009)
Crit Rev Eukaryot Gene Expr
, vol.19
, Issue.2
, pp. 109-124
-
-
Rosen, C.J.1
Ackert-Bicknell, C.2
Rodriguez, J.P.3
Pino, A.M.4
-
9
-
-
84957921954
-
Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts?
-
Chen Q, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 2016;23(7):1128-1139.
-
(2016)
Cell Death Differ
, vol.23
, Issue.7
, pp. 1128-1139
-
-
Chen, Q.1
-
10
-
-
33748942837
-
Transcriptional control of adipocyte formation
-
Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006;4(4):263-273.
-
(2006)
Cell Metab
, vol.4
, Issue.4
, pp. 263-273
-
-
Farmer, S.R.1
-
11
-
-
0030678549
-
Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation
-
Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747-754.
-
(1997)
Cell
, vol.89
, Issue.5
, pp. 747-754
-
-
Ducy, P.1
Zhang, R.2
Geoffroy, V.3
Ridall, A.L.4
Karsenty, G.5
-
12
-
-
0037059614
-
The novel zinc fingercontaining transcription factor osterix is required for osteoblast differentiation and bone formation
-
Nakashima K, et al. The novel zinc fingercontaining transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17-29.
-
(2002)
Cell
, vol.108
, Issue.1
, pp. 17-29
-
-
Nakashima, K.1
-
13
-
-
0030944985
-
Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a
-
Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593-602.
-
(1997)
Cell
, vol.88
, Issue.5
, pp. 593-602
-
-
Serrano, M.1
Lin, A.W.2
McCurrach, M.E.3
Beach, D.4
Lowe, S.W.5
-
14
-
-
34447543913
-
Cellular senescence in cancer and aging
-
Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130(2):223-233.
-
(2007)
Cell
, vol.130
, Issue.2
, pp. 223-233
-
-
Collado, M.1
Blasco, M.A.2
Serrano, M.3
-
15
-
-
33749187810
-
P16INK4a induces an age-dependent decline in islet regenerative potential
-
Krishnamurthy J, et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature. 2006;443(7110):453-457.
-
(2006)
Nature
, vol.443
, Issue.7110
, pp. 453-457
-
-
Krishnamurthy, J.1
-
16
-
-
33749171885
-
Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing
-
Molofsky AV, et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature. 2006;443(7110):448-452.
-
(2006)
Nature
, vol.443
, Issue.7110
, pp. 448-452
-
-
Molofsky, A.V.1
-
17
-
-
33749172559
-
Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a
-
Janzen V, et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature. 2006;443(7110):421-426.
-
(2006)
Nature
, vol.443
, Issue.7110
, pp. 421-426
-
-
Janzen, V.1
-
18
-
-
84900969225
-
Ink4a/Arf expression is a biomarker of aging
-
Krishnamurthy J, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 2004;114(9):1299-1307.
-
(2004)
J Clin Invest
, vol.114
, Issue.9
, pp. 1299-1307
-
-
Krishnamurthy, J.1
-
19
-
-
84865620125
-
Upregulation of p16INK4A promotes cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients
-
Gu Z, et al. Upregulation of p16INK4A promotes cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients. Cell Signal. 2012;24(12):2307-2314.
-
(2012)
Cell Signal
, vol.24
, Issue.12
, pp. 2307-2314
-
-
Gu, Z.1
-
20
-
-
0037011958
-
P53 mutant mice that display early ageing-associated phenotypes
-
Tyner SD, et al. p53 mutant mice that display early ageing-associated phenotypes. Nature. 2002;415(6867):45-53.
-
(2002)
Nature
, vol.415
, Issue.6867
, pp. 45-53
-
-
Tyner, S.D.1
-
21
-
-
0033552813
-
The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus
-
Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature. 1999;397(6715):164-168.
-
(1999)
Nature
, vol.397
, Issue.6715
, pp. 164-168
-
-
Jacobs, J.J.1
Kieboom, K.2
Marino, S.3
DePinho, R.A.4
Van Lohuizen, M.5
-
22
-
-
0037439071
-
Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 fulllength isoform
-
Cao L, Li W, Kim S, Brodie SG, Deng CX. Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 fulllength isoform. Genes Dev. 2003;17(2):201-213.
