-
1
-
-
70349759561
-
Biotechnological production of 2,3-butanediol-current state and prospects
-
Celinska E, Grajek W. Biotechnological production of 2,3-butanediol-current state and prospects. Biotechnol Adv. 2009;27:715–725.
-
(2009)
Biotechnol Adv
, vol.27
, pp. 715-725
-
-
Celinska, E.1
Grajek, W.2
-
2
-
-
33847030736
-
Industrial biotechnology for the production of bio-based chemicals - a cradle-to-grave perspective
-
Hattikaul R, Tornvall U, Gustafsson L, et al. Industrial biotechnology for the production of bio-based chemicals - a cradle-to-grave perspective. Trends Biotechnol. 2007;25:119–124.
-
(2007)
Trends Biotechnol
, vol.25
, pp. 119-124
-
-
Hattikaul, R.1
Tornvall, U.2
Gustafsson, L.3
-
3
-
-
79952694448
-
Microbial 2,3-butanediol production: a state-of-the-art review
-
Ji XJ, Huang H, Ouyang PK., Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv. 2011;29:351–364.
-
(2011)
Biotechnol Adv
, vol.29
, pp. 351-364
-
-
Ji, X.J.1
Huang, H.2
Ouyang, P.K.3
-
4
-
-
84861440312
-
Systems metabolic engineering of microorganisms for natural and non-natural chemicals
-
Lee JW, Na D, Park JM, et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol. 2012;8:536–546.
-
(2012)
Nat Chem Biol
, vol.8
, pp. 536-546
-
-
Lee, J.W.1
Na, D.2
Park, J.M.3
-
6
-
-
84939262898
-
Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects
-
Yin X, Li J, Shin HD, et al. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects. Biotechnol Adv. 2015;33:830–841.
-
(2015)
Biotechnol Adv
, vol.33
, pp. 830-841
-
-
Yin, X.1
Li, J.2
Shin, H.D.3
-
7
-
-
84920664109
-
Genome sequence of type strain Paenibacillus polymyxa DSM 365, a highly efficient producer of optically active (R,R)-2,3-butanediol
-
Xie NZ, Li JX, Song LF, et al. Genome sequence of type strain Paenibacillus polymyxa DSM 365, a highly efficient producer of optically active (R,R)-2,3-butanediol. J Biotechnol. 2015;195:72–73.
-
(2015)
J Biotechnol
, vol.195
, pp. 72-73
-
-
Xie, N.Z.1
Li, J.X.2
Song, L.F.3
-
8
-
-
85008485224
-
Sequence of Klebsiella pneumoniae CICC10011, a promising strain for high 2,3-butanediol production
-
Tong YJ, Ji XJ, Liu LG, et al. Sequence of Klebsiella pneumoniae CICC10011, a promising strain for high 2,3-butanediol production. Genome Announc. 2015;3:e00802–e00815.
-
(2015)
Genome Announc
, vol.3
, pp. e00802-e00815
-
-
Tong, Y.J.1
Ji, X.J.2
Liu, L.G.3
-
9
-
-
84861207484
-
Complete genome sequence of Klebsiella oxytoca KCTC 1686, used in production of 2,3-butanediol
-
Shin SH, Kim S, Kim JY, et al. Complete genome sequence of Klebsiella oxytoca KCTC 1686, used in production of 2,3-butanediol. J Bacteriol. 2012;194:2371–2372.
-
(2012)
J Bacteriol
, vol.194
, pp. 2371-2372
-
-
Shin, S.H.1
Kim, S.2
Kim, J.Y.3
-
10
-
-
84866326630
-
Genome sequences of two thermophilic Bacillus licheniformis strains, efficient producers of platform chemical 2,3-butanediol
-
Li L, Su F, Wang Y, et al. Genome sequences of two thermophilic Bacillus licheniformis strains, efficient producers of platform chemical 2,3-butanediol. J Bacteriol. 2012;194:4133–4134.
-
(2012)
J Bacteriol
, vol.194
, pp. 4133-4134
-
-
Li, L.1
Su, F.2
Wang, Y.3
-
11
-
-
84999273683
-
Genome sequence of meso-2,3-butanediol-producing strain Serratia marcescens ATCC 14041
-
Li L, Wang Y, Li K, et al. Genome sequence of meso-2,3-butanediol-producing strain Serratia marcescens ATCC 14041. Genome Announc. 2014d;2:e00590–e00514.
-
(2014)
Genome Announc
, vol.2
, pp. e00514-e00590
-
-
Li, L.1
Wang, Y.2
Li, K.3
-
12
-
-
84997751525
-
Complete genome sequence of Raoultella ornithinolytica strain B6, a 2,3-butanediol-producing bacterium isolated from oil-contaminated soil
-
Shin SH, Um Y, Beak JH, et al. Complete genome sequence of Raoultella ornithinolytica strain B6, a 2,3-butanediol-producing bacterium isolated from oil-contaminated soil. Genome Announc. 2013;1:e00395–13.
-
(2013)
Genome Announc
, vol.1
, pp. e13-e00395
-
-
Shin, S.H.1
Um, Y.2
Beak, J.H.3
-
13
-
-
84863152203
-
Genome sequence of Enterobacter cloacae subsp. dissolvens SDM, an efficient biomass-utilizing producer of platform chemical 2,3-butanediol
-
Xu Y, Wang A, Tao F, et al. Genome sequence of Enterobacter cloacae subsp. dissolvens SDM, an efficient biomass-utilizing producer of platform chemical 2,3-butanediol. J Bacteriol. 2012;194:897–898.
-
(2012)
J Bacteriol
, vol.194
, pp. 897-898
-
-
Xu, Y.1
Wang, A.2
Tao, F.3
-
14
-
-
84907031402
-
Acetoin synthesis acquisition favors Escherichia coli growth at low pH
-
Vivijs B, Moons P, Aertsen A, et al. Acetoin synthesis acquisition favors Escherichia coli growth at low pH. Appl Environ Microbiol. 2014;80:6054–6061.
