메뉴 건너뛰기




Volumn 14, Issue 1, 2015, Pages

Engineering Corynebacterium glutamicum for the production of 2,3-butanediol

Author keywords

2,3 butanediol; Corynebacterium glutamicum; Lactococcus lactis; Metabolic engineering; Pyruvate node

Indexed keywords

2,3 BUTANEDIOL; ACETIC ACID; ACETOIN; CARBON; GLUCOSE; LACTIC ACID; OXYGEN; PYRUVIC ACID; SUCCINIC ACID; 2,3-BUTYLENE GLYCOL; BACTERIAL PROTEIN; BUTANEDIOL; LACTATE DEHYDROGENASE; PYRUVATE DEHYDROGENASE COMPLEX;

EID: 84945891778     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-015-0362-x     Document Type: Article
Times cited : (43)

References (61)
  • 1
    • 77950551360 scopus 로고    scopus 로고
    • Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited
    • Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited. Green Chem. 2010;12:539-54.
    • (2010) Green Chem , vol.12 , pp. 539-554
    • Bozell, J.J.1    Petersen, G.R.2
  • 2
    • 70349759561 scopus 로고    scopus 로고
    • Biotechnological production of 2,3-butanediol-current state and prospects
    • Celińska E, Grajek W. Biotechnological production of 2,3-butanediol-current state and prospects. Biotechnol Adv. 2009;27:715-25.
    • (2009) Biotechnol Adv , vol.27 , pp. 715-725
    • Celińska, E.1    Grajek, W.2
  • 3
    • 84945908426 scopus 로고    scopus 로고
    • Transparency Market Research. Butanediol (1,4 BDO & 2,3 BDO), 1,3 Butadiene And Methyl Ethyl Ketone (MEK) Market: Applications (THF, PU, PBT, SBR, ABS, NBR Etc.), Bio-Based Alternatives, Downstream Potential, Market Size And Forecast, 2010-2018. Albany: Transparency Market Research
    • Transparency Market Research. Butanediol (1,4 BDO & 2,3 BDO), 1,3 Butadiene And Methyl Ethyl Ketone (MEK) Market: Applications (THF, PU, PBT, SBR, ABS, NBR Etc.), Bio-Based Alternatives, Downstream Potential, Market Size And Forecast, 2010-2018. Albany: Transparency Market Research. 2012.
    • (2012)
  • 4
    • 79961098783 scopus 로고    scopus 로고
    • 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas
    • Köpke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, et al. 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol. 2011;77:5467-75.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 5467-5475
    • Köpke, M.1    Mihalcea, C.2    Liew, F.3    Tizard, J.H.4    Ali, M.S.5    Conolly, J.J.6
  • 5
    • 0035433742 scopus 로고    scopus 로고
    • Purification and characterization of l-2,3-butanediol dehydrogenase of Brevibacterium saccharolyticum C-1012 expressed in Escherichia coli
    • Takusagawa Y, Otagiri M, Ui S, Ohtsuki T, Mimura A, Ohkuma M, et al. Purification and characterization of l-2,3-butanediol dehydrogenase of Brevibacterium saccharolyticum C-1012 expressed in Escherichia coli. Biosci Biotechnol Biochem. 2001;65:1876-8.
    • (2001) Biosci Biotechnol Biochem , vol.65 , pp. 1876-1878
    • Takusagawa, Y.1    Otagiri, M.2    Ui, S.3    Ohtsuki, T.4    Mimura, A.5    Ohkuma, M.6
  • 6
    • 0025336135 scopus 로고
    • Properties of 2,3-butanediol dehydrogenases from Lactococcus lactis subsp. lactis in relation to citrate fermentation
    • Crow VL. Properties of 2,3-butanediol dehydrogenases from Lactococcus lactis subsp. lactis in relation to citrate fermentation. Appl Environ Microbiol. 1990;56:1656-65.
    • (1990) Appl Environ Microbiol , vol.56 , pp. 1656-1665
    • Crow, V.L.1
  • 7
    • 77955662487 scopus 로고    scopus 로고
    • Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production
    • Wang A, Wang Y, Jiang T, Li L, Ma C, Xu P. Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Appl Microbiol Biotechnol. 2010;87:965-70.
    • (2010) Appl Microbiol Biotechnol , vol.87 , pp. 965-970
    • Wang, A.1    Wang, Y.2    Jiang, T.3    Li, L.4    Ma, C.5    Xu, P.6
  • 8
    • 84928745415 scopus 로고    scopus 로고
    • Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium
    • Jantama K, Polyiam P, Khunnonkwao P, Chan S, Sangproo M, Khor K, et al. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Metab Eng. 2015;30:16-26.