-
(2003)
Genes Dev
, vol.17
, Issue.2
, pp. 201-213
-
-
Cao, L.1
Li, W.2
Kim, S.3
Brodie, S.G.4
Deng, C.X.5
-
23
-
-
25644440744
-
Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation
-
Varela I, et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature. 2005;437(7058):564-568.
-
(2005)
Nature
, vol.437
, Issue.7058
, pp. 564-568
-
-
Varela, I.1
-
24
-
-
53749098061
-
Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression
-
Nishino J, Kim I, Chada K, Morrison SJ. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell. 2008;135(2):227-239.
-
(2008)
Cell
, vol.135
, Issue.2
, pp. 227-239
-
-
Nishino, J.1
Kim, I.2
Chada, K.3
Morrison, S.J.4
-
25
-
-
80855138775
-
Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders
-
Baker DJ, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232-236.
-
(2011)
Nature
, vol.479
, Issue.7372
, pp. 232-236
-
-
Baker, D.J.1
-
26
-
-
84923776535
-
RB maintains quiescence and prevents premature senescence through upregulation of DNMT1 in mesenchymal stromal cells
-
Lin SP, Chiu FY, Wang Y, Yen ML, Kao SY, Hung SC. RB maintains quiescence and prevents premature senescence through upregulation of DNMT1 in mesenchymal stromal cells. Stem Cell Reports. 2014;3(6):975-986.
-
(2014)
Stem Cell Reports
, vol.3
, Issue.6
, pp. 975-986
-
-
Lin, S.P.1
Chiu, F.Y.2
Wang, Y.3
Yen, M.L.4
Kao, S.Y.5
Hung, S.C.6
-
27
-
-
77956182397
-
Rb regulates fate choice and lineage commitment in vivo
-
Calo E, Quintero-Estades JA, Danielian PS, Nedelcu S, Berman SD, Lees JA. Rb regulates fate choice and lineage commitment in vivo. Nature. 2010;466(7310):1110-1114.
-
(2010)
Nature
, vol.466
, Issue.7310
, pp. 1110-1114
-
-
Calo, E.1
Quintero-Estades, J.A.2
Danielian, P.S.3
Nedelcu, S.4
Berman, S.D.5
Lees, J.A.6
-
28
-
-
80052223272
-
An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming
-
Gabut M, et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell. 2011;147(1):132-146.
-
(2011)
Cell
, vol.147
, Issue.1
, pp. 132-146
-
-
Gabut, M.1
-
29
-
-
33746150775
-
Foxp1 is an essential transcriptional regulator of B cell development
-
Hu H, et al. Foxp1 is an essential transcriptional regulator of B cell development. Nat Immunol. 2006;7(8):819-826.
-
(2006)
Nat Immunol
, vol.7
, Issue.8
, pp. 819-826
-
-
Hu, H.1
-
30
-
-
79956069829
-
Transcription factor Foxp1 exerts essential cell-intrinsic regulation of the quiescence of naive T cells
-
Feng X, Wang H, Takata H, Day TJ, Willen J, Hu H. Transcription factor Foxp1 exerts essential cell-intrinsic regulation of the quiescence of naive T cells. Nat Immunol. 2011;12(6):544-550.
-
(2011)
Nat Immunol
, vol.12
, Issue.6
, pp. 544-550
-
-
Feng, X.1
Wang, H.2
Takata, H.3
Day, T.J.4
Willen, J.5
Hu, H.6
-
31
-
-
77449127289
-
Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development
-
Feng X, et al. Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development. Blood. 2010;115(3):510-518.
-
(2010)
Blood
, vol.115
, Issue.3
, pp. 510-518
-
-
Feng, X.1
-
32
-
-
84863324107
-
Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2
-
Li S, et al. Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. Development. 2012;139(14):2500-2509.
-
(2012)
Development
, vol.139
, Issue.14
, pp. 2500-2509
-
-
Li, S.1
-
33
-
-
6944232153
-
Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation
-
Wang B, et al. Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation. Development. 2004;131(18):4477-4487.
