메뉴 건너뛰기




Volumn 191, Issue , 2015, Pages 512-519

Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae

Author keywords

2,3 Butanediol; Cofactor engineering; Glycerol; NADH oxidase; Saccharomyces cerevisiae

Indexed keywords

GLYCEROL;

EID: 84940044539     PISSN: 09608524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.biortech.2015.02.077     Document Type: Article
Times cited : (51)

References (35)
  • 1
    • 0030908893 scopus 로고    scopus 로고
    • +-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
    • +-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation EMBO J. 16 9 1997 2179 2187
    • (1997) EMBO J. , vol.16 , Issue.9 , pp. 2179-2187
    • Ansell, R.1    Granath, K.2    Hohmann, S.3    Thevelein, J.M.4    Adler, L.5
  • 2
    • 70349427105 scopus 로고    scopus 로고
    • Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli
    • S. Atsumi, Z. Li, and J.C. Liao Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli Appl. Environ. Microbiol. 75 19 2009 6306 6311
    • (2009) Appl. Environ. Microbiol. , vol.75 , Issue.19 , pp. 6306-6311
    • Atsumi, S.1    Li, Z.2    Liao, J.C.3
  • 3
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
    • M.M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem. 72 1 1976 248 254
    • (1976) Anal. Biochem. , vol.72 , Issue.1 , pp. 248-254
    • Bradford, M.M.1
  • 4
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • C. Bro, B. Regenberg, J. Förster, and J. Nielsen In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production Metab. Eng. 8 2 2006 102 111
    • (2006) Metab. Eng. , vol.8 , Issue.2 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Förster, J.3    Nielsen, J.4
  • 6
    • 0031877248 scopus 로고    scopus 로고
    • Cofactor engineering: A novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase
    • F.L. De Felipe, M. Kleerebezem, W.M. de Vos, and J. Hugenholtz Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase J. Bacteriol. 180 15 1998 3804 3808
    • (1998) J. Bacteriol. , vol.180 , Issue.15 , pp. 3804-3808
    • De Felipe, F.L.1    Kleerebezem, M.2    De Vos, W.M.3    Hugenholtz, J.4
  • 7
    • 66249090878 scopus 로고    scopus 로고
    • Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae
    • M. Ehsani, M.R. Fernández, J.A. Biosca, A. Julien, and S. Dequin Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae Appl. Environ. Microbiol. 75 10 2009 3196 3205
    • (2009) Appl. Environ. Microbiol. , vol.75 , Issue.10 , pp. 3196-3205
    • Ehsani, M.1    Fernández, M.R.2    Biosca, J.A.3    Julien, A.4    Dequin, S.5
  • 10
    • 33746891860 scopus 로고    scopus 로고
    • 2O-forming NADH oxidase and impact on redox metabolism
    • 2O-forming NADH oxidase and impact on redox metabolism Metab. Eng. 8 4 2006 303 314
    • (2006) Metab. Eng. , vol.8 , Issue.4 , pp. 303-314
    • Heux, S.1    Cachon, R.2    Dequin, S.3
  • 11
    • 68049137324 scopus 로고    scopus 로고
    • Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae
    • J. Hou, N.F. Lages, M. Oldiges, and G.N. Vemuri Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae Metab. Eng. 11 4 2009 253 261
    • (2009) Metab. Eng. , vol.11 , Issue.4 , pp. 253-261
    • Hou, J.1    Lages, N.F.2    Oldiges, M.3    Vemuri, G.N.4
  • 12
    • 62949084480 scopus 로고    scopus 로고
    • Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae
    • J. Hou, G.N. Vemuri, X. Bao, and L. Olsson Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae Appl. Microbiol. Biotechnol. 82 5 2009 909 919
    • (2009) Appl. Microbiol. Biotechnol. , vol.82 , Issue.5 , pp. 909-919
    • Hou, J.1    Vemuri, G.N.2    Bao, X.3    Olsson, L.4
  • 14
    • 84882274841 scopus 로고    scopus 로고
    • Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