-
(2014)
Appl Environ Microbiol
, vol.80
, pp. 6054-6061
-
-
Vivijs, B.1
Moons, P.2
Aertsen, A.3
-
15
-
-
84894051057
-
2,3-Butanediol fermentation promotes growth of Serratia plymuthica at low pH but not survival of extreme acid challenge
-
Vivijs B, Moons P, Geeraerd AH, et al. 2,3-Butanediol fermentation promotes growth of Serratia plymuthica at low pH but not survival of extreme acid challenge. Int J Food Microbiol. 2014;175:36–44.
-
(2014)
Int J Food Microbiol
, vol.175
, pp. 36-44
-
-
Vivijs, B.1
Moons, P.2
Geeraerd, A.H.3
-
16
-
-
0034515065
-
Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa
-
Nakashimada Y, Marwoto B, Kashiwamura T, et al. Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. J Biosci Bioeng. 2000;90:661–664.
-
(2000)
J Biosci Bioeng
, vol.90
, pp. 661-664
-
-
Nakashimada, Y.1
Marwoto, B.2
Kashiwamura, T.3
-
17
-
-
34250166461
-
Acetoin metabolism in bacteria
-
Xiao Z, Xu P., Acetoin metabolism in bacteria. Crit Rev Microbiol. 2007;33:127–140.
-
(2007)
Crit Rev Microbiol
, vol.33
, pp. 127-140
-
-
Xiao, Z.1
Xu, P.2
-
18
-
-
0035098550
-
Biological production of 2,3-butanediol
-
Syu MJ., Biological production of 2,3-butanediol. Appl Microbiol Biotechnol. 2001;55:10–18.
-
(2001)
Appl Microbiol Biotechnol
, vol.55
, pp. 10-18
-
-
Syu, M.J.1
-
19
-
-
84857915171
-
Characterization and regulation of the 2,3-butanediol pathway in Serratia marcescens
-
Rao B, Zhang LY, Sun J, et al. Characterization and regulation of the 2,3-butanediol pathway in Serratia marcescens. Appl Microbiol Biotechnol. 2012;93:2147–2159.
-
(2012)
Appl Microbiol Biotechnol
, vol.93
, pp. 2147-2159
-
-
Rao, B.1
Zhang, L.Y.2
Sun, J.3
-
20
-
-
84975873886
-
Deletion of the budBAC operon in Klebsiella pneumoniae to understand the physiological role of 2,3-butanediol biosynthesis
-
Jeong D, Yang J, Lee S, et al. Deletion of the budBAC operon in Klebsiella pneumoniae to understand the physiological role of 2,3-butanediol biosynthesis. Prep Biochem Biotechnol. 2016;46:410–419.
-
(2016)
Prep Biochem Biotechnol
, vol.46
, pp. 410-419
-
-
Jeong, D.1
Yang, J.2
Lee, S.3
-
21
-
-
0027480789
-
Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes
-
Blomqvist K, Nikkola M, Lehtovaara P, et al. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol. 1993;175:1392–1404.
-
(1993)
J Bacteriol
, vol.175
, pp. 1392-1404
-
-
Blomqvist, K.1
Nikkola, M.2
Lehtovaara, P.3
-
22
-
-
0027167447
-
Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin
-
Renna MC, Najimudin N, Winik LR, et al. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol. 1993;175:3863–3875.
-
(1993)
J Bacteriol
, vol.175
, pp. 3863-3875
-
-
Renna, M.C.1
Najimudin, N.2
Winik, L.R.3
-
23
-
-
22144484496
-
Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae
-
Kovacikova G, Lin W, Skorupski K., Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol Microbiol. 2005;57:420–433.
-
(2005)
Mol Microbiol
, vol.57
, pp. 420-433
-
-
Kovacikova, G.1
Lin, W.2
Skorupski, K.3
-
24
-
-
0029084565
-
Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena
-
Mayer D, Schlensog V, Böck A, et al. Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena. J Bacteriol. 1995;177:5261–5269.
-
(1995)
J Bacteriol
, vol.177
, pp. 5261-5269
-
-
Mayer, D.1
Schlensog, V.2
Böck, A.3
-
25
-
-
84888832089
-
Observation of 2,3-butanediol biosynthesis in Lys regulator mutated Klebsiella pneumoniae at gene transcription level
-
Lee S, Kim B, Jeong D, et al. Observation of 2,3-butanediol biosynthesis in Lys regulator mutated Klebsiella pneumoniae at gene transcription level. J Biotechnol. 2013;168:520–526.
-
(2013)
J Biotechnol
, vol.168
, pp. 520-526
-
-
Lee, S.1
Kim, B.2
Jeong, D.3
-
26
-
-
79958234718
-
Integrated regulation of acetoin fermentation by quorum sensing and pH in Serratia plymuthica RVH1
-
Moons P, Van Houdt R, Vivijs B, et al. Integrated regulation of acetoin fermentation by quorum sensing and pH in Serratia plymuthica RVH1. Appl Environ Microbiol. 2011;77:3422–3427.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 3422-3427
-
-
Moons, P.1
Van Houdt, R.2
Vivijs, B.3
-
27
-
-
0027446708
-
Molecular biology of the LysR family of transcriptional regulators
-
Schell MA., Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol. 1993;47:597–626.
-
(1993)
Annu Rev Microbiol
, vol.47
, pp. 597-626
-
-
Schell, M.A.1
-
28
-
-
34249324047
-
Quorum-sensing-dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N
-
Van Houdt R, Aertsen A, Michiels CW., Quorum-sensing-dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N. Res Microbiol. 2007;158:379–385.