    • (2015) Metab Eng , vol.30 , pp. 16-26
    • Jantama, K.1    Polyiam, P.2    Khunnonkwao, P.3    Chan, S.4    Sangproo, M.5    Khor, K.6
  • 9
    • 84877329286 scopus 로고    scopus 로고
    • Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production
    • Jung M-Y, Park B-S, Lee J, Oh M-K. Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production. Bioresour Technol. 2013;139:21-7.
    • (2013) Bioresour Technol , vol.139 , pp. 21-27
    • Jung, M.-Y.1    Park, B.-S.2    Lee, J.3    Oh, M.-K.4
  • 10
    • 77954534050 scopus 로고    scopus 로고
    • Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30
    • Zhang L, Yang Y, Sun J, Shen Y, Wei D, Zhu J, et al. Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour Technol. 2010;101:1961-7.
    • (2010) Bioresour Technol , vol.101 , pp. 1961-1967
    • Zhang, L.1    Yang, Y.2    Sun, J.3    Shen, Y.4    Wei, D.5    Zhu, J.6
  • 12
    • 84906779771 scopus 로고    scopus 로고
    • NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions
    • Fu J, Wang Z, Chen T, Liu W, Shi T, Wang G, Tang Y, Zhao X. NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnol Bioeng. 2014;111:2126-31.
    • (2014) Biotechnol Bioeng , vol.111 , pp. 2126-2131
    • Fu, J.1    Wang, Z.2    Chen, T.3    Liu, W.4    Shi, T.5    Wang, G.6    Tang, Y.7    Zhao, X.8
  • 13
    • 84866183325 scopus 로고    scopus 로고
    • Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365
    • Häßler T, Schieder D, Pfaller R, Faulstich M, Sieber V. Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour Technol. 2012;124:237-44.
    • (2012) Bioresour Technol , vol.124 , pp. 237-244
    • Häßler, T.1    Schieder, D.2    Pfaller, R.3    Faulstich, M.4    Sieber, V.5
  • 14
    • 84896297653 scopus 로고    scopus 로고
    • Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol
    • Lian J, Chao R, Zhao H. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab Eng. 2014;23:92-9.
    • (2014) Metab Eng , vol.23 , pp. 92-99
    • Lian, J.1    Chao, R.2    Zhao, H.3
  • 15
    • 84896847314 scopus 로고    scopus 로고
    • Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol
    • Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K, et al. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng. 2014;23:22-33.
    • (2014) Metab Eng , vol.23 , pp. 22-33
    • Xu, Y.1    Chu, H.2    Gao, C.3    Tao, F.4    Zhou, Z.5    Li, K.6
  • 16
    • 84945975789 scopus 로고    scopus 로고
    • Inc. Financial Report
    • Ajinomoto Co., Inc. Financial Report 2011. https://www.ajinomoto.com/en/ir/pdf/Aji_FR2011.pdf. Accesed 7 Jun 2015.
    • (2011)
  • 17
    • 33746913914 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids
    • Wendisch VF, Bott M, Eikmanns BJ. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol. 2006;9:268-74.
    • (2006) Curr Opin Microbiol , vol.9 , pp. 268-274
    • Wendisch, V.F.1    Bott, M.2    Eikmanns, B.J.3
  • 18
    • 85057684864 scopus 로고    scopus 로고
    • Handbook of Corynebacterium glutamicum
    • 1st ed. Boca Raton: Taylor and Francis; 2005.
    • Eggeling L, Bott M. Handbook of Corynebacterium glutamicum. 1st ed. Boca Raton: Taylor and Francis; 2005.
    • (2005)
    • Eggeling, L.1    Bott, M.2
  • 19
    • 57349158325 scopus 로고    scopus 로고
    • Corynebacteria: genomics and molecular biology
    • 1st ed. Norfolk: Caister Academic Press;
    • Burkovski A. Corynebacteria: genomics and molecular biology. 1st ed. Norfolk: Caister Academic Press; 2008.
    • (2008)
    • Burkovski, A.1
  • 21
    • 84884533991 scopus 로고    scopus 로고
    • Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation
    • Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol Bioeng. 2013;110:2938-48.
    • (2013) Biotechnol Bioeng , vol.110 , pp. 2938-2948
    • Yamamoto, S.1    Suda, M.2    Niimi, S.3    Inui, M.4    Yukawa, H.5
  • 22
    • 25444479070 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions
    • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol. 2004;8:243-54.