    • S.-J. Kim, S.-O. Seo, Y.-S. Jin, and J.-H. Seo Production of 2,3-butanediol by engineered Saccharomyces cerevisiae Bioresour. Technol. 146 2013 274 281
    • (2013) Bioresour. Technol. , vol.146 , pp. 274-281
    • Kim, S.-J.1    Seo, S.-O.2    Jin, Y.-S.3    Seo, J.-H.4
  • 15
    • 84923922989 scopus 로고    scopus 로고
    • Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae
    • (in press)
    • S.-J. Kim, S.-O. Seo, Y.-C. Park, Y.-S. Jin, and J.-H. Seo Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae J. Biotechnol. 2014 (in press)
    • (2014) J. Biotechnol.
    • Kim, S.-J.1    Seo, S.-O.2    Park, Y.-C.3    Jin, Y.-S.4    Seo, J.-H.5
  • 16
    • 0016702372 scopus 로고
    • Acetoin degradation in Bacillus subtilis by direct oxidative cleavage
    • J. López, B. Thoms, and H. Rehbein Acetoin degradation in Bacillus subtilis by direct oxidative cleavage Eur. J. Biochem. 57 2 1975 425 430
    • (1975) Eur. J. Biochem. , vol.57 , Issue.2 , pp. 425-430
    • López, J.1    Thoms, B.2    Rehbein, H.3
  • 17
    • 6044273857 scopus 로고    scopus 로고
    • Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments
    • M. Moreira dos Santos, V. Raghevendran, P. Kötter, L. Olsson, and J. Nielsen Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments Metab. Eng. 6 4 2004 352 363
    • (2004) Metab. Eng. , vol.6 , Issue.4 , pp. 352-363
    • Moreira Dos Santos, M.1    Raghevendran, V.2    Kötter, P.3    Olsson, L.4    Nielsen, J.5
  • 18
    • 1242274644 scopus 로고    scopus 로고
    • Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I
    • H. Moriya, and M. Johnston Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I Proc. Natl. Acad. Sci. U.S.A. 101 6 2004 1572 1577
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , Issue.6 , pp. 1572-1577
    • Moriya, H.1    Johnston, M.2
  • 19
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • D. Mumberg, R. Müller, and M. Funk Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds Gene 156 1 1995 119 122
    • (1995) Gene , vol.156 , Issue.1 , pp. 119-122
    • Mumberg, D.1    Müller, R.2    Funk, M.3
  • 21
    • 84861442550 scopus 로고    scopus 로고
    • Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
    • C.Y. Ng, M.-Y. Jung, J. Lee, and M.-K. Oh Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering Microb. Cell Fact. 11 2012 68
    • (2012) Microb. Cell Fact. , vol.11 , pp. 68
    • Ng, C.Y.1    Jung, M.-Y.2    Lee, J.3    Oh, M.-K.4
  • 22
    • 0025848024 scopus 로고
    • Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae
    • J.-I. Nikawa, Y. Tsukagoshi, and S. Yamashita Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae J. Biol. Chem. 266 17 1991 11184 11191
    • (1991) J. Biol. Chem. , vol.266 , Issue.17 , pp. 11184-11191
    • Nikawa, J.-I.1    Tsukagoshi, Y.2    Yamashita, S.3
  • 23
    • 0033929520 scopus 로고    scopus 로고
    • Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation
    • T.L. Nissen, M.C. Kielland-Brandt, J. Nielsen, and J. Villadsen Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation Metab. Eng. 2 1 2000 69 77
    • (2000) Metab. Eng. , vol.2 , Issue.1 , pp. 69-77
    • Nissen, T.L.1    Kielland-Brandt, M.C.2    Nielsen, J.3    Villadsen, J.4
  • 24
    • 0035862739 scopus 로고    scopus 로고
    • Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool
    • T.L. Nissen, M. Anderlund, J. Nielsen, J. Villadsen, and M.C. Kielland-Brandt Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool Yeast 18 1 2001 19 32
    • (2001) Yeast , vol.18 , Issue.1 , pp. 19-32
    • Nissen, T.L.1    Anderlund, M.2    Nielsen, J.3    Villadsen, J.4    Kielland-Brandt, M.C.5
  • 25
    • 84866145291 scopus 로고    scopus 로고
    • An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