-
(2007)
Res Microbiol
, vol.158
, pp. 379-385
-
-
Van Houdt, R.1
Aertsen, A.2
Michiels, C.W.3
-
29
-
-
0025913664
-
Identification and molecular characterization of the Alcaligenes eutrophus H16 aco operon genes involved in acetoin catabolism
-
Priefert H, Hein S, Krüger N, et al. Identification and molecular characterization of the Alcaligenes eutrophus H16 aco operon genes involved in acetoin catabolism. J Bacteriol. 1991;173:4056–4071.
-
(1991)
J Bacteriol
, vol.173
, pp. 4056-4071
-
-
Priefert, H.1
Hein, S.2
Krüger, N.3
-
30
-
-
0028157328
-
Identification and molecular characterization of the aco genes encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme system
-
Oppermann FB, Steinbüchel A., Identification and molecular characterization of the aco genes encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme system. J Bacteriol. 1994;176:469–485.
-
(1994)
J Bacteriol
, vol.176
, pp. 469-485
-
-
Oppermann, F.B.1
Steinbüchel, A.2
-
31
-
-
0033055035
-
Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway
-
Huang M, Oppermann-Sanio FB, Steinbüchel A., Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J Bacteriol. 1999;181:3837–3841.
-
(1999)
J Bacteriol
, vol.181
, pp. 3837-3841
-
-
Huang, M.1
Oppermann-Sanio, F.B.2
Steinbüchel, A.3
-
32
-
-
77955549846
-
Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis
-
Thanh TN, Jurgen B, Bauch M, et al. Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis. Appl Microbiol Biotechnol. 2010;87:2227–2235.
-
(2010)
Appl Microbiol Biotechnol
, vol.87
, pp. 2227-2235
-
-
Thanh, T.N.1
Jurgen, B.2
Bauch, M.3
-
33
-
-
84940205863
-
Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels
-
Yang T, Rao Z, Hu G, et al. Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels. Biotechnol Biofuels. 2015;8:129.
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 129
-
-
Yang, T.1
Rao, Z.2
Hu, G.3
-
34
-
-
84942363291
-
Enhanced production of (R,R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca
-
Park JM, Rathnasingh C, Song H., Enhanced production of (R,R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca. J Ind Microbiol Biotechnol. 2015;42:1419–1425.
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 1419-1425
-
-
Park, J.M.1
Rathnasingh, C.2
Song, H.3
-
35
-
-
84940033066
-
Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing
-
Kim S, Hahn JS., Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab Eng. 2015;31:94–101.
-
(2015)
Metab Eng
, vol.31
, pp. 94-101
-
-
Kim, S.1
Hahn, J.S.2
-
36
-
-
84888004493
-
Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: effects of co-substrates on 2,3-butanediol production
-
Yang T-W, Rao Z-M, Zhang X, et al. Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: effects of co-substrates on 2,3-butanediol production. Appl Microbiol Biotechnol. 2013;97:7651–7658.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, pp. 7651-7658
-
-
Yang, T.-W.1
Rao, Z.-M.2
Zhang, X.3
-
37
-
-
85029663837
-
Improving acetoin productivity by over-expression of 6-phosphoric acid fructose kinase in Bacillus subtilis
-
Zhang X, Zhao X, Rao Z, et al. Improving acetoin productivity by over-expression of 6-phosphoric acid fructose kinase in Bacillus subtilis. Genom Appl Biol. 2015;34:2101–2107.
-
(2015)
Genom Appl Biol
, vol.34
, pp. 2101-2107
-
-
Zhang, X.1
Zhao, X.2
Rao, Z.3
-
38
-
-
84884835391
-
Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase
-
Yang T-W, Rao Z-M, Zhang X, et al. Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. PLoS One. 2013;8:e76149.
-
(2013)
PLoS One
, vol.8
-
-
Yang, T.-W.1
Rao, Z.-M.2
Zhang, X.3
-
39
-
-
84937813083
-
R-acetoin accumulation and dissimilation in Klebsiella pneumoniae
-
Wang D, Zhou J, Chen C, et al. R-acetoin accumulation and dissimilation in Klebsiella pneumoniae. J Ind Microbiol Biotechnol. 2015;42:1105–1115.
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 1105-1115
-
-
Wang, D.1
Zhou, J.2
Chen, C.3
-
40
-
-
84896881649
-
The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis
-
Zhang X, Zhang R, Bao T, et al. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab Eng. 2014;23:34–41.
-
(2014)
Metab Eng
, vol.23
, pp. 34-41
-
-
Zhang, X.1
Zhang, R.2
Bao, T.3
-
41
-
-
84895454815
-
Strategies for enhancing fermentative production of acetoin: a review
-
Xiao Z, Lu JR., Strategies for enhancing fermentative production of acetoin: a review. Biotechnol Adv. 2014;32:492–503.
-
(2014)
Biotechnol Adv
, vol.32
, pp. 492-503
-
-
Xiao, Z.1
Lu, J.R.2
-
42
-
-
84884355722
-
Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis
-
Zhang X, Zhang R, Bao T, et al. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis. J Ind Microbiol Biotechnol. 2013;40:1067–1076.
-
(2013)
J Ind Microbiol Biotechnol
, vol.40
, pp. 1067-1076
-
-
Zhang, X.1
Zhang, R.2
Bao, T.3
-
43
-
-
84905117794
-
Characterization of acetoin production in a budC gene disrupted mutant of Serratia marcescens G12
-
Gao S, Guo W, Shi L, et al. Characterization of acetoin production in a budC gene disrupted mutant of Serratia marcescens G12. J Ind Microbiol Biotechnol. 2014;41:1267–1274.
-
(2014)
J Ind Microbiol Biotechnol
, vol.41
, pp. 1267-1274
-
-
Gao, S.1
Guo, W.2
Shi, L.3
-
44
-
-
84960365090
-
Enhanced 2,3-butanediol production by optimizing fermentation conditions and engineering Klebsiella oxytoca M1 through overexpression of acetoin reductase
-
Cho S, Kim T, Woo HM, et al. Enhanced 2,3-butanediol production by optimizing fermentation conditions and engineering Klebsiella oxytoca M1 through overexpression of acetoin reductase. PLoS One. 2015;10:e0138109.
