메뉴 건너뛰기




Volumn 37, Issue 8, 2017, Pages 990-1005

Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects

Author keywords

2,3 butanediol dehydrogenase; biotechnological production; cofactor engineering; construction; gene knockout; low cost substrate; regulation mechanism; Strain improvement

Indexed keywords

CONSTRUCTION; COST ENGINEERING; METABOLISM; SUBSTRATES;

EID: 85018492119     PISSN: 07388551     EISSN: 15497801     Source Type: Journal    
DOI: 10.1080/07388551.2017.1299680     Document Type: Review
Times cited : (84)

References (125)
  • 1
    • 70349759561 scopus 로고    scopus 로고
    • Biotechnological production of 2,3-butanediol-current state and prospects
    • Celinska E, Grajek W. Biotechnological production of 2,3-butanediol-current state and prospects. Biotechnol Adv. 2009;27:715–725.
    • (2009) Biotechnol Adv , vol.27 , pp. 715-725
    • Celinska, E.1    Grajek, W.2
  • 2
    • 33847030736 scopus 로고    scopus 로고
    • Industrial biotechnology for the production of bio-based chemicals - a cradle-to-grave perspective
    • Hattikaul R, Tornvall U, Gustafsson L, et al. Industrial biotechnology for the production of bio-based chemicals - a cradle-to-grave perspective. Trends Biotechnol. 2007;25:119–124.
    • (2007) Trends Biotechnol , vol.25 , pp. 119-124
    • Hattikaul, R.1    Tornvall, U.2    Gustafsson, L.3
  • 3
    • 79952694448 scopus 로고    scopus 로고
    • Microbial 2,3-butanediol production: a state-of-the-art review
    • Ji XJ, Huang H, Ouyang PK., Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv. 2011;29:351–364.
    • (2011) Biotechnol Adv , vol.29 , pp. 351-364
    • Ji, X.J.1    Huang, H.2    Ouyang, P.K.3
  • 4
    • 84861440312 scopus 로고    scopus 로고
    • Systems metabolic engineering of microorganisms for natural and non-natural chemicals
    • Lee JW, Na D, Park JM, et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol. 2012;8:536–546.
    • (2012) Nat Chem Biol , vol.8 , pp. 536-546
    • Lee, J.W.1    Na, D.2    Park, J.M.3
  • 6
    • 84939262898 scopus 로고    scopus 로고
    • Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects
    • Yin X, Li J, Shin HD, et al. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects. Biotechnol Adv. 2015;33:830–841.
    • (2015) Biotechnol Adv , vol.33 , pp. 830-841
    • Yin, X.1    Li, J.2    Shin, H.D.3
  • 7
    • 84920664109 scopus 로고    scopus 로고
    • Genome sequence of type strain Paenibacillus polymyxa DSM 365, a highly efficient producer of optically active (R,R)-2,3-butanediol
    • Xie NZ, Li JX, Song LF, et al. Genome sequence of type strain Paenibacillus polymyxa DSM 365, a highly efficient producer of optically active (R,R)-2,3-butanediol. J Biotechnol. 2015;195:72–73.
    • (2015) J Biotechnol , vol.195 , pp. 72-73
    • Xie, N.Z.1    Li, J.X.2    Song, L.F.3
  • 8
    • 85008485224 scopus 로고    scopus 로고
    • Sequence of Klebsiella pneumoniae CICC10011, a promising strain for high 2,3-butanediol production
    • Tong YJ, Ji XJ, Liu LG, et al. Sequence of Klebsiella pneumoniae CICC10011, a promising strain for high 2,3-butanediol production. Genome Announc. 2015;3:e00802–e00815.
    • (2015) Genome Announc , vol.3 , pp. e00802-e00815
    • Tong, Y.J.1    Ji, X.J.2    Liu, L.G.3
  • 9
    • 84861207484 scopus 로고    scopus 로고
    • Complete genome sequence of Klebsiella oxytoca KCTC 1686, used in production of 2,3-butanediol
    • Shin SH, Kim S, Kim JY, et al. Complete genome sequence of Klebsiella oxytoca KCTC 1686, used in production of 2,3-butanediol. J Bacteriol. 2012;194:2371–2372.
    • (2012) J Bacteriol , vol.194 , pp. 2371-2372
    • Shin, S.H.1    Kim, S.2    Kim, J.Y.3
  • 10
    • 84866326630 scopus 로고    scopus 로고
    • Genome sequences of two thermophilic Bacillus licheniformis strains, efficient producers of platform chemical 2,3-butanediol
    • Li L, Su F, Wang Y, et al. Genome sequences of two thermophilic Bacillus licheniformis strains, efficient producers of platform chemical 2,3-butanediol. J Bacteriol. 2012;194:4133–4134.
    • (2012) J Bacteriol , vol.194 , pp. 4133-4134
    • Li, L.1    Su, F.2    Wang, Y.3
  • 11
    • 84999273683 scopus 로고    scopus 로고
    • Genome sequence of meso-2,3-butanediol-producing strain Serratia marcescens ATCC 14041
    • Li L, Wang Y, Li K, et al. Genome sequence of meso-2,3-butanediol-producing strain Serratia marcescens ATCC 14041. Genome Announc. 2014d;2:e00590–e00514.
    • (2014) Genome Announc , vol.2 , pp. e00514-e00590
    • Li, L.1    Wang, Y.2    Li, K.3
  • 12
    • 84997751525 scopus 로고    scopus 로고
    • Complete genome sequence of Raoultella ornithinolytica strain B6, a 2,3-butanediol-producing bacterium isolated from oil-contaminated soil
    • Shin SH, Um Y, Beak JH, et al. Complete genome sequence of Raoultella ornithinolytica strain B6, a 2,3-butanediol-producing bacterium isolated from oil-contaminated soil. Genome Announc. 2013;1:e00395–13.
    • (2013) Genome Announc , vol.1 , pp. e13-e00395
    • Shin, S.H.1    Um, Y.2    Beak, J.H.3
  • 13
    • 84863152203 scopus 로고    scopus 로고
    • Genome sequence of Enterobacter cloacae subsp. dissolvens SDM, an efficient biomass-utilizing producer of platform chemical 2,3-butanediol
    • Xu Y, Wang A, Tao F, et al. Genome sequence of Enterobacter cloacae subsp. dissolvens SDM, an efficient biomass-utilizing producer of platform chemical 2,3-butanediol. J Bacteriol. 2012;194:897–898.