-
(2004)
Development
, vol.131
, Issue.18
, pp. 4477-4487
-
-
Wang, B.1
-
34
-
-
34250688302
-
Foxp2 and Foxp1 cooperatively regulate lung and esophagus development
-
Shu W, Lu MM, Zhang Y, Tucker PW, Zhou D, Morrisey EE. Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development. 2007;134(10):1991-2000.
-
(2007)
Development
, vol.134
, Issue.10
, pp. 1991-2000
-
-
Shu, W.1
Lu, M.M.2
Zhang, Y.3
Tucker, P.W.4
Zhou, D.5
Morrisey, E.E.6
-
35
-
-
84988487544
-
Epithelium-generated neuropeptide y induces smooth muscle contraction to promote airway hyperresponsiveness
-
Li S, et al. Epithelium-generated neuropeptide Y induces smooth muscle contraction to promote airway hyperresponsiveness. J Clin Invest. 2016;126(5):1978-1982.
-
(2016)
J Clin Invest
, vol.126
, Issue.5
, pp. 1978-1982
-
-
Li, S.1
-
36
-
-
77955861743
-
Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms
-
Zhang Y, et al. Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms. Genes Dev. 2010;24(16):1746-1757.
-
(2010)
Genes Dev
, vol.24
, Issue.16
, pp. 1746-1757
-
-
Zhang, Y.1
-
37
-
-
84883243864
-
Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18
-
Leishman E, et al. Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18. Development. 2013;140(18):3809-3818.
-
(2013)
Development
, vol.140
, Issue.18
, pp. 3809-3818
-
-
Leishman, E.1
-
38
-
-
84944753604
-
FoxP1 orchestration of ASDrelevant signaling pathways in the striatum
-
Araujo DJ, et al. FoxP1 orchestration of ASDrelevant signaling pathways in the striatum. Genes Dev. 2015;29(20):2081-2096.
-
(2015)
Genes Dev
, vol.29
, Issue.20
, pp. 2081-2096
-
-
Araujo, D.J.1
-
39
-
-
84928105299
-
Foxp1-mediated programming of limbinnervating motor neurons from mouse and human embryonic stem cells
-
Adams KL, Rousso DL, Umbach JA, Novitch BG. Foxp1-mediated programming of limbinnervating motor neurons from mouse and human embryonic stem cells. Nat Commun. 2015;6:6778.
-
(2015)
Nat Commun
, vol.6
, pp. 6778
-
-
Adams, K.L.1
Rousso, D.L.2
Umbach, J.A.3
Novitch, B.G.4
-
40
-
-
84950349530
-
Forkhead box P1 (FOXP1) transcription factor regulates hepatic glucose homeostasis
-
Zou Y, et al. Forkhead box P1 (FOXP1) transcription factor regulates hepatic glucose homeostasis. J Biol Chem. 2015;290(51):30607-30615.
-
(2015)
J Biol Chem
, vol.290
, Issue.51
, pp. 30607-30615
-
-
Zou, Y.1
-
41
-
-
77958510976
-
Chiari i malformation, delayed gross motor skills, severe speech delay, and epileptiform discharges in a child with FOXP1 haploinsufficiency
-
Carr CW, et al. Chiari I malformation, delayed gross motor skills, severe speech delay, and epileptiform discharges in a child with FOXP1 haploinsufficiency. Eur J Hum Genet. 2010;18(11):1216-1220.
-
(2010)
Eur J Hum Genet
, vol.18
, Issue.11
, pp. 1216-1220
-
-
Carr, C.W.1
-
42
-
-
0042591396
-
Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors
-
Wang B, Lin D, Li C, Tucker P. Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J Biol Chem. 2003;278(27):24259-24268.
-
(2003)
J Biol Chem
, vol.278
, Issue.27
, pp. 24259-24268
-
-
Wang, B.1
Lin, D.2
Li, C.3
Tucker, P.4
-
43
-
-
84907386402
-
DNA methylation is developmentally regulated for genes essential for cardiogenesis
-
Chamberlain AA, et al. DNA methylation is developmentally regulated for genes essential for cardiogenesis. J Am Heart Assoc. 2014;3(3):e000976.