-
(2015)
PLoS One
, vol.10
-
-
Cho, S.1
Kim, T.2
Woo, H.M.3
-
45
-
-
84887082226
-
Effects of corn steep liquor on production of 2, 3-butanediol and acetoin by Bacillus subtilis
-
Yang T-W, Rao Z-M, Zhang X, et al. Effects of corn steep liquor on production of 2, 3-butanediol and acetoin by Bacillus subtilis. Process Biochem. 2013;48:1610–1617.
-
(2013)
Process Biochem
, vol.48
, pp. 1610-1617
-
-
Yang, T.-W.1
Rao, Z.-M.2
Zhang, X.3
-
46
-
-
84919415836
-
Enhanced production of 2,3-butanediol by overexpressing acetolactate synthase and acetoin reductase in Klebsiella pneumoniae
-
Guo XW, Zhang YH, Cao CH, et al. Enhanced production of 2,3-butanediol by overexpressing acetolactate synthase and acetoin reductase in Klebsiella pneumoniae. Biotechnol Appl Biochem. 2014;61:707–715.
-
(2014)
Biotechnol Appl Biochem
, vol.61
, pp. 707-715
-
-
Guo, X.W.1
Zhang, Y.H.2
Cao, C.H.3
-
47
-
-
84908192091
-
Redistribution of carbon flux toward 2,3-butanediol production in Klebsiella pneumoniae by metabolic engineering
-
Kim B, Lee S, Jeong D, et al. Redistribution of carbon flux toward 2,3-butanediol production in Klebsiella pneumoniae by metabolic engineering. PLoS One. 2014;9:e105322.
-
(2014)
PLoS One
, vol.9
-
-
Kim, B.1
Lee, S.2
Jeong, D.3
-
48
-
-
84953455334
-
Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli
-
de Oliveira RR, Nicholson WL., Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli. Appl Microbiol Biotechnol. 2016;100:719–728.
-
(2016)
Appl Microbiol Biotechnol
, vol.100
, pp. 719-728
-
-
de Oliveira, R.R.1
Nicholson, W.L.2
-
49
-
-
84939600952
-
Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens
-
Yang T, Rao Z, Zhang X, et al. Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microb Cell Fact. 2015;14:122.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 122
-
-
Yang, T.1
Rao, Z.2
Zhang, X.3
-
50
-
-
84893016274
-
Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis
-
Qi G, Kang Y, Li L, et al. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels. 2014;7:16.
-
(2014)
Biotechnol Biofuels
, vol.7
, pp. 16
-
-
Qi, G.1
Kang, Y.2
Li, L.3
-
51
-
-
84940005446
-
Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production
-
Bai F, Dai L, Fan J, et al. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production. J Ind Microbiol Biotechnol. 2015;42:779–786.
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 779-786
-
-
Bai, F.1
Dai, L.2
Fan, J.3
-
52
-
-
84934949768
-
A non-pathogenic and optically high concentrated (R,R)-2,3-butanediol biosynthesizing Klebsiella strain
-
Lee S, Kim B, Yang J, et al. A non-pathogenic and optically high concentrated (R,R)-2,3-butanediol biosynthesizing Klebsiella strain. J Biotechnol. 2015;209:7–13.
-
(2015)
J Biotechnol
, vol.209
, pp. 7-13
-
-
Lee, S.1
Kim, B.2
Yang, J.3
-
53
-
-
0002507524
-
The microbial production of 2,3-butanediol
-
Magee RJ, Kosaric N., The microbial production of 2,3-butanediol. Adv Appl Microbiol. 1987;32:89–161.
-
(1987)
Adv Appl Microbiol
, vol.32
, pp. 89-161
-
-
Magee, R.J.1
Kosaric, N.2
-
54
-
-
84938797200
-
Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis
-
Bao T, Zhang X, Zhao X, et al. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis. Biotechnol J. 2015;10:1298–1306.
-
(2015)
Biotechnol J
, vol.10
, pp. 1298-1306
-
-
Bao, T.1
Zhang, X.2
Zhao, X.3
-
55
-
-
84892451287
-
Engineering of carboligase activity reaction in Candida glabrata for acetoin production
-
Li S, Xu N, Liu L, et al. Engineering of carboligase activity reaction in Candida glabrata for acetoin production. Metab Eng. 2014;22:32–39.
-
(2014)
Metab Eng
, vol.22
, pp. 32-39
-
-
Li, S.1
Xu, N.2
Liu, L.3
-
56
-
-
85040956326
-
Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae
-
Ji X, Xia Z, Fu N, et al. Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae. Biotechnol Biofuels. 2013;6:7.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 7
-
-
Ji, X.1
Xia, Z.2
Fu, N.3
-
57
-
-
84862318026
-
Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase
-
Sun JA, Zhang LY, Rao B, et al. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour Technol. 2012;119:94–98.
-
(2012)
Bioresour Technol
, vol.119
, pp. 94-98
-
-
Sun, J.A.1
Zhang, L.Y.2
Rao, B.3
-
58
-
-
84904488853
-
Efficient whole-cell biocatalyst for acetoin production with NAD + regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis
-
Bao T, Zhang X, Rao Z, et al. Efficient whole-cell biocatalyst for acetoin production with NAD + regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. PLoS One. 2014;9:e102951.
-
(2014)
PLoS One
, vol.9
-
-
Bao, T.1
Zhang, X.2
Rao, Z.3
-
59
-
-
84903906224
-
Regulation of extracellular oxidoreduction potential enhanced (R,R)-2,3-butanediol production by Paenibacillus polymyxa CJX518
-
Dai JJ, Cheng JS, Liang YQ, et al. Regulation of extracellular oxidoreduction potential enhanced (R,R)-2,3-butanediol production by Paenibacillus polymyxa CJX518. Bioresour Technol. 2014;167:433–440.