    • (2012) J Bacteriol , vol.194 , pp. 897-898
    • Xu, Y.1    Wang, A.2    Tao, F.3
  • 14
    • 84907031402 scopus 로고    scopus 로고
    • Acetoin synthesis acquisition favors Escherichia coli growth at low pH
    • Vivijs B, Moons P, Aertsen A, et al. Acetoin synthesis acquisition favors Escherichia coli growth at low pH. Appl Environ Microbiol. 2014;80:6054–6061.
    • (2014) Appl Environ Microbiol , vol.80 , pp. 6054-6061
    • Vivijs, B.1    Moons, P.2    Aertsen, A.3
  • 15
    • 84894051057 scopus 로고    scopus 로고
    • 2,3-Butanediol fermentation promotes growth of Serratia plymuthica at low pH but not survival of extreme acid challenge
    • Vivijs B, Moons P, Geeraerd AH, et al. 2,3-Butanediol fermentation promotes growth of Serratia plymuthica at low pH but not survival of extreme acid challenge. Int J Food Microbiol. 2014;175:36–44.
    • (2014) Int J Food Microbiol , vol.175 , pp. 36-44
    • Vivijs, B.1    Moons, P.2    Geeraerd, A.H.3
  • 16
    • 0034515065 scopus 로고    scopus 로고
    • Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa
    • Nakashimada Y, Marwoto B, Kashiwamura T, et al. Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. J Biosci Bioeng. 2000;90:661–664.
    • (2000) J Biosci Bioeng , vol.90 , pp. 661-664
    • Nakashimada, Y.1    Marwoto, B.2    Kashiwamura, T.3
  • 17
    • 34250166461 scopus 로고    scopus 로고
    • Acetoin metabolism in bacteria
    • Xiao Z, Xu P., Acetoin metabolism in bacteria. Crit Rev Microbiol. 2007;33:127–140.
    • (2007) Crit Rev Microbiol , vol.33 , pp. 127-140
    • Xiao, Z.1    Xu, P.2
  • 18
    • 0035098550 scopus 로고    scopus 로고
    • Biological production of 2,3-butanediol
    • Syu MJ., Biological production of 2,3-butanediol. Appl Microbiol Biotechnol. 2001;55:10–18.
    • (2001) Appl Microbiol Biotechnol , vol.55 , pp. 10-18
    • Syu, M.J.1
  • 19
    • 84857915171 scopus 로고    scopus 로고
    • Characterization and regulation of the 2,3-butanediol pathway in Serratia marcescens
    • Rao B, Zhang LY, Sun J, et al. Characterization and regulation of the 2,3-butanediol pathway in Serratia marcescens. Appl Microbiol Biotechnol. 2012;93:2147–2159.
    • (2012) Appl Microbiol Biotechnol , vol.93 , pp. 2147-2159
    • Rao, B.1    Zhang, L.Y.2    Sun, J.3
  • 20
    • 84975873886 scopus 로고    scopus 로고
    • Deletion of the budBAC operon in Klebsiella pneumoniae to understand the physiological role of 2,3-butanediol biosynthesis
    • Jeong D, Yang J, Lee S, et al. Deletion of the budBAC operon in Klebsiella pneumoniae to understand the physiological role of 2,3-butanediol biosynthesis. Prep Biochem Biotechnol. 2016;46:410–419.
    • (2016) Prep Biochem Biotechnol , vol.46 , pp. 410-419
    • Jeong, D.1    Yang, J.2    Lee, S.3
  • 21
    • 0027480789 scopus 로고
    • Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes
    • Blomqvist K, Nikkola M, Lehtovaara P, et al. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol. 1993;175:1392–1404.
    • (1993) J Bacteriol , vol.175 , pp. 1392-1404
    • Blomqvist, K.1    Nikkola, M.2    Lehtovaara, P.3
  • 22
    • 0027167447 scopus 로고
    • Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin
    • Renna MC, Najimudin N, Winik LR, et al. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol. 1993;175:3863–3875.
    • (1993) J Bacteriol , vol.175 , pp. 3863-3875
    • Renna, M.C.1    Najimudin, N.2    Winik, L.R.3
  • 23
    • 22144484496 scopus 로고    scopus 로고
    • Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae
    • Kovacikova G, Lin W, Skorupski K., Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol Microbiol. 2005;57:420–433.
    • (2005) Mol Microbiol , vol.57 , pp. 420-433
    • Kovacikova, G.1    Lin, W.2    Skorupski, K.3
  • 24
    • 0029084565 scopus 로고
    • Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena
    • Mayer D, Schlensog V, Böck A, et al. Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena. J Bacteriol. 1995;177:5261–5269.
    • (1995) J Bacteriol , vol.177 , pp. 5261-5269
    • Mayer, D.1    Schlensog, V.2    Böck, A.3
  • 25
    • 84888832089 scopus 로고    scopus 로고
    • Observation of 2,3-butanediol biosynthesis in Lys regulator mutated Klebsiella pneumoniae at gene transcription level
    • Lee S, Kim B, Jeong D, et al. Observation of 2,3-butanediol biosynthesis in Lys regulator mutated Klebsiella pneumoniae at gene transcription level. J Biotechnol. 2013;168:520–526.
    • (2013) J Biotechnol , vol.168 , pp. 520-526
    • Lee, S.1    Kim, B.2    Jeong, D.3
  • 26
    • 79958234718 scopus 로고    scopus 로고
    • Integrated regulation of acetoin fermentation by quorum sensing and pH in Serratia plymuthica RVH1
    • Moons P, Van Houdt R, Vivijs B, et al. Integrated regulation of acetoin fermentation by quorum sensing and pH in Serratia plymuthica RVH1. Appl Environ Microbiol. 2011;77:3422–3427.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 3422-3427
    • Moons, P.1    Van Houdt, R.2    Vivijs, B.3
  • 27
    • 0027446708 scopus 로고
    • Molecular biology of the LysR family of transcriptional regulators
    • Schell MA., Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol. 1993;47:597–626.
    • (1993) Annu Rev Microbiol , vol.47 , pp. 597-626
    • Schell, M.A.1
  • 28
    • 34249324047 scopus 로고    scopus 로고
    • Quorum-sensing-dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N
    • Van Houdt R, Aertsen A, Michiels CW., Quorum-sensing-dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N. Res Microbiol. 2007;158:379–385.