-
(2014)
J Am Heart Assoc
, vol.3
, Issue.3
, pp. e000976
-
-
Chamberlain, A.A.1
-
44
-
-
84874997081
-
CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance
-
Greenbaum A, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495(7440):227-230.
-
(2013)
Nature
, vol.495
, Issue.7440
, pp. 227-230
-
-
Greenbaum, A.1
-
45
-
-
44649137302
-
Identification of novel PPARgamma target genes by integrated analysis of ChIPon-chip and microarray expression data during adipocyte differentiation
-
Nakachi Y, et al. Identification of novel PPARgamma target genes by integrated analysis of ChIPon-chip and microarray expression data during adipocyte differentiation. Biochem Biophys Res Commun. 2008;372(2):362-366.
-
(2008)
Biochem Biophys Res Commun
, vol.372
, Issue.2
, pp. 362-366
-
-
Nakachi, Y.1
-
46
-
-
84942372197
-
Wntless spatially regulates bone development through ?-catenindependent and independent mechanisms
-
Zhong ZA, Zahatnansky J, Snider J, Van Wieren E, Diegel CR, Williams BO. Wntless spatially regulates bone development through ?-catenindependent and independent mechanisms. Dev Dyn. 2015;244(10):1347-1355.
-
(2015)
Dev Dyn
, vol.244
, Issue.10
, pp. 1347-1355
-
-
Zhong, Z.A.1
Zahatnansky, J.2
Snider, J.3
Van Wieren, E.4
Diegel, C.R.5
Williams, B.O.6
-
47
-
-
0030560633
-
Adipocyte differentiation: A transcriptional regulatory cascade
-
Brun RP, Kim JB, Hu E, Altiok S, Spiegelman BM. Adipocyte differentiation: a transcriptional regulatory cascade. Curr Opin Cell Biol. 1996;8(6):826-832.
-
(1996)
Curr Opin Cell Biol
, vol.8
, Issue.6
, pp. 826-832
-
-
Brun, R.P.1
Kim, J.B.2
Hu, E.3
Altiok, S.4
Spiegelman, B.M.5
-
48
-
-
40449084522
-
Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation
-
Hilton MJ, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med. 2008;14(3):306-314.
-
(2008)
Nat Med
, vol.14
, Issue.3
, pp. 306-314
-
-
Hilton, M.J.1
-
49
-
-
77950679225
-
Alteration of Notch signaling in skeletal development and disease
-
Tao J, Chen S, Lee B. Alteration of Notch signaling in skeletal development and disease. Ann N Y Acad Sci. 2010;1192:257-268.
-
(2010)
Ann N y Acad Sci
, vol.1192
, pp. 257-268
-
-
Tao, J.1
Chen, S.2
Lee, B.3
-
50
-
-
84929435164
-
Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging
-
Zhang W, et al. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science. 2015;348(6239):1160-1163.
-
(2015)
Science
, vol.348
, Issue.6239
, pp. 1160-1163
-
-
Zhang, W.1
-
51
-
-
33750030758
-
The regulation of INK4/ARF in cancer and aging
-
Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell. 2006;127(2):265-275.
-
(2006)
Cell
, vol.127
, Issue.2
, pp. 265-275
-
-
Kim, W.Y.1
Sharpless, N.E.2
-
52
-
-
84863222584
-
C-Abl promotes osteoblast expansion by differentially regulating canonical and non-canonical BMP pathways and p16INK4a expression
-
Kua HY, et al. c-Abl promotes osteoblast expansion by differentially regulating canonical and non-canonical BMP pathways and p16INK4a expression. Nat Cell Biol. 2012;14(7):727-737.
-
(2012)
Nat Cell Biol
, vol.14
, Issue.7
, pp. 727-737
-
-
Kua, H.Y.1
-
53
-
-
61349196341
-
Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry
-
Kubo H, et al. Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry. Genes Cells. 2009;14(3):407-424.
-
(2009)
Genes Cells
, vol.14
, Issue.3
, pp. 407-424
-
-
Kubo, H.1
-
54
-
-
84866709603
-
The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors
-
Benisch P, et al. The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS ONE. 2012;7(9):e45142.