-
(2014)
Bioresour Technol
, vol.167
, pp. 433-440
-
-
Dai, J.J.1
Cheng, J.S.2
Liang, Y.Q.3
-
60
-
-
84906779771
-
NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions
-
Fu J, Wang Z, Chen T, et al. NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnol Bioeng. 2014;111:2126–2131.
-
(2014)
Biotechnol Bioeng
, vol.111
, pp. 2126-2131
-
-
Fu, J.1
Wang, Z.2
Chen, T.3
-
61
-
-
76849116670
-
Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene
-
Ji XJ, Huang H, Zhu JG, et al. Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol. 2010;85:1751–1758.
-
(2010)
Appl Microbiol Biotechnol
, vol.85
, pp. 1751-1758
-
-
Ji, X.J.1
Huang, H.2
Zhu, J.G.3
-
62
-
-
84864687656
-
Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production
-
Jung MY, Ng CY, Song H, et al. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Appl Microbiol Biotechnol. 2012;95:461–469.
-
(2012)
Appl Microbiol Biotechnol
, vol.95
, pp. 461-469
-
-
Jung, M.Y.1
Ng, C.Y.2
Song, H.3
-
64
-
-
84879111205
-
Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production
-
Kim DK, Rathnasingh C, Song H, et al. Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production. J Biosci Bioeng. 2013;116:186–192.
-
(2013)
J Biosci Bioeng
, vol.116
, pp. 186-192
-
-
Kim, D.K.1
Rathnasingh, C.2
Song, H.3
-
65
-
-
84862800921
-
Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production
-
Wang Q, Chen T, Zhao X, et al. Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production. Biotechnol Bioeng. 2012;109:1610–1621.
-
(2012)
Biotechnol Bioeng
, vol.109
, pp. 1610-1621
-
-
Wang, Q.1
Chen, T.2
Zhao, X.3
-
66
-
-
84874057458
-
Genome-scale reconstruction and in silico analysis of Klebsiella oxytoca for 2,3-butanediol production
-
Park JM, Song H, Lee HJ, et al. Genome-scale reconstruction and in silico analysis of Klebsiella oxytoca for 2,3-butanediol production. Microb Cell Fact. 2013;12:20.
-
(2013)
Microb Cell Fact
, vol.12
, pp. 20
-
-
Park, J.M.1
Song, H.2
Lee, H.J.3
-
67
-
-
84884353190
-
In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production
-
Park JM, Song H, Lee HJ, et al. In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production. J Ind Microbiol Biotechnol. 2013;40:1057–1066.
-
(2013)
J Ind Microbiol Biotechnol
, vol.40
, pp. 1057-1066
-
-
Park, J.M.1
Song, H.2
Lee, H.J.3
-
68
-
-
84907029409
-
Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene
-
Jung MY, Mazumdar S, Shin SH, et al. Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene. Appl Environ Microbiol. 2014;80:6195–6203.
-
(2014)
Appl Environ Microbiol
, vol.80
, pp. 6195-6203
-
-
Jung, M.Y.1
Mazumdar, S.2
Shin, S.H.3
-
69
-
-
84928745415
-
Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium
-
Jantama K, Polyiam P, Khunnonkwao P, et al. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Metab Eng. 2015;30:16–26.
-
(2015)
Metab Eng
, vol.30
, pp. 16-26
-
-
Jantama, K.1
Polyiam, P.2
Khunnonkwao, P.3
-
70
-
-
84898010690
-
Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain
-
Guo X, Cao C, Wang Y, et al. Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumoniae strain. Biotechnol Biofuels. 2014;7:44.
-
(2014)
Biotechnol Biofuels
, vol.7
, pp. 44
-
-
Guo, X.1
Cao, C.2
Wang, Y.3
-
71
-
-
84896847314
-
Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol
-
Xu Y, Chu H, Gao C, et al. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng. 2014;23:22–33.
-
(2014)
Metab Eng
, vol.23
, pp. 22-33
-
-
Xu, Y.1
Chu, H.2
Gao, C.3
-
72
-
-
84923868558
-
Increased 2,3-butanediol production by changing codon usages in Escherichia coli
-
Park SY, Kim B, Lee S, et al. Increased 2,3-butanediol production by changing codon usages in Escherichia coli. Biotechnol Appl Biochem. 2014;61:535–540.
-
(2014)
Biotechnol Appl Biochem
, vol.61
, pp. 535-540
-
-
Park, S.Y.1
Kim, B.2
Lee, S.3
-
73
-
-
84876300746
-
Microbial production of 2,3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli
-
Mazumdar S, Lee J, Oh MK., Microbial production of 2,3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli. Bioresour Technol. 2013;136:329–336.
-
(2013)
Bioresour Technol
, vol.136
, pp. 329-336
-
-
Mazumdar, S.1
Lee, J.2
Oh, M.K.3
-
74
-
-
0343924603
-
Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol
-
Ui S, Okajima Y, Mimura A, et al. Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol. J Ferment Bioeng. 1997;84:185–189.
-
(1997)
J Ferment Bioeng
, vol.84
, pp. 185-189
-
-
Ui, S.1
Okajima, Y.2
Mimura, A.3
-
75
-
-
84862802719
-
Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli
-
Lee S, Kim B, Park K, et al. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli. Appl Biochem Biotechnol. 2012;166:1801–1813.
-
(2012)
Appl Biochem Biotechnol
, vol.166
, pp. 1801-1813
-
-
Lee, S.1
Kim, B.2
Park, K.3
-
76
-
-
77949448789
-
Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli
-
Nielsen DR, Yoon SH, Yuan CJ, et al. Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli. Biotechnol J. 2010;5:274–284.
-
(2010)
Biotechnol J
, vol.5
, pp. 274-284
-
-
Nielsen, D.R.1
Yoon, S.H.2
Yuan, C.J.3
-
77
-
-
77955559433
-
Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition
-
Li Z-J, Jian J, Wei X-X, et al. Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition. Appl Microbiol Biotechnol. 2010;87:2001–2009.