    • (2007) Res Microbiol , vol.158 , pp. 379-385
    • Van Houdt, R.1    Aertsen, A.2    Michiels, C.W.3
  • 29
    • 0025913664 scopus 로고
    • Identification and molecular characterization of the Alcaligenes eutrophus H16 aco operon genes involved in acetoin catabolism
    • Priefert H, Hein S, Krüger N, et al. Identification and molecular characterization of the Alcaligenes eutrophus H16 aco operon genes involved in acetoin catabolism. J Bacteriol. 1991;173:4056–4071.
    • (1991) J Bacteriol , vol.173 , pp. 4056-4071
    • Priefert, H.1    Hein, S.2    Krüger, N.3
  • 30
    • 0028157328 scopus 로고
    • Identification and molecular characterization of the aco genes encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme system
    • Oppermann FB, Steinbüchel A., Identification and molecular characterization of the aco genes encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme system. J Bacteriol. 1994;176:469–485.
    • (1994) J Bacteriol , vol.176 , pp. 469-485
    • Oppermann, F.B.1    Steinbüchel, A.2
  • 31
    • 0033055035 scopus 로고    scopus 로고
    • Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway
    • Huang M, Oppermann-Sanio FB, Steinbüchel A., Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J Bacteriol. 1999;181:3837–3841.
    • (1999) J Bacteriol , vol.181 , pp. 3837-3841
    • Huang, M.1    Oppermann-Sanio, F.B.2    Steinbüchel, A.3
  • 32
    • 77955549846 scopus 로고    scopus 로고
    • Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis
    • Thanh TN, Jurgen B, Bauch M, et al. Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis. Appl Microbiol Biotechnol. 2010;87:2227–2235.
    • (2010) Appl Microbiol Biotechnol , vol.87 , pp. 2227-2235
    • Thanh, T.N.1    Jurgen, B.2    Bauch, M.3
  • 33
    • 84940205863 scopus 로고    scopus 로고
    • Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels
    • Yang T, Rao Z, Hu G, et al. Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels. Biotechnol Biofuels. 2015;8:129.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 129
    • Yang, T.1    Rao, Z.2    Hu, G.3
  • 34
    • 84942363291 scopus 로고    scopus 로고
    • Enhanced production of (R,R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca
    • Park JM, Rathnasingh C, Song H., Enhanced production of (R,R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca. J Ind Microbiol Biotechnol. 2015;42:1419–1425.
    • (2015) J Ind Microbiol Biotechnol , vol.42 , pp. 1419-1425
    • Park, J.M.1    Rathnasingh, C.2    Song, H.3
  • 35
    • 84940033066 scopus 로고    scopus 로고
    • Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing
    • Kim S, Hahn JS., Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab Eng. 2015;31:94–101.
    • (2015) Metab Eng , vol.31 , pp. 94-101
    • Kim, S.1    Hahn, J.S.2
  • 36
    • 84888004493 scopus 로고    scopus 로고
    • Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: effects of co-substrates on 2,3-butanediol production
    • Yang T-W, Rao Z-M, Zhang X, et al. Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: effects of co-substrates on 2,3-butanediol production. Appl Microbiol Biotechnol. 2013;97:7651–7658.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 7651-7658
    • Yang, T.-W.1    Rao, Z.-M.2    Zhang, X.3
  • 37
    • 85029663837 scopus 로고    scopus 로고
    • Improving acetoin productivity by over-expression of 6-phosphoric acid fructose kinase in Bacillus subtilis
    • Zhang X, Zhao X, Rao Z, et al. Improving acetoin productivity by over-expression of 6-phosphoric acid fructose kinase in Bacillus subtilis. Genom Appl Biol. 2015;34:2101–2107.
    • (2015) Genom Appl Biol , vol.34 , pp. 2101-2107
    • Zhang, X.1    Zhao, X.2    Rao, Z.3
  • 38
    • 84884835391 scopus 로고    scopus 로고
    • Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase
    • Yang T-W, Rao Z-M, Zhang X, et al. Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. PLoS One. 2013;8:e76149.
    • (2013) PLoS One , vol.8
    • Yang, T.-W.1    Rao, Z.-M.2    Zhang, X.3
  • 39
    • 84937813083 scopus 로고    scopus 로고
    • R-acetoin accumulation and dissimilation in Klebsiella pneumoniae
    • Wang D, Zhou J, Chen C, et al. R-acetoin accumulation and dissimilation in Klebsiella pneumoniae. J Ind Microbiol Biotechnol. 2015;42:1105–1115.
    • (2015) J Ind Microbiol Biotechnol , vol.42 , pp. 1105-1115
    • Wang, D.1    Zhou, J.2    Chen, C.3
  • 40
    • 84896881649 scopus 로고    scopus 로고
    • The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis
    • Zhang X, Zhang R, Bao T, et al. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab Eng. 2014;23:34–41.
    • (2014) Metab Eng , vol.23 , pp. 34-41
    • Zhang, X.1    Zhang, R.2    Bao, T.3
  • 41
    • 84895454815 scopus 로고    scopus 로고
    • Strategies for enhancing fermentative production of acetoin: a review
    • Xiao Z, Lu JR., Strategies for enhancing fermentative production of acetoin: a review. Biotechnol Adv. 2014;32:492–503.
    • (2014) Biotechnol Adv , vol.32 , pp. 492-503
    • Xiao, Z.1    Lu, J.R.2
  • 42
    • 84884355722 scopus 로고    scopus 로고
    • Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis
    • Zhang X, Zhang R, Bao T, et al. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis. J Ind Microbiol Biotechnol. 2013;40:1067–1076.
    • (2013) J Ind Microbiol Biotechnol , vol.40 , pp. 1067-1076
    • Zhang, X.1    Zhang, R.2    Bao, T.3
  • 43
    • 84905117794 scopus 로고    scopus 로고
    • Characterization of acetoin production in a budC gene disrupted mutant of Serratia marcescens G12
    • Gao S, Guo W, Shi L, et al. Characterization of acetoin production in a budC gene disrupted mutant of Serratia marcescens G12. J Ind Microbiol Biotechnol. 2014;41:1267–1274.