-
(2012)
PLoS ONE
, vol.7
, Issue.9
, pp. e45142
-
-
Benisch, P.1
-
55
-
-
84954379553
-
DNA methylation and healthy human aging
-
Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell. 2015;14(6):924-932.
-
(2015)
Aging Cell
, vol.14
, Issue.6
, pp. 924-932
-
-
Jones, M.J.1
Goodman, S.J.2
Kobor, M.S.3
-
56
-
-
13844257282
-
Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: The role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways
-
Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell. 2004;3(6):379-389.
-
(2004)
Aging Cell
, vol.3
, Issue.6
, pp. 379-389
-
-
Moerman, E.J.1
Teng, K.2
Lipschitz, D.A.3
Lecka-Czernik, B.4
-
57
-
-
2142652189
-
PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors
-
Akune T, et al. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest. 2004;113(6):846-855.
-
(2004)
J Clin Invest
, vol.113
, Issue.6
, pp. 846-855
-
-
Akune, T.1
-
58
-
-
84949035197
-
Reciprocal control of osteogenic and adipogenic differentiation by ERK/MAP kinase phosphorylation of Runx2 and PPAR? transcription factors
-
Ge C, Cawthorn WP, Li Y, Zhao G, Macdougald OA, Franceschi RT. Reciprocal control of osteogenic and adipogenic differentiation by ERK/MAP kinase phosphorylation of Runx2 and PPAR? transcription factors. J Cell Physiol. 2016;231(3):587-596.
-
(2016)
J Cell Physiol
, vol.231
, Issue.3
, pp. 587-596
-
-
Ge, C.1
Cawthorn, W.P.2
Li, Y.3
Zhao, G.4
Macdougald, O.A.5
Franceschi, R.T.6
-
59
-
-
84887985637
-
Osteoblast-targeted suppression of PPAR? increases osteogenesis through activation of mTOR signaling
-
Sun H, Kim JK, Mortensen R, Mutyaba LP, Hankenson KD, Krebsbach PH. Osteoblast-targeted suppression of PPAR? increases osteogenesis through activation of mTOR signaling. Stem Cells. 2013;31(10):2183-2192.
-
(2013)
Stem Cells
, vol.31
, Issue.10
, pp. 2183-2192
-
-
Sun, H.1
Kim, J.K.2
Mortensen, R.3
Mutyaba, L.P.4
Hankenson, K.D.5
Krebsbach, P.H.6
-
60
-
-
84922711705
-
Foxp1/2/4 regulate endochondral ossification as a suppresser complex
-
Zhao H, et al. Foxp1/2/4 regulate endochondral ossification as a suppresser complex. Dev Biol. 2015;398(2):242-254.
-
(2015)
Dev Biol
, vol.398
, Issue.2
, pp. 242-254
-
-
Zhao, H.1
-
61
-
-
79959412176
-
Osteoblasts in osteoporosis: Past, emerging, and future anabolic targets
-
Marie PJ, Kassem M. Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur J Endocrinol. 2011;165(1):1-10.
-
(2011)
Eur J Endocrinol
, vol.165
, Issue.1
, pp. 1-10
-
-
Marie, P.J.1
Kassem, M.2
-
62
-
-
0035893741
-
The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p
-
Banham AH, et al. The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p. Cancer Res. 2001;61(24):8820-8829.
-
(2001)
Cancer Res
, vol.61
, Issue.24
, pp. 8820-8829
-
-
Banham, A.H.1
-
63
-
-
23744460273
-
FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations
-
Wlodarska I, et al. FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations. Leukemia. 2005;19(8):1299-1305.
-
(2005)
Leukemia
, vol.19
, Issue.8
, pp. 1299-1305
-
-
Wlodarska, I.1
-
64
-
-
31944445676
-
T(3;14)(p14;q32) results in aberrant expression of FOXP1 in a case of diffuse large B-cell lymphoma
-
Fenton JA, et al. t(3;14)(p14;q32) results in aberrant expression of FOXP1 in a case of diffuse large B-cell lymphoma. Genes Chromosomes Cancer. 2006;45(2):164-168.