-
(2010)
Appl Microbiol Biotechnol
, vol.87
, pp. 2001-2009
-
-
Li, Z.-J.1
Jian, J.2
Wei, X.-X.3
-
78
-
-
84907311048
-
Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin
-
Nakashima N, Akita H, Hoshino T., Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin. Metab Eng. 2014;25:204–214.
-
(2014)
Metab Eng
, vol.25
, pp. 204-214
-
-
Nakashima, N.1
Akita, H.2
Hoshino, T.3
-
79
-
-
84945174770
-
Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol
-
Kay JE, Jewett MC., Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol. Metab Eng. 2015;32:133–142.
-
(2015)
Metab Eng
, vol.32
, pp. 133-142
-
-
Kay, J.E.1
Jewett, M.C.2
-
80
-
-
84912528330
-
Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin
-
Xu Q, Xie L, Li Y, et al. Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J Chem Technol Biotechnol. 2015;90:93–100.
-
(2015)
J Chem Technol Biotechnol
, vol.90
, pp. 93-100
-
-
Xu, Q.1
Xie, L.2
Li, Y.3
-
81
-
-
84925452363
-
Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol
-
Ji XJ, Liu LG, Shen MQ, et al. Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol. Biotechnol Bioeng. 2015;112:1056–1059.
-
(2015)
Biotechnol Bioeng
, vol.112
, pp. 1056-1059
-
-
Ji, X.J.1
Liu, L.G.2
Shen, M.Q.3
-
82
-
-
84953639059
-
Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R,R)-2,3-butanediol production
-
Tong YJ, Ji XJ, Shen MQ, et al. Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R,R)-2,3-butanediol production. Appl Microbiol Biotechnol. 2016;100:637–647.
-
(2016)
Appl Microbiol Biotechnol
, vol.100
, pp. 637-647
-
-
Tong, Y.J.1
Ji, X.J.2
Shen, M.Q.3
-
83
-
-
84868202553
-
Inhibition of acetate accumulation leads to enhanced production of (R,R)-2,3-butanediol from glycerol in Escherichia coli
-
Shen X, Lin Y, Jain R, et al. Inhibition of acetate accumulation leads to enhanced production of (R,R)-2,3-butanediol from glycerol in Escherichia coli. J Ind Microbiol Biotechnol. 2012;39:1725–1729.
-
(2012)
J Ind Microbiol Biotechnol
, vol.39
, pp. 1725-1729
-
-
Shen, X.1
Lin, Y.2
Jain, R.3
-
84
-
-
84892544984
-
Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl
-
Wang Y, Li L, Ma C, et al. Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl. Sci Rep. 2013;3:2643.
-
(2013)
Sci Rep
, vol.3
, pp. 2643
-
-
Wang, Y.1
Li, L.2
Ma, C.3
-
85
-
-
84895072222
-
Characterization of a stereospecific acetoin(diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol
-
Wang Z, Song Q, Yu M, et al. Characterization of a stereospecific acetoin(diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Appl Microbiol Biotechnol. 2014;98:641–650.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 641-650
-
-
Wang, Z.1
Song, Q.2
Yu, M.3
-
86
-
-
9644289456
-
Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli
-
Ui S, Takusagawa Y, Sato T, et al. Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli. Lett Appl Microbiol. 2004;39:533–537.
-
(2004)
Lett Appl Microbiol
, vol.39
, pp. 533-537
-
-
Ui, S.1
Takusagawa, Y.2
Sato, T.3
-
87
-
-
77749245897
-
A novel whole-cell biocatalyst with NAD + regeneration for production of chiral chemicals
-
Xiao Z, Lv C, Gao C, et al. A novel whole-cell biocatalyst with NAD + regeneration for production of chiral chemicals. PLoS One. 2010;5:e8860.
-
(2010)
PLoS One
, vol.5
-
-
Xiao, Z.1
Lv, C.2
Gao, C.3
-
88
-
-
84941564993
-
Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose
-
Chu H, Xin B, Liu P, et al. Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose. Biotechnol Biofuels. 2015;8:143.
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 143
-
-
Chu, H.1
Xin, B.2
Liu, P.3
-
89
-
-
84945447957
-
Industrial production of 2,3-butanediol from the engineered Corynebacterium glutamicum
-
Yang J, Kim B, Kim H, et al. Industrial production of 2,3-butanediol from the engineered Corynebacterium glutamicum. Appl Biochem Biotechnol. 2015;178:2303–2313.
-
(2015)
Appl Biochem Biotechnol
, vol.178
, pp. 2303-2313
-
-
Yang, J.1
Kim, B.2
Kim, H.3
-
90
-
-
84945891778
-
Engineering Corynebacterium glutamicum for the production of 2,3-butanediol
-
Rados D, Carvalho AL, Wieschalka S, et al. Engineering Corynebacterium glutamicum for the production of 2,3-butanediol. Microb Cell Fact. 2015;14:171.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 171
-
-
Rados, D.1
Carvalho, A.L.2
Wieschalka, S.3
-
91
-
-
84899647146
-
Enhancement of acetoin production in Candida glabrata by in silico-aided metabolic engineering
-
Li S, Gao X, Xu N, et al. Enhancement of acetoin production in Candida glabrata by in silico-aided metabolic engineering. Microb Cell Fact. 2014;13:55.
-
(2014)
Microb Cell Fact
, vol.13
, pp. 55
-
-
Li, S.1
Gao, X.2
Xu, N.3
-
92
-
-
84917739915
-
Compartmentalizing metabolic pathway in Candida glabrata for acetoin production
-
Li S, Liu L, Chen J., Compartmentalizing metabolic pathway in Candida glabrata for acetoin production. Metab Eng. 2015;28:1–7.