    • (2014) J Ind Microbiol Biotechnol , vol.41 , pp. 1267-1274
    • Gao, S.1    Guo, W.2    Shi, L.3
  • 44
    • 84960365090 scopus 로고    scopus 로고
    • Enhanced 2,3-butanediol production by optimizing fermentation conditions and engineering Klebsiella oxytoca M1 through overexpression of acetoin reductase
    • Cho S, Kim T, Woo HM, et al. Enhanced 2,3-butanediol production by optimizing fermentation conditions and engineering Klebsiella oxytoca M1 through overexpression of acetoin reductase. PLoS One. 2015;10:e0138109.
    • (2015) PLoS One , vol.10
    • Cho, S.1    Kim, T.2    Woo, H.M.3
  • 45
    • 84887082226 scopus 로고    scopus 로고
    • Effects of corn steep liquor on production of 2, 3-butanediol and acetoin by Bacillus subtilis
    • Yang T-W, Rao Z-M, Zhang X, et al. Effects of corn steep liquor on production of 2, 3-butanediol and acetoin by Bacillus subtilis. Process Biochem. 2013;48:1610–1617.
    • (2013) Process Biochem , vol.48 , pp. 1610-1617
    • Yang, T.-W.1    Rao, Z.-M.2    Zhang, X.3
  • 46
    • 84919415836 scopus 로고    scopus 로고
    • Enhanced production of 2,3-butanediol by overexpressing acetolactate synthase and acetoin reductase in Klebsiella pneumoniae
    • Guo XW, Zhang YH, Cao CH, et al. Enhanced production of 2,3-butanediol by overexpressing acetolactate synthase and acetoin reductase in Klebsiella pneumoniae. Biotechnol Appl Biochem. 2014;61:707–715.
    • (2014) Biotechnol Appl Biochem , vol.61 , pp. 707-715
    • Guo, X.W.1    Zhang, Y.H.2    Cao, C.H.3
  • 47
    • 84908192091 scopus 로고    scopus 로고
    • Redistribution of carbon flux toward 2,3-butanediol production in Klebsiella pneumoniae by metabolic engineering
    • Kim B, Lee S, Jeong D, et al. Redistribution of carbon flux toward 2,3-butanediol production in Klebsiella pneumoniae by metabolic engineering. PLoS One. 2014;9:e105322.
    • (2014) PLoS One , vol.9
    • Kim, B.1    Lee, S.2    Jeong, D.3
  • 48
    • 84953455334 scopus 로고    scopus 로고
    • Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli
    • de Oliveira RR, Nicholson WL., Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli. Appl Microbiol Biotechnol. 2016;100:719–728.
    • (2016) Appl Microbiol Biotechnol , vol.100 , pp. 719-728
    • de Oliveira, R.R.1    Nicholson, W.L.2
  • 49
    • 84939600952 scopus 로고    scopus 로고
    • Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens
    • Yang T, Rao Z, Zhang X, et al. Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microb Cell Fact. 2015;14:122.
    • (2015) Microb Cell Fact , vol.14 , pp. 122
    • Yang, T.1    Rao, Z.2    Zhang, X.3
  • 50
    • 84893016274 scopus 로고    scopus 로고
    • Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis
    • Qi G, Kang Y, Li L, et al. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels. 2014;7:16.
    • (2014) Biotechnol Biofuels , vol.7 , pp. 16
    • Qi, G.1    Kang, Y.2    Li, L.3
  • 51
    • 84940005446 scopus 로고    scopus 로고
    • Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production
    • Bai F, Dai L, Fan J, et al. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production. J Ind Microbiol Biotechnol. 2015;42:779–786.
    • (2015) J Ind Microbiol Biotechnol , vol.42 , pp. 779-786
    • Bai, F.1    Dai, L.2    Fan, J.3
  • 52
    • 84934949768 scopus 로고    scopus 로고
    • A non-pathogenic and optically high concentrated (R,R)-2,3-butanediol biosynthesizing Klebsiella strain
    • Lee S, Kim B, Yang J, et al. A non-pathogenic and optically high concentrated (R,R)-2,3-butanediol biosynthesizing Klebsiella strain. J Biotechnol. 2015;209:7–13.
    • (2015) J Biotechnol , vol.209 , pp. 7-13
    • Lee, S.1    Kim, B.2    Yang, J.3
  • 53
    • 0002507524 scopus 로고
    • The microbial production of 2,3-butanediol
    • Magee RJ, Kosaric N., The microbial production of 2,3-butanediol. Adv Appl Microbiol. 1987;32:89–161.
    • (1987) Adv Appl Microbiol , vol.32 , pp. 89-161
    • Magee, R.J.1    Kosaric, N.2
  • 54
    • 84938797200 scopus 로고    scopus 로고
    • Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis
    • Bao T, Zhang X, Zhao X, et al. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis. Biotechnol J. 2015;10:1298–1306.
    • (2015) Biotechnol J , vol.10 , pp. 1298-1306
    • Bao, T.1    Zhang, X.2    Zhao, X.3
  • 55
    • 84892451287 scopus 로고    scopus 로고
    • Engineering of carboligase activity reaction in Candida glabrata for acetoin production
    • Li S, Xu N, Liu L, et al. Engineering of carboligase activity reaction in Candida glabrata for acetoin production. Metab Eng. 2014;22:32–39.
    • (2014) Metab Eng , vol.22 , pp. 32-39
    • Li, S.1    Xu, N.2    Liu, L.3
  • 56
    • 85040956326 scopus 로고    scopus 로고
    • Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae
    • Ji X, Xia Z, Fu N, et al. Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae. Biotechnol Biofuels. 2013;6:7.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 7
    • Ji, X.1    Xia, Z.2    Fu, N.3
  • 57
    • 84862318026 scopus 로고    scopus 로고
    • Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase
    • Sun JA, Zhang LY, Rao B, et al. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour Technol. 2012;119:94–98.
    • (2012) Bioresour Technol , vol.119 , pp. 94-98
    • Sun, J.A.1    Zhang, L.Y.2    Rao, B.3
  • 58
    • 84904488853 scopus 로고    scopus 로고
    • Efficient whole-cell biocatalyst for acetoin production with NAD + regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis
    • Bao T, Zhang X, Rao Z, et al. Efficient whole-cell biocatalyst for acetoin production with NAD + regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. PLoS One. 2014;9:e102951.