-
(2006)
Genes Chromosomes Cancer
, vol.45
, Issue.2
, pp. 164-168
-
-
Fenton, J.A.1
-
65
-
-
26244456588
-
The FOXP1 transcription factor is expressed in the majority of follicular lymphomas but is rarely expressed in classical and lymphocyte predominant Hodgkin's lymphoma
-
Brown P, Marafioti T, Kusec R, Banham AH. The FOXP1 transcription factor is expressed in the majority of follicular lymphomas but is rarely expressed in classical and lymphocyte predominant Hodgkin's lymphoma. J Mol Histol. 2005;36(4):249-256.
-
(2005)
J Mol Histol
, vol.36
, Issue.4
, pp. 249-256
-
-
Brown, P.1
Marafioti, T.2
Kusec, R.3
Banham, A.H.4
-
66
-
-
84856386430
-
FOXP1 and PAX5 are rare but recurrent translocations partners in acute lymphoblastic leukemia
-
Put N, Deeren D, Michaux L, Vandenberghe P. FOXP1 and PAX5 are rare but recurrent translocations partners in acute lymphoblastic leukemia. Cancer Genet. 2011;204(8):462-464.
-
(2011)
Cancer Genet
, vol.204
, Issue.8
, pp. 462-464
-
-
Put, N.1
Deeren, D.2
Michaux, L.3
Vandenberghe, P.4
-
67
-
-
80054051092
-
FOXP1, an estrogen-inducible transcription factor, modulates cell proliferation in breast cancer cells and 5-year recurrence-free survival of patients with tamoxifen-treated breast cancer
-
Shigekawa T, et al. FOXP1, an estrogen-inducible transcription factor, modulates cell proliferation in breast cancer cells and 5-year recurrence-free survival of patients with tamoxifen-treated breast cancer. Horm Cancer. 2011;2(5):286-297.
-
(2011)
Horm Cancer
, vol.2
, Issue.5
, pp. 286-297
-
-
Shigekawa, T.1
-
68
-
-
79251520282
-
Expression of the Forkhead transcription factor FOXP1 is associated with tumor grade and Ki67 expression in clear cell renal cell carcinoma
-
Toma MI, et al. Expression of the Forkhead transcription factor FOXP1 is associated with tumor grade and Ki67 expression in clear cell renal cell carcinoma. Cancer Invest. 2011;29(2):123-129.
-
(2011)
Cancer Invest
, vol.29
, Issue.2
, pp. 123-129
-
-
Toma, M.I.1
-
69
-
-
84872394280
-
Both FOXP1 and p65 expression are adverse risk factors in diffuse large B-cell lymphoma: A retrospective study in China
-
Hu CR, Wang JH, Wang R, Sun Q, Chen LB. Both FOXP1 and p65 expression are adverse risk factors in diffuse large B-cell lymphoma: a retrospective study in China. Acta Histochem. 2013;115(2):137-143.
-
(2013)
Acta Histochem
, vol.115
, Issue.2
, pp. 137-143
-
-
Hu, C.R.1
Wang, J.H.2
Wang, R.3
Sun, Q.4
Chen, L.B.5
-
71
-
-
84956615779
-
Subtype-specific addiction of the activated B-cell subset of diffuse large B-cell lymphoma to FOXP1
-
Dekker JD, et al. Subtype-specific addiction of the activated B-cell subset of diffuse large B-cell lymphoma to FOXP1. Proc Natl Acad Sci USA. 2016;113(5):E577-E586.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, Issue.5
, pp. E577-E586
-
-
Dekker, J.D.1
-
72
-
-
0036076389
-
Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer
-
Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis. 2002;33(2):77-80.
-
(2002)
Genesis
, vol.33
, Issue.2
, pp. 77-80
-
-
Logan, M.1
Martin, J.F.2
Nagy, A.3
Lobe, C.4
Olson, E.N.5
Tabin, C.J.6
-
73
-
-
84893186610
-
Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo
-
Scheller EL, et al. Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Meth Enzymol. 2014;537:123-139.
-
(2014)
Meth Enzymol
, vol.537
, pp. 123-139
-
-
Scheller, E.L.1
|