    • (2004) J Mol Microbiol Biotechnol , vol.8 , pp. 243-254
    • Inui, M.1    Kawaguchi, H.2    Murakami, S.3    Vertès, A.A.4    Yukawa, H.5
  • 23
    • 36148935215 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation
    • Mimitsuka T, Sawai H, Hatsu M, Yamada K. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem. 2007;71:2130-5.
    • (2007) Biosci Biotechnol Biochem , vol.71 , pp. 2130-2135
    • Mimitsuka, T.1    Sawai, H.2    Hatsu, M.3    Yamada, K.4
  • 24
    • 77953231876 scopus 로고    scopus 로고
    • Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane
    • Kind S, Jeong WK, Schröder H, Wittmann C. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng. 2010;12:341-51.
    • (2010) Metab Eng , vol.12 , pp. 341-351
    • Kind, S.1    Jeong, W.K.2    Schröder, H.3    Wittmann, C.4
  • 25
    • 79952108763 scopus 로고    scopus 로고
    • Putrescine production by engineered Corynebacterium glutamicum
    • Schneider J, Wendisch VF. Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2010;88:859-68.
    • (2010) Appl Microbiol Biotechnol , vol.88 , pp. 859-868
    • Schneider, J.1    Wendisch, V.F.2
  • 26
    • 77950627591 scopus 로고    scopus 로고
    • Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation
    • Sasaki M, Jojima T, Inui M, Yukawa H. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol. 2010;86:1057-66.
    • (2010) Appl Microbiol Biotechnol , vol.86 , pp. 1057-1066
    • Sasaki, M.1    Jojima, T.2    Inui, M.3    Yukawa, H.4
  • 27
    • 39149125784 scopus 로고    scopus 로고
    • Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation
    • Okino S, Suda M, Fujikura K, Inui M, Yukawa H. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol. 2008;78:449-54.
    • (2008) Appl Microbiol Biotechnol , vol.78 , pp. 449-454
    • Okino, S.1    Suda, M.2    Fujikura, K.3    Inui, M.4    Yukawa, H.5
  • 28
    • 84861139695 scopus 로고    scopus 로고
    • Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate
    • Litsanov B, Brocker M, Bott M. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol. 2012;78:3325-37.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 3325-3337
    • Litsanov, B.1    Brocker, M.2    Bott, M.3
  • 29
    • 56349093759 scopus 로고    scopus 로고
    • An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain
    • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol. 2008;81:459-64.
    • (2008) Appl Microbiol Biotechnol , vol.81 , pp. 459-464
    • Okino, S.1    Noburyu, R.2    Suda, M.3    Jojima, T.4    Inui, M.5    Yukawa, H.6
  • 30
    • 84914171354 scopus 로고    scopus 로고
    • The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering
    • Eikmanns BJ, Blombach B. The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering. J Biotechnol. 2014;192:339-45.
    • (2014) J Biotechnol , vol.192 , pp. 339-345
    • Eikmanns, B.J.1    Blombach, B.2
  • 31
    • 24344439718 scopus 로고    scopus 로고
    • E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects
    • Schreiner ME, Fiur D, Holátko J, Pátek M, Eikmanns BJ. E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects. J Bacteriol. 2005;187:6005-18.
    • (2005) J Bacteriol , vol.187 , pp. 6005-6018
    • Schreiner, M.E.1    Fiur, D.2    Holátko, J.3    Pátek, M.4    Eikmanns, B.J.5
  • 32
    • 59949092096 scopus 로고    scopus 로고
    • l-Valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR
    • Blombach B, Arndt A, Auchter M, Eikmanns BJ. l-Valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Appl Environ Microbiol. 2009;75:1197-200.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 1197-1200
    • Blombach, B.1    Arndt, A.2    Auchter, M.3    Eikmanns, B.J.4
  • 34
    • 78650404944 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production
    • Krause FS, Blombach B, Eikmanns BJ. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl Environ Microbiol. 76:8053-61.
    • Appl Environ Microbiol , vol.76 , pp. 8053-8061
    • Krause, F.S.1    Blombach, B.2    Eikmanns, B.J.3
  • 35
    • 79957451359 scopus 로고    scopus 로고
    • Identification of succinate exporter in Corynebacterium glutamicum and its physiological roles under anaerobic conditions
    • Fukui K, Koseki C, Yamamoto Y, Nakamura J, Sasahara A, Yuji R, et al. Identification of succinate exporter in Corynebacterium glutamicum and its physiological roles under anaerobic conditions. J Biotechnol. 2011;154(1):25-34.