    • (2014) PLoS One , vol.9
    • Bao, T.1    Zhang, X.2    Rao, Z.3
  • 59
    • 84903906224 scopus 로고    scopus 로고
    • Regulation of extracellular oxidoreduction potential enhanced (R,R)-2,3-butanediol production by Paenibacillus polymyxa CJX518
    • Dai JJ, Cheng JS, Liang YQ, et al. Regulation of extracellular oxidoreduction potential enhanced (R,R)-2,3-butanediol production by Paenibacillus polymyxa CJX518. Bioresour Technol. 2014;167:433–440.
    • (2014) Bioresour Technol , vol.167 , pp. 433-440
    • Dai, J.J.1    Cheng, J.S.2    Liang, Y.Q.3
  • 60
    • 84906779771 scopus 로고    scopus 로고
    • NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions
    • Fu J, Wang Z, Chen T, et al. NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnol Bioeng. 2014;111:2126–2131.
    • (2014) Biotechnol Bioeng , vol.111 , pp. 2126-2131
    • Fu, J.1    Wang, Z.2    Chen, T.3
  • 61
    • 76849116670 scopus 로고    scopus 로고
    • Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene
    • Ji XJ, Huang H, Zhu JG, et al. Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol. 2010;85:1751–1758.
    • (2010) Appl Microbiol Biotechnol , vol.85 , pp. 1751-1758
    • Ji, X.J.1    Huang, H.2    Zhu, J.G.3
  • 62
    • 84864687656 scopus 로고    scopus 로고
    • Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production
    • Jung MY, Ng CY, Song H, et al. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Appl Microbiol Biotechnol. 2012;95:461–469.
    • (2012) Appl Microbiol Biotechnol , vol.95 , pp. 461-469
    • Jung, M.Y.1    Ng, C.Y.2    Song, H.3
  • 64
    • 84879111205 scopus 로고    scopus 로고
    • Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production
    • Kim DK, Rathnasingh C, Song H, et al. Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production. J Biosci Bioeng. 2013;116:186–192.
    • (2013) J Biosci Bioeng , vol.116 , pp. 186-192
    • Kim, D.K.1    Rathnasingh, C.2    Song, H.3
  • 65
    • 84862800921 scopus 로고    scopus 로고
    • Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production
    • Wang Q, Chen T, Zhao X, et al. Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production. Biotechnol Bioeng. 2012;109:1610–1621.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 1610-1621
    • Wang, Q.1    Chen, T.2    Zhao, X.3
  • 66
    • 84874057458 scopus 로고    scopus 로고
    • Genome-scale reconstruction and in silico analysis of Klebsiella oxytoca for 2,3-butanediol production
    • Park JM, Song H, Lee HJ, et al. Genome-scale reconstruction and in silico analysis of Klebsiella oxytoca for 2,3-butanediol production. Microb Cell Fact. 2013;12:20.
    • (2013) Microb Cell Fact , vol.12 , pp. 20
    • Park, J.M.1    Song, H.2    Lee, H.J.3
  • 67
    • 84884353190 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production
    • Park JM, Song H, Lee HJ, et al. In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production. J Ind Microbiol Biotechnol. 2013;40:1057–1066.
    • (2013) J Ind Microbiol Biotechnol , vol.40 , pp. 1057-1066
    • Park, J.M.1    Song, H.2    Lee, H.J.3
  • 68
    • 84907029409 scopus 로고    scopus 로고
    • Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene
    • Jung MY, Mazumdar S, Shin SH, et al. Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene. Appl Environ Microbiol. 2014;80:6195–6203.
    • (2014) Appl Environ Microbiol , vol.80 , pp. 6195-6203
    • Jung, M.Y.1    Mazumdar, S.2    Shin, S.H.3
  • 69
    • 84928745415 scopus 로고    scopus 로고
    • Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium
    • Jantama K, Polyiam P, Khunnonkwao P, et al. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Metab Eng. 2015;30:16–26.
    • (2015) Metab Eng , vol.30 , pp. 16-26
    • Jantama, K.1    Polyiam, P.2    Khunnonkwao, P.3
  • 70
    • 84898010690 scopus 로고    scopus 로고
    • Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain
    • Guo X, Cao C, Wang Y, et al. Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain. Biotechnol Biofuels. 2014;7:44.
    • (2014) Biotechnol Biofuels , vol.7 , pp. 44
    • Guo, X.1    Cao, C.2    Wang, Y.3
  • 71
    • 84896847314 scopus 로고    scopus 로고
    • Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol
    • Xu Y, Chu H, Gao C, et al. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng. 2014;23:22–33.
    • (2014) Metab Eng , vol.23 , pp. 22-33
    • Xu, Y.1    Chu, H.2    Gao, C.3
  • 72
    • 84923868558 scopus 로고    scopus 로고
    • Increased 2,3-butanediol production by changing codon usages in Escherichia coli
    • Park SY, Kim B, Lee S, et al. Increased 2,3-butanediol production by changing codon usages in Escherichia coli. Biotechnol Appl Biochem. 2014;61:535–540.
    • (2014) Biotechnol Appl Biochem , vol.61 , pp. 535-540
    • Park, S.Y.1    Kim, B.2    Lee, S.3
  • 73
    • 84876300746 scopus 로고    scopus 로고
    • Microbial production of 2,3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli
    • Mazumdar S, Lee J, Oh MK., Microbial production of 2,3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli. Bioresour Technol. 2013;136:329–336.
    • (2013) Bioresour Technol , vol.136 , pp. 329-336
    • Mazumdar, S.1    Lee, J.2    Oh, M.K.3
  • 74
    • 0343924603 scopus 로고    scopus 로고
    • Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol
    • Ui S, Okajima Y, Mimura A, et al. Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol. J Ferment Bioeng. 1997;84:185–189.
    • (1997) J Ferment Bioeng , vol.84 , pp. 185-189
    • Ui, S.1    Okajima, Y.2    Mimura, A.3
  • 75
    • 84862802719 scopus 로고    scopus 로고
    • Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli
    • Lee S, Kim B, Park K, et al. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli. Appl Biochem Biotechnol. 2012;166:1801–1813.
    • (2012) Appl Biochem Biotechnol , vol.166 , pp. 1801-1813
    • Lee, S.1    Kim, B.2    Park, K.3
  • 76
    • 77949448789 scopus 로고    scopus 로고
    • Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli
    • Nielsen DR, Yoon SH, Yuan CJ, et al. Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli. Biotechnol J. 2010;5:274–284.