-
(2015)
Metab Eng
, vol.28
, pp. 1-7
-
-
Li, S.1
Liu, L.2
Chen, J.3
-
93
-
-
66249090878
-
Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae
-
Ehsani M, Fernandez MR, Biosca JA, et al. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae. Appl Environ Microbiol. 2009;75:3196–3205.
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 3196-3205
-
-
Ehsani, M.1
Fernandez, M.R.2
Biosca, J.A.3
-
94
-
-
0030027827
-
Origin and production of acetoin during wine yeast fermentation
-
Romano P, Suzzi G., Origin and production of acetoin during wine yeast fermentation. Appl Environ Microbiol. 1996;62:309–315.
-
(1996)
Appl Environ Microbiol
, vol.62
, pp. 309-315
-
-
Romano, P.1
Suzzi, G.2
-
95
-
-
84861442550
-
Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
-
Ng CY, Jung MY, Lee J, et al. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact. 2012;11:68.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 68
-
-
Ng, C.Y.1
Jung, M.Y.2
Lee, J.3
-
96
-
-
84882274841
-
Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
-
Kim SJ, Seo SO, Jin YS, et al. Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour Technol. 2013;146:274–281.
-
(2013)
Bioresour Technol
, vol.146
, pp. 274-281
-
-
Kim, S.J.1
Seo, S.O.2
Jin, Y.S.3
-
97
-
-
84896297653
-
Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab
-
Lian J, Chao R, Zhao H., Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab Eng. 2014;23:92–99.
-
(2014)
Eng
, vol.23
, pp. 92-99
-
-
Lian, J.1
Chao, R.2
Zhao, H.3
-
98
-
-
84909955815
-
Synthetic scaffold based on a cohesin-dockerin interaction for improved production of 2,3-butanediol in Saccharomyces cerevisiae
-
Kim S, Hahn JS., Synthetic scaffold based on a cohesin-dockerin interaction for improved production of 2,3-butanediol in Saccharomyces cerevisiae. J Biotechnol. 2014;192:192–196.
-
(2014)
J Biotechnol
, vol.192
, pp. 192-196
-
-
Kim, S.1
Hahn, J.S.2
-
99
-
-
84940044539
-
Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae
-
Kim JW, Seo SO, Zhang GC, et al. Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Bioresour Technol. 2015;191:512–519.
-
(2015)
Bioresour Technol
, vol.191
, pp. 512-519
-
-
Kim, J.W.1
Seo, S.O.2
Zhang, G.C.3
-
100
-
-
84923922989
-
Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae
-
Kim SJ, Seo SO, Park YC, et al. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. J Biotechnol. 2014;192:376–382.
-
(2014)
J Biotechnol
, vol.192
, pp. 376-382
-
-
Kim, S.J.1
Seo, S.O.2
Park, Y.C.3
-
101
-
-
84872862096
-
Cyanobacterial conversion of carbon dioxide to 2,3-butanediol
-
Oliver JW, Machado IM, Yoneda H, et al. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci USA. 2013;110:1249–1254.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 1249-1254
-
-
Oliver, J.W.1
Machado, I.M.2
Yoneda, H.3
-
102
-
-
84886418081
-
Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid-and enterobacteria
-
Savakis PE, Angermayr SA, Hellingwerf KJ., Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid-and enterobacteria. Metab Eng. 2013;20:121–130.
-
(2013)
Metab Eng
, vol.20
, pp. 121-130
-
-
Savakis, P.E.1
Angermayr, S.A.2
Hellingwerf, K.J.3
-
103
-
-
84893492693
-
Combinatorial optimization of cyanobacterial 2,3-butanediol production
-
Oliver JW, Machado IM, Yoneda H, et al. Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng. 2014;22:76–82.
-
(2014)
Metab Eng
, vol.22
, pp. 76-82
-
-
Oliver, J.W.1
Machado, I.M.2
Yoneda, H.3
-
104
-
-
84942454433
-
Genome engineering of the 2,3-butanediol biosynthetic pathway for tight regulation in Cyanobacteria
-
Nozzi NE, Atsumi S., Genome engineering of the 2,3-butanediol biosynthetic pathway for tight regulation in Cyanobacteria. ACS Synth Biol. 2015;4:1197–1204.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 1197-1204
-
-
Nozzi, N.E.1
Atsumi, S.2
-
105
-
-
0031792165
-
Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors
-
Podschun R, Ullmann U., Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11:589–603.
-
(1998)
Clin Microbiol Rev
, vol.11
, pp. 589-603
-
-
Podschun, R.1
Ullmann, U.2
-
106
-
-
84880692515
-
Recent insights in the removal of Klebseilla pathogenicity factors for the industrial production of 2,3-butanediol
-
Shrivastav A, Lee J, Kim HY, et al. Recent insights in the removal of Klebseilla pathogenicity factors for the industrial production of 2,3-butanediol. J Microbiol Biotechnol. 2013;23:885–896.
-
(2013)
J Microbiol Biotechnol
, vol.23
, pp. 885-896
-
-
Shrivastav, A.1
Lee, J.2
Kim, H.Y.3
-
107
-
-
84874114043
-
Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene
-
Jung SG, Jang JH, Kim AY, et al. Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene. Appl Microbiol Biotechnol. 2013;97:1997–2007.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, pp. 1997-2007
-
-
Jung, S.G.1
Jang, J.H.2
Kim, A.Y.3
-
108
-
-
84946471786
-
Inactivation of the virulence factors from 2,3-butanediol-producing Klebsiella pneumoniae
-
Huynh DT, Kim AY, Seol IH, et al. Inactivation of the virulence factors from 2,3-butanediol-producing Klebsiella pneumoniae. Appl Microbiol Biotechnol. 2015;99:9427–9438.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 9427-9438
-
-
Huynh, D.T.1
Kim, A.Y.2
Seol, I.H.3
-
109
-
-
77956480023
-
Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30
-
Zhang L, Sun J, Hao Y, et al. Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30. J Ind Microbiol Biotechnol. 2010;37:857–862.