    • (2011) J Biotechnol , vol.154 , Issue.1 , pp. 25-34
    • Fukui, K.1    Koseki, C.2    Yamamoto, Y.3    Nakamura, J.4    Sasahara, A.5    Yuji, R.6
  • 37
    • 84930763351 scopus 로고    scopus 로고
    • Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation
    • Tsuge Y, Uematsu K, Yamamoto S, Suda M, Yukawa H, Inui M. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol. 2015;99(13):5573-82.
    • (2015) Appl Microbiol Biotechnol , vol.99 , Issue.13 , pp. 5573-5582
    • Tsuge, Y.1    Uematsu, K.2    Yamamoto, S.3    Suda, M.4    Yukawa, H.5    Inui, M.6
  • 39
  • 40
    • 0026647636 scopus 로고
    • Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and aα-acetolactate synthase of Lactococcus lactis subsp. lactis bv. diacetylactis
    • Snoep JL, Teixeira de Mattos MJ, Starrenburg MJ, Hugenholtz J. Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and aα-acetolactate synthase of Lactococcus lactis subsp. lactis bv. diacetylactis. J Bacteriol. 1992;174:4838-41.
    • (1992) J Bacteriol , vol.174 , pp. 4838-4841
    • Snoep, J.L.1    Teixeira de Mattos, M.J.2    Starrenburg, M.J.3    Hugenholtz, J.4
  • 42
    • 84925496471 scopus 로고    scopus 로고
    • Promiscuous activity of (S, S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions
    • Jojima T, Igari T, Moteki Y, Suda M, Yukawa H, Inui M. Promiscuous activity of (S, S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol. 2015;99:1427-33.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 1427-1433
    • Jojima, T.1    Igari, T.2    Moteki, Y.3    Suda, M.4    Yukawa, H.5    Inui, M.6
  • 43
    • 84864087634 scopus 로고    scopus 로고
    • Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions
    • Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, et al. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl Environ Microbiol. 2012;78:4447-57.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 4447-4457
    • Yamamoto, S.1    Gunji, W.2    Suzuki, H.3    Toda, H.4    Suda, M.5    Jojima, T.6
  • 45
    • 84869504360 scopus 로고    scopus 로고
    • Identification of a HAD superfamily phosphatase, HdpA, involved in 1,3-dihydroxyacetone production during sugar catabolism in Corynebacterium glutamicum
    • Jojima T, Igari T, Gunji W, Suda M, Inui M, Yukawa H. Identification of a HAD superfamily phosphatase, HdpA, involved in 1,3-dihydroxyacetone production during sugar catabolism in Corynebacterium glutamicum. FEBS Lett. 2012;586:4228-32.
    • (2012) FEBS Lett , vol.586 , pp. 4228-4232
    • Jojima, T.1    Igari, T.2    Gunji, W.3    Suda, M.4    Inui, M.5    Yukawa, H.6
  • 46
    • 79952694448 scopus 로고    scopus 로고
    • Microbial 2,3-butanediol production: a state-of-the-art review
    • Ji X-J, Huang H, Ouyang P-K. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv. 2011;29:351-64.
    • (2011) Biotechnol Adv , vol.29 , pp. 351-364
    • Ji, X.-J.1    Huang, H.2    Ouyang, P.-K.3
  • 48
    • 84906252578 scopus 로고    scopus 로고
    • Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain
    • Li L, Li K, Wang K, Chen C, Gao C, Ma C, Xu P. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Bioresour Technol. 2014;170:256-61.
    • (2014) Bioresour Technol , vol.170 , pp. 256-261
    • Li, L.1    Li, K.2    Wang, K.3    Chen, C.4    Gao, C.5    Ma, C.6    Xu, P.7
  • 49
    • 84939600952 scopus 로고    scopus 로고
    • Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens
    • Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang S-T. Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microb Cell Fact. 2014;14:122.
    • (2014) Microb Cell Fact , vol.14 , pp. 122
    • Yang, T.1    Rao, Z.2    Zhang, X.3    Xu, M.4    Xu, Z.5    Yang, S.-T.6
  • 50
    • 84945447957 scopus 로고    scopus 로고
    • Industrial production of 2,3-butanediol from the engineered Corynebacterium glutamicum
    • [Epub ahead of print on June 26
    • Yang J, Kim B, Kim H, Kweon Y, Lee S, Lee J. Industrial production of 2,3-butanediol from the engineered Corynebacterium glutamicum. Appl. Biochem. Biotechnol. 2015 [Epub ahead of print on June 26].