    • (2010) Biotechnol J , vol.5 , pp. 274-284
    • Nielsen, D.R.1    Yoon, S.H.2    Yuan, C.J.3
  • 77
    • 77955559433 scopus 로고    scopus 로고
    • Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition
    • Li Z-J, Jian J, Wei X-X, et al. Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition. Appl Microbiol Biotechnol. 2010;87:2001–2009.
    • (2010) Appl Microbiol Biotechnol , vol.87 , pp. 2001-2009
    • Li, Z.-J.1    Jian, J.2    Wei, X.-X.3
  • 78
    • 84907311048 scopus 로고    scopus 로고
    • Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin
    • Nakashima N, Akita H, Hoshino T., Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin. Metab Eng. 2014;25:204–214.
    • (2014) Metab Eng , vol.25 , pp. 204-214
    • Nakashima, N.1    Akita, H.2    Hoshino, T.3
  • 79
    • 84945174770 scopus 로고    scopus 로고
    • Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol
    • Kay JE, Jewett MC., Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol. Metab Eng. 2015;32:133–142.
    • (2015) Metab Eng , vol.32 , pp. 133-142
    • Kay, J.E.1    Jewett, M.C.2
  • 80
    • 84912528330 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin
    • Xu Q, Xie L, Li Y, et al. Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J Chem Technol Biotechnol. 2015;90:93–100.
    • (2015) J Chem Technol Biotechnol , vol.90 , pp. 93-100
    • Xu, Q.1    Xie, L.2    Li, Y.3
  • 81
    • 84925452363 scopus 로고    scopus 로고
    • Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol
    • Ji XJ, Liu LG, Shen MQ, et al. Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol. Biotechnol Bioeng. 2015;112:1056–1059.
    • (2015) Biotechnol Bioeng , vol.112 , pp. 1056-1059
    • Ji, X.J.1    Liu, L.G.2    Shen, M.Q.3
  • 82
    • 84953639059 scopus 로고    scopus 로고
    • Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R,R)-2,3-butanediol production
    • Tong YJ, Ji XJ, Shen MQ, et al. Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R,R)-2,3-butanediol production. Appl Microbiol Biotechnol. 2016;100:637–647.
    • (2016) Appl Microbiol Biotechnol , vol.100 , pp. 637-647
    • Tong, Y.J.1    Ji, X.J.2    Shen, M.Q.3
  • 83
    • 84868202553 scopus 로고    scopus 로고
    • Inhibition of acetate accumulation leads to enhanced production of (R,R)-2,3-butanediol from glycerol in Escherichia coli
    • Shen X, Lin Y, Jain R, et al. Inhibition of acetate accumulation leads to enhanced production of (R,R)-2,3-butanediol from glycerol in Escherichia coli. J Ind Microbiol Biotechnol. 2012;39:1725–1729.
    • (2012) J Ind Microbiol Biotechnol , vol.39 , pp. 1725-1729
    • Shen, X.1    Lin, Y.2    Jain, R.3
  • 84
    • 84892544984 scopus 로고    scopus 로고
    • Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl
    • Wang Y, Li L, Ma C, et al. Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl. Sci Rep. 2013;3:2643.
    • (2013) Sci Rep , vol.3 , pp. 2643
    • Wang, Y.1    Li, L.2    Ma, C.3
  • 85
    • 84895072222 scopus 로고    scopus 로고
    • Characterization of a stereospecific acetoin(diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol
    • Wang Z, Song Q, Yu M, et al. Characterization of a stereospecific acetoin(diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Appl Microbiol Biotechnol. 2014;98:641–650.
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 641-650
    • Wang, Z.1    Song, Q.2    Yu, M.3
  • 86
    • 9644289456 scopus 로고    scopus 로고
    • Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli
    • Ui S, Takusagawa Y, Sato T, et al. Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli. Lett Appl Microbiol. 2004;39:533–537.
    • (2004) Lett Appl Microbiol , vol.39 , pp. 533-537
    • Ui, S.1    Takusagawa, Y.2    Sato, T.3
  • 87
    • 77749245897 scopus 로고    scopus 로고
    • A novel whole-cell biocatalyst with NAD + regeneration for production of chiral chemicals
    • Xiao Z, Lv C, Gao C, et al. A novel whole-cell biocatalyst with NAD + regeneration for production of chiral chemicals. PLoS One. 2010;5:e8860.
    • (2010) PLoS One , vol.5
    • Xiao, Z.1    Lv, C.2    Gao, C.3
  • 88
    • 84941564993 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose
    • Chu H, Xin B, Liu P, et al. Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose. Biotechnol Biofuels. 2015;8:143.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 143
    • Chu, H.1    Xin, B.2    Liu, P.3
  • 89
    • 84945447957 scopus 로고    scopus 로고
    • Industrial production of 2,3-butanediol from the engineered Corynebacterium glutamicum
    • Yang J, Kim B, Kim H, et al. Industrial production of 2,3-butanediol from the engineered Corynebacterium glutamicum. Appl Biochem Biotechnol. 2015;178:2303–2313.
    • (2015) Appl Biochem Biotechnol , vol.178 , pp. 2303-2313
    • Yang, J.1    Kim, B.2    Kim, H.3
  • 90
    • 84945891778 scopus 로고    scopus 로고
    • Engineering Corynebacterium glutamicum for the production of 2,3-butanediol
    • Rados D, Carvalho AL, Wieschalka S, et al. Engineering Corynebacterium glutamicum for the production of 2,3-butanediol. Microb Cell Fact. 2015;14:171.
    • (2015) Microb Cell Fact , vol.14 , pp. 171
    • Rados, D.1    Carvalho, A.L.2    Wieschalka, S.3
  • 91
    • 84899647146 scopus 로고    scopus 로고
    • Enhancement of acetoin production in Candida glabrata by in silico-aided metabolic engineering
    • Li S, Gao X, Xu N, et al. Enhancement of acetoin production in Candida glabrata by in silico-aided metabolic engineering. Microb Cell Fact. 2014;13:55.
    • (2014) Microb Cell Fact , vol.13 , pp. 55
    • Li, S.1    Gao, X.2    Xu, N.3
  • 92
    • 84917739915 scopus 로고    scopus 로고
    • Compartmentalizing metabolic pathway in Candida glabrata for acetoin production
    • Li S, Liu L, Chen J., Compartmentalizing metabolic pathway in Candida glabrata for acetoin production. Metab Eng. 2015;28:1–7.