    • B. Oud, C.-L. Flores, C. Gancedo, X. Zhang, J. Trueheart, J.-M. Daran, J.T. Pronk, and A. van Maris An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae Microb. Cell Fact. 11 2012 131
    • (2012) Microb. Cell Fact. , vol.11 , pp. 131
    • Oud, B.1    Flores, C.-L.2    Gancedo, C.3    Zhang, X.4    Trueheart, J.5    Daran, J.-M.6    Pronk, J.T.7    Van Maris, A.8
  • 26
    • 33751337090 scopus 로고    scopus 로고
    • New compounds for production of polyurethane foams
    • J. Paciorek-Sadowska, and B. Czupryński New compounds for production of polyurethane foams J. Appl. Polym. Sci. 102 6 2006 5918 5926
    • (2006) J. Appl. Polym. Sci. , vol.102 , Issue.6 , pp. 5918-5926
    • Paciorek-Sadowska, J.1    Czupryński, B.2
  • 27
    • 69949138611 scopus 로고    scopus 로고
    • High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31
    • K. Petrov, and P. Petrova High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31 Appl. Microbiol. Biotechnol. 84 4 2009 659 665
    • (2009) Appl. Microbiol. Biotechnol. , vol.84 , Issue.4 , pp. 659-665
    • Petrov, K.1    Petrova, P.2
  • 28
    • 0011607543 scopus 로고
    • Production of 2,3-butanediol by Klebsiella oxytoca
    • N. Qureshi, and M. Cheryan Production of 2,3-butanediol by Klebsiella oxytoca Appl. Microbiol. Biotechnol. 30 5 1989 440 443
    • (1989) Appl. Microbiol. Biotechnol. , vol.30 , Issue.5 , pp. 440-443
    • Qureshi, N.1    Cheryan, M.2
  • 29
    • 0030027827 scopus 로고    scopus 로고
    • Origin and production of acetoin during wine yeast fermentation
    • P. Romano, and G. Suzzi Origin and production of acetoin during wine yeast fermentation Appl. Environ. Microbiol. 62 2 1996 309
    • (1996) Appl. Environ. Microbiol. , vol.62 , Issue.2 , pp. 309
    • Romano, P.1    Suzzi, G.2
  • 30
    • 0035098550 scopus 로고    scopus 로고
    • Biological production of 2,3-butanediol
    • M.-J. Syu Biological production of 2,3-butanediol Appl. Microbiol. Biotechnol. 55 1 2001 10 18
    • (2001) Appl. Microbiol. Biotechnol. , vol.55 , Issue.1 , pp. 10-18
    • Syu, M.-J.1
  • 31
    • 0023289270 scopus 로고
    • The dehydration of fermentative 2,3-butanediol into methyl ethyl ketone
    • A.V. Tran, and R.P. Chambers The dehydration of fermentative 2,3-butanediol into methyl ethyl ketone Biotechnol. Bioeng. 29 3 1987 343 351
    • (1987) Biotechnol. Bioeng. , vol.29 , Issue.3 , pp. 343-351
    • Tran, A.V.1    Chambers, R.P.2
  • 33
    • 33847785682 scopus 로고    scopus 로고
    • Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae
    • G. Vemuri, M. Eiteman, J. McEwen, L. Olsson, and J. Nielsen Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae Proc. Natl. Acad. Sci. U.S.A. 104 7 2007 2402 2407
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , Issue.7 , pp. 2402-2407
    • Vemuri, G.1    Eiteman, M.2    McEwen, J.3    Olsson, L.4    Nielsen, J.5
  • 34
    • 0142136153 scopus 로고    scopus 로고
    • Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae
    • R. Verho, J. Londesborough, M. Penttilä, and P. Richard Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae Appl. Environ. Microbiol. 69 10 2003 5892 5897
    • (2003) Appl. Environ. Microbiol. , vol.69 , Issue.10 , pp. 5892-5897
    • Verho, R.1    Londesborough, J.2    Penttilä, M.3    Richard, P.4
  • 35
    • 77954534050 scopus 로고    scopus 로고
    • Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30
    • L. Zhang, Y. Yang, J.A. Sun, Y. Shen, D. Wei, J. Zhu, and J. Chu Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30 Bioresour. Technol. 101 6 2010 1961 1967
    • (2010) Bioresour. Technol. , vol.101 , Issue.6 , pp. 1961-1967
    • Zhang, L.1    Yang, Y.2    Sun, J.A.3    Shen, Y.4    Wei, D.5    Zhu, J.6    Chu, J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.