    • (2015) Appl. Biochem. Biotechnol
    • Yang, J.1    Kim, B.2    Kim, H.3    Kweon, Y.4    Lee, S.5    Lee, J.6
  • 51
    • 84871913034 scopus 로고    scopus 로고
    • Molecular cloning: a laboratory manual
    • {increment}4th ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press;
    • Green MR, Sambrook J. Molecular cloning: a laboratory manual. 4th ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2012.
    • (2012)
    • Green, M.R.1    Sambrook, J.2
  • 52
    • 84862685293 scopus 로고    scopus 로고
    • Engineering Corynebacterium glutamicum for the production of pyruvate
    • Wieschalka S, Blombach B, Eikmanns BJ. Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol. 2012;94:449-59.
    • (2012) Appl Microbiol Biotechnol , vol.94 , pp. 449-459
    • Wieschalka, S.1    Blombach, B.2    Eikmanns, B.J.3
  • 53
    • 0026631708 scopus 로고
    • Isolation and characterization of IS1165, an insertion sequence of Leuconostoc mesenteroides subsp. cremoris and other lactic acid bacteria
    • Johansen E, Kibenich A. Isolation and characterization of IS1165, an insertion sequence of Leuconostoc mesenteroides subsp. cremoris and other lactic acid bacteria. Plasmid. 1992;27:200-6.
    • (1992) Plasmid , vol.27 , pp. 200-206
    • Johansen, E.1    Kibenich, A.2
  • 55
    • 0032741016 scopus 로고    scopus 로고
    • A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA
    • Van der Rest ME, Lange C, Molenaar D. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol. 1999;52:541-5.
    • (1999) Appl Microbiol Biotechnol , vol.52 , pp. 541-545
    • Rest, M.E.1    Lange, C.2    Molenaar, D.3
  • 56
    • 0026027894 scopus 로고
    • Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains
    • Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H. Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol. 1991;34:617-22.
    • (1991) Appl Microbiol Biotechnol , vol.34 , pp. 617-622
    • Eikmanns, B.J.1    Metzger, M.2    Reinscheid, D.3    Kircher, M.4    Sahm, H.5
  • 57
    • 0026460430 scopus 로고
    • Diacetyl production by different strains of Lactococcus lactis subsp. lactis var. diacetylactis and Leuconostoc spp
    • Hugenholtz J, Starrenburg MC. Diacetyl production by different strains of Lactococcus lactis subsp. lactis var. diacetylactis and Leuconostoc spp. Appl Microbiol Biotechnol. 1992;38:17-22.
    • (1992) Appl Microbiol Biotechnol , vol.38 , pp. 17-22
    • Hugenholtz, J.1    Starrenburg, M.C.2
  • 58
    • 2342630985 scopus 로고
    • A colorimetric determination of paraldehyde
    • Westerfeld WW. A colorimetric determination of paraldehyde. J Lab Clin Med. 1945;30:1076.
    • (1945) J Lab Clin Med , vol.30 , pp. 1076
    • Westerfeld, W.W.1
  • 59
    • 0016419156 scopus 로고
    • 2,3-Butanediol biosynthetic system in Aerobacter aerogenes
    • Stormer FC. 2,3-Butanediol biosynthetic system in Aerobacter aerogenes. Methods Enzymol. 1975;41:518-32.
    • (1975) Methods Enzymol , vol.41 , pp. 518-532
    • Stormer, F.C.1
  • 60
    • 54349095294 scopus 로고
    • Taxonomical Study of Glutamic Acid Accumulating Bacteria, Micrococcus glutamicus nov. sp
    • Kinoshita S, Nakayama K, Akita S. Taxonomical Study of Glutamic Acid Accumulating Bacteria, Micrococcus glutamicus nov. sp. Bull Soc Chem Soc Jpn. 1958;22:176-85.
    • (1958) Bull Soc Chem Soc Jpn , vol.22 , pp. 176-185
    • Kinoshita, S.1    Nakayama, K.2    Akita, S.3
  • 61
    • 0025912270 scopus 로고
    • A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing
    • Eikmanns BJ, Kleinertz E, Liebl W, Sahm H. A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene. 1991;102:93-8.
    • (1991) Gene , vol.102 , pp. 93-98
    • Eikmanns, B.J.1    Kleinertz, E.2    Liebl, W.3    Sahm, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.