-
(2010)
J Ind Microbiol Biotechnol
, vol.37
, pp. 857-862
-
-
Zhang, L.1
Sun, J.2
Hao, Y.3
-
110
-
-
18244373205
-
Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family
-
Li H, Tanikawa T, Sato Y, et al. Serratia marcescens gene required for surfactant serrawettin W1 production encodes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbiol Immunol. 2005;49:303–310.
-
(2005)
Microbiol Immunol
, vol.49
, pp. 303-310
-
-
Li, H.1
Tanikawa, T.2
Sato, Y.3
-
111
-
-
84920850498
-
Economic conversion of spirit-based distillers’ grain to 2,3-butanediol by Bacillus amyloliquefaciens
-
Yang T, Rao Z, Zhang X, et al. Economic conversion of spirit-based distillers’ grain to 2,3-butanediol by Bacillus amyloliquefaciens. Process Biochem. 2015;50:20–23.
-
(2015)
Process Biochem
, vol.50
, pp. 20-23
-
-
Yang, T.1
Rao, Z.2
Zhang, X.3
-
112
-
-
79961098783
-
2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis using industrial waste gas
-
Kopke M, Mihalcea C, Liew F, et al. 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis using industrial waste gas. Appl Environ Microbiol. 2011;77:5467–5475.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 5467-5475
-
-
Kopke, M.1
Mihalcea, C.2
Liew, F.3
-
113
-
-
84906252578
-
Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain
-
Li L, Li K, Wang K, et al. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Bioresour Technol. 2014;170:256–261.
-
(2014)
Bioresour Technol
, vol.170
, pp. 256-261
-
-
Li, L.1
Li, K.2
Wang, K.3
-
114
-
-
84907273969
-
2,3-Butanediol production from starch by engineered Klebsiella pneumoniae G31-A
-
Tsvetanova F, Petrova P, Petrov K., 2,3-Butanediol production from starch by engineered Klebsiella pneumoniae G31-A. Appl Microbiol Biotechnol. 2014;98:2441–2451.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 2441-2451
-
-
Tsvetanova, F.1
Petrova, P.2
Petrov, K.3
-
115
-
-
53349144682
-
One-step production of 2,3-butanediol from starch by secretory over-expression of amylase in Klebsiella pneumoniae
-
Zheng Y, Zhang H, Zhao L, et al. One-step production of 2,3-butanediol from starch by secretory over-expression of amylase in Klebsiella pneumoniae. J Chem Technol Biotechnol. 2008;83:1409–1412.
-
(2008)
J Chem Technol Biotechnol
, vol.83
, pp. 1409-1412
-
-
Zheng, Y.1
Zhang, H.2
Zhao, L.3
-
116
-
-
84938352131
-
Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production
-
Jung MY, Jung HM, Lee J, et al. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production. Biotechnol Biofuels. 2015;8:106.
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 106
-
-
Jung, M.Y.1
Jung, H.M.2
Lee, J.3
-
117
-
-
57349088282
-
Glycerol: a promising and abundant carbon source for industrial microbiology
-
Da Silva GP, Mack M, Contiero J., Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv. 2009;27:30–39.
-
(2009)
Biotechnol Adv
, vol.27
, pp. 30-39
-
-
Da Silva, G.P.1
Mack, M.2
Contiero, J.3
-
118
-
-
77955662550
-
Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations
-
Petrov K, Petrova P., Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl Microbiol Biotechnol. 2010;87:943–949.
-
(2010)
Appl Microbiol Biotechnol
, vol.87
, pp. 943-949
-
-
Petrov, K.1
Petrova, P.2
-
119
-
-
84941631235
-
High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1
-
Cho S, Kim T, Woo HM, et al. High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnol Biofuels. 2015;8:146.
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 146
-
-
Cho, S.1
Kim, T.2
Woo, H.M.3
-
120
-
-
84879862284
-
Synthetic 2,3-butanediol pathway integrated using Tn7-tool and powered Via elimination of sporulation and acetate production in acetogen biocatalyst
-
Tyurin M, Kiriukhin M., Synthetic 2,3-butanediol pathway integrated using Tn7-tool and powered Via elimination of sporulation and acetate production in acetogen biocatalyst. Appl Biochem Biotechnol. 2013;170:1503–1524.
-
(2013)
Appl Biochem Biotechnol
, vol.170
, pp. 1503-1524
-
-
Tyurin, M.1
Kiriukhin, M.2
-
121
-
-
47549110972
-
Carbon catabolite repression in bacteria: many ways to make the most out of nutrients
-
Gorke B, Stulke J., Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008;6:613–624.
-
(2008)
Nat Rev Microbiol
, vol.6
, pp. 613-624
-
-
Gorke, B.1
Stulke, J.2
-
122
-
-
84919915096
-
Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars
-
Li L, Li K, Wang Y, et al. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab Eng. 2015;28:19–27.
-
(2015)
Metab Eng
, vol.28
, pp. 19-27
-
-
Li, L.1
Li, K.2
Wang, Y.3
-
123
-
-
79952508559
-
Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures
-
Ji XJ, Nie ZK, Huang H, et al. Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures. Appl Microbiol Biotechnol. 2011;89:1119–1125.
-
(2011)
Appl Microbiol Biotechnol
, vol.89
, pp. 1119-1125
-
-
Ji, X.J.1
Nie, Z.K.2
Huang, H.3
-
124
-
-
84862262515
-
High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts
-
Shin HD, Yoon SH, Wu J, et al. High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts. Bioresour Technol. 2012;118:367–373.
-
(2012)
Bioresour Technol
, vol.118
, pp. 367-373
-
-
Shin, H.D.1
Yoon, S.H.2
Wu, J.3
-
125
-
-
84897445215
-
Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis
-
Zhang X, Bao T, Rao Z, et al. Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis. PLoS One. 2014;9:e91187.
-
(2014)
PLoS One
, vol.9
-
-
Zhang, X.1
Bao, T.2
Rao, Z.3
|