    • (2015) Metab Eng , vol.28 , pp. 1-7
    • Li, S.1    Liu, L.2    Chen, J.3
  • 93
    • 66249090878 scopus 로고    scopus 로고
    • Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae
    • Ehsani M, Fernandez MR, Biosca JA, et al. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae. Appl Environ Microbiol. 2009;75:3196–3205.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 3196-3205
    • Ehsani, M.1    Fernandez, M.R.2    Biosca, J.A.3
  • 94
    • 0030027827 scopus 로고    scopus 로고
    • Origin and production of acetoin during wine yeast fermentation
    • Romano P, Suzzi G., Origin and production of acetoin during wine yeast fermentation. Appl Environ Microbiol. 1996;62:309–315.
    • (1996) Appl Environ Microbiol , vol.62 , pp. 309-315
    • Romano, P.1    Suzzi, G.2
  • 95
    • 84861442550 scopus 로고    scopus 로고
    • Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
    • Ng CY, Jung MY, Lee J, et al. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact. 2012;11:68.
    • (2012) Microb Cell Fact , vol.11 , pp. 68
    • Ng, C.Y.1    Jung, M.Y.2    Lee, J.3
  • 96
    • 84882274841 scopus 로고    scopus 로고
    • Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
    • Kim SJ, Seo SO, Jin YS, et al. Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour Technol. 2013;146:274–281.
    • (2013) Bioresour Technol , vol.146 , pp. 274-281
    • Kim, S.J.1    Seo, S.O.2    Jin, Y.S.3
  • 97
    • 84896297653 scopus 로고    scopus 로고
    • Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab
    • Lian J, Chao R, Zhao H., Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab Eng. 2014;23:92–99.
    • (2014) Eng , vol.23 , pp. 92-99
    • Lian, J.1    Chao, R.2    Zhao, H.3
  • 98
    • 84909955815 scopus 로고    scopus 로고
    • Synthetic scaffold based on a cohesin-dockerin interaction for improved production of 2,3-butanediol in Saccharomyces cerevisiae
    • Kim S, Hahn JS., Synthetic scaffold based on a cohesin-dockerin interaction for improved production of 2,3-butanediol in Saccharomyces cerevisiae. J Biotechnol. 2014;192:192–196.
    • (2014) J Biotechnol , vol.192 , pp. 192-196
    • Kim, S.1    Hahn, J.S.2
  • 99
    • 84940044539 scopus 로고    scopus 로고
    • Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae
    • Kim JW, Seo SO, Zhang GC, et al. Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Bioresour Technol. 2015;191:512–519.
    • (2015) Bioresour Technol , vol.191 , pp. 512-519
    • Kim, J.W.1    Seo, S.O.2    Zhang, G.C.3
  • 100
    • 84923922989 scopus 로고    scopus 로고
    • Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae
    • Kim SJ, Seo SO, Park YC, et al. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. J Biotechnol. 2014;192:376–382.
    • (2014) J Biotechnol , vol.192 , pp. 376-382
    • Kim, S.J.1    Seo, S.O.2    Park, Y.C.3
  • 101
    • 84872862096 scopus 로고    scopus 로고
    • Cyanobacterial conversion of carbon dioxide to 2,3-butanediol
    • Oliver JW, Machado IM, Yoneda H, et al. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci USA. 2013;110:1249–1254.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 1249-1254
    • Oliver, J.W.1    Machado, I.M.2    Yoneda, H.3
  • 102
    • 84886418081 scopus 로고    scopus 로고
    • Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid-and enterobacteria
    • Savakis PE, Angermayr SA, Hellingwerf KJ., Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid-and enterobacteria. Metab Eng. 2013;20:121–130.
    • (2013) Metab Eng , vol.20 , pp. 121-130
    • Savakis, P.E.1    Angermayr, S.A.2    Hellingwerf, K.J.3
  • 103
    • 84893492693 scopus 로고    scopus 로고
    • Combinatorial optimization of cyanobacterial 2,3-butanediol production
    • Oliver JW, Machado IM, Yoneda H, et al. Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng. 2014;22:76–82.
    • (2014) Metab Eng , vol.22 , pp. 76-82
    • Oliver, J.W.1    Machado, I.M.2    Yoneda, H.3
  • 104
    • 84942454433 scopus 로고    scopus 로고
    • Genome engineering of the 2,3-butanediol biosynthetic pathway for tight regulation in Cyanobacteria
    • Nozzi NE, Atsumi S., Genome engineering of the 2,3-butanediol biosynthetic pathway for tight regulation in Cyanobacteria. ACS Synth Biol. 2015;4:1197–1204.
    • (2015) ACS Synth Biol , vol.4 , pp. 1197-1204
    • Nozzi, N.E.1    Atsumi, S.2
  • 105
    • 0031792165 scopus 로고    scopus 로고
    • Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors
    • Podschun R, Ullmann U., Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11:589–603.
    • (1998) Clin Microbiol Rev , vol.11 , pp. 589-603
    • Podschun, R.1    Ullmann, U.2
  • 106
    • 84880692515 scopus 로고    scopus 로고
    • Recent insights in the removal of Klebseilla pathogenicity factors for the industrial production of 2,3-butanediol
    • Shrivastav A, Lee J, Kim HY, et al. Recent insights in the removal of Klebseilla pathogenicity factors for the industrial production of 2,3-butanediol. J Microbiol Biotechnol. 2013;23:885–896.
    • (2013) J Microbiol Biotechnol , vol.23 , pp. 885-896
    • Shrivastav, A.1    Lee, J.2    Kim, H.Y.3
  • 107
    • 84874114043 scopus 로고    scopus 로고
    • Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene
    • Jung SG, Jang JH, Kim AY, et al. Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene. Appl Microbiol Biotechnol. 2013;97:1997–2007.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 1997-2007
    • Jung, S.G.1    Jang, J.H.2    Kim, A.Y.3
  • 108
    • 84946471786 scopus 로고    scopus 로고
    • Inactivation of the virulence factors from 2,3-butanediol-producing Klebsiella pneumoniae
    • Huynh DT, Kim AY, Seol IH, et al. Inactivation of the virulence factors from 2,3-butanediol-producing Klebsiella pneumoniae. Appl Microbiol Biotechnol. 2015;99:9427–9438.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 9427-9438
    • Huynh, D.T.1    Kim, A.Y.2    Seol, I.H.3
  • 109
    • 77956480023 scopus 로고    scopus 로고
    • Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30
    • Zhang L, Sun J, Hao Y, et al. Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30. J Ind Microbiol Biotechnol. 2010;37:857–862.
    • (2010) J Ind Microbiol Biotechnol , vol.37 , pp. 857-862
    • Zhang, L.1    Sun, J.2    Hao, Y.3
  • 110
    • 18244373205 scopus 로고    scopus 로고
    • Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family
    • Li H, Tanikawa T, Sato Y, et al. Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol Immunol. 2005;49:303–310.
    • (2005) Microbiol Immunol , vol.49 , pp. 303-310
    • Li, H.1    Tanikawa, T.2    Sato, Y.3
  • 111
    • 84920850498 scopus 로고    scopus 로고
    • Economic conversion of spirit-based distillers’ grain to 2,3-butanediol by Bacillus amyloliquefaciens
    • Yang T, Rao Z, Zhang X, et al. Economic conversion of spirit-based distillers’ grain to 2,3-butanediol by Bacillus amyloliquefaciens. Process Biochem. 2015;50:20–23.
    • (2015) Process Biochem , vol.50 , pp. 20-23
    • Yang, T.1    Rao, Z.2    Zhang, X.3
  • 112
    • 79961098783 scopus 로고    scopus 로고
    • 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis using industrial waste gas
    • Kopke M, Mihalcea C, Liew F, et al. 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis using industrial waste gas. Appl Environ Microbiol. 2011;77:5467–5475.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 5467-5475
    • Kopke, M.1    Mihalcea, C.2    Liew, F.3
  • 113
    • 84906252578 scopus 로고    scopus 로고
    • Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain
    • Li L, Li K, Wang K, et al. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Bioresour Technol. 2014;170:256–261.
    • (2014) Bioresour Technol , vol.170 , pp. 256-261
    • Li, L.1    Li, K.2    Wang, K.3
  • 114
    • 84907273969 scopus 로고    scopus 로고
    • 2,3-Butanediol production from starch by engineered Klebsiella pneumoniae G31-A
    • Tsvetanova F, Petrova P, Petrov K., 2,3-Butanediol production from starch by engineered Klebsiella pneumoniae G31-A. Appl Microbiol Biotechnol. 2014;98:2441–2451.
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 2441-2451
    • Tsvetanova, F.1    Petrova, P.2    Petrov, K.3
  • 115
    • 53349144682 scopus 로고    scopus 로고
    • One-step production of 2,3-butanediol from starch by secretory over-expression of amylase in Klebsiella pneumoniae
    • Zheng Y, Zhang H, Zhao L, et al. One-step production of 2,3-butanediol from starch by secretory over-expression of amylase in Klebsiella pneumoniae. J Chem Technol Biotechnol. 2008;83:1409–1412.
    • (2008) J Chem Technol Biotechnol , vol.83 , pp. 1409-1412
    • Zheng, Y.1    Zhang, H.2    Zhao, L.3
  • 116
    • 84938352131 scopus 로고    scopus 로고
    • Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production
    • Jung MY, Jung HM, Lee J, et al. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production. Biotechnol Biofuels. 2015;8:106.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 106
    • Jung, M.Y.1    Jung, H.M.2    Lee, J.3
  • 117
    • 57349088282 scopus 로고    scopus 로고
    • Glycerol: a promising and abundant carbon source for industrial microbiology
    • Da Silva GP, Mack M, Contiero J., Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv. 2009;27:30–39.
    • (2009) Biotechnol Adv , vol.27 , pp. 30-39
    • Da Silva, G.P.1    Mack, M.2    Contiero, J.3
  • 118
    • 77955662550 scopus 로고    scopus 로고
    • Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations
    • Petrov K, Petrova P., Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl Microbiol Biotechnol. 2010;87:943–949.
    • (2010) Appl Microbiol Biotechnol , vol.87 , pp. 943-949
    • Petrov, K.1    Petrova, P.2
  • 119
    • 84941631235 scopus 로고    scopus 로고
    • High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1
    • Cho S, Kim T, Woo HM, et al. High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnol Biofuels. 2015;8:146.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 146
    • Cho, S.1    Kim, T.2    Woo, H.M.3
  • 120
    • 84879862284 scopus 로고    scopus 로고
    • Synthetic 2,3-butanediol pathway integrated using Tn7-tool and powered Via elimination of sporulation and acetate production in acetogen biocatalyst
    • Tyurin M, Kiriukhin M., Synthetic 2,3-butanediol pathway integrated using Tn7-tool and powered Via elimination of sporulation and acetate production in acetogen biocatalyst. Appl Biochem Biotechnol. 2013;170:1503–1524.
    • (2013) Appl Biochem Biotechnol , vol.170 , pp. 1503-1524
    • Tyurin, M.1    Kiriukhin, M.2
  • 121
    • 47549110972 scopus 로고    scopus 로고
    • Carbon catabolite repression in bacteria: many ways to make the most out of nutrients
    • Gorke B, Stulke J., Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008;6:613–624.
    • (2008) Nat Rev Microbiol , vol.6 , pp. 613-624
    • Gorke, B.1    Stulke, J.2
  • 122
    • 84919915096 scopus 로고    scopus 로고
    • Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars
    • Li L, Li K, Wang Y, et al. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab Eng. 2015;28:19–27.
    • (2015) Metab Eng , vol.28 , pp. 19-27
    • Li, L.1    Li, K.2    Wang, Y.3
  • 123
    • 79952508559 scopus 로고    scopus 로고
    • Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures
    • Ji XJ, Nie ZK, Huang H, et al. Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures. Appl Microbiol Biotechnol. 2011;89:1119–1125.
    • (2011) Appl Microbiol Biotechnol , vol.89 , pp. 1119-1125
    • Ji, X.J.1    Nie, Z.K.2    Huang, H.3
  • 124
    • 84862262515 scopus 로고    scopus 로고
    • High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts
    • Shin HD, Yoon SH, Wu J, et al. High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts. Bioresour Technol. 2012;118:367–373.
    • (2012) Bioresour Technol , vol.118 , pp. 367-373
    • Shin, H.D.1    Yoon, S.H.2    Wu, J.3
  • 125
    • 84897445215 scopus 로고    scopus 로고
    • Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis
    • Zhang X, Bao T, Rao Z, et al. Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis. PLoS One. 2014;9:e91187.
    • (2014) PLoS One , vol.9
    • Zhang, X.1    Bao, T.2    Rao, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.