메뉴 건너뛰기




Volumn 192, Issue , 2014, Pages 376-382

Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae

Author keywords

2,3 Butanediol (2,3 BD); Pyruvate decarboxylase deficient mutant; Saccharomyces cerevisiae; Xylose

Indexed keywords

BACTERIOLOGY; CARBON; FERMENTATION; GENES; XYLOSE;

EID: 84923922989     PISSN: 01681656     EISSN: 18734863     Source Type: Journal    
DOI: 10.1016/j.jbiotec.2013.12.017     Document Type: Article
Times cited : (64)

References (48)
  • 3
    • 70349759561 scopus 로고    scopus 로고
    • Biotechnological production of 2,3-butanediol-Current state and prospects
    • Celinska E., Grajek W. Biotechnological production of 2,3-butanediol-Current state and prospects. Biotechnol. Adv. 2009, 27:715-725.
    • (2009) Biotechnol. Adv. , vol.27 , pp. 715-725
    • Celinska, E.1    Grajek, W.2
  • 4
    • 77649191251 scopus 로고    scopus 로고
    • Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca
    • Cheng K.K., Liu Q., Zhang J.A., Li J.P., Xu J.M., Wang G.H. Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca. Process Biochem. 2010, 45:613-616.
    • (2010) Process Biochem. , vol.45 , pp. 613-616
    • Cheng, K.K.1    Liu, Q.2    Zhang, J.A.3    Li, J.P.4    Xu, J.M.5    Wang, G.H.6
  • 6
    • 0004826738 scopus 로고
    • Production and properties of 2,3-butanediol. 16. Density, optical rotatory power, and refraction of aqueous 2,3-butanediol solutions
    • Clendenning K.A. Production and properties of 2,3-butanediol. 16. Density, optical rotatory power, and refraction of aqueous 2,3-butanediol solutions. Can. J. Res. 1946, B24:269-279.
    • (1946) Can. J. Res. , vol.PART B , Issue.24 , pp. 269-279
    • Clendenning, K.A.1
  • 7
    • 66249090878 scopus 로고    scopus 로고
    • Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae
    • Ehsani M., Fernandez M.R., Biosca J.A., Julien A., Dequin S. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2009, 75:3196-3205.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 3196-3205
    • Ehsani, M.1    Fernandez, M.R.2    Biosca, J.A.3    Julien, A.4    Dequin, S.5
  • 8
    • 77953154719 scopus 로고    scopus 로고
    • Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol
    • Gao J.A., Xu H., Li Q.J., Feng X.H., Li S. Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol. Bioresour. Technol. 2010, 101:7076-7082.
    • (2010) Bioresour. Technol. , vol.101 , pp. 7076-7082
    • Gao, J.A.1    Xu, H.2    Li, Q.J.3    Feng, X.H.4    Li, S.5
  • 10
    • 66249136627 scopus 로고
    • Direct gas chromatographic determination of levo- and meso-2,3-butanediols in wines and factors affecting their formation
    • Guymon J.F., Crowell E. Direct gas chromatographic determination of levo- and meso-2,3-butanediols in wines and factors affecting their formation. Am. J. Enol. Viticult. 1967, 18:200-209.
    • (1967) Am. J. Enol. Viticult. , vol.18 , pp. 200-209
    • Guymon, J.F.1    Crowell, E.2
  • 12
    • 0029139802 scopus 로고
    • Determination of the three isomers of 2, 3-butanediol formed by yeasts or lactic acid bacteria during fermentation
    • Herold B., Pfeiffer P., Radler F. Determination of the three isomers of 2, 3-butanediol formed by yeasts or lactic acid bacteria during fermentation. Am. J. Enol. Viticult. 1995, 46:134-137.
    • (1995) Am. J. Enol. Viticult. , vol.46 , pp. 134-137
    • Herold, B.1    Pfeiffer, P.2    Radler, F.3
  • 13
    • 0026548118 scopus 로고
    • A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae
    • Hosaka K., Nikawa J., Kodaki T., Yamashita S. A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J. Biochem. Tokyo 1992, 111:352-358.
    • (1992) J. Biochem. Tokyo , vol.111 , pp. 352-358
    • Hosaka, K.1    Nikawa, J.2    Kodaki, T.3    Yamashita, S.4
  • 15
    • 0021412533 scopus 로고
    • Production of 2,3-butanediol from d-xylose by Klebsiella oxytoca ATCC 8724
    • Jansen N.B., Flickinger M.C., Tsao G.T. Production of 2,3-butanediol from d-xylose by Klebsiella oxytoca ATCC 8724. Biotechnol. Bioeng. 1984, 26:362-369.
    • (1984) Biotechnol. Bioeng. , vol.26 , pp. 362-369
    • Jansen, N.B.1    Flickinger, M.C.2    Tsao, G.T.3
  • 16
    • 79952694448 scopus 로고    scopus 로고
    • Microbial 2,3-butanediol production: a state-of-the-art review
    • Ji X.J., Huang H., Ouyang P.K. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol. Adv. 2011, 29:351-364.
    • (2011) Biotechnol. Adv. , vol.29 , pp. 351-364
    • Ji, X.J.1    Huang, H.2    Ouyang, P.K.3
  • 17
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K., Sanchez R.G., Hahn-Hagerdal B., Gorwa-Grauslund M.F. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb. Cell Fact. 2007, 6(5):1-10.
    • (2007) Microb. Cell Fact. , vol.6 , Issue.5 , pp. 1-10
    • Karhumaa, K.1    Sanchez, R.G.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 18
    • 84882274841 scopus 로고    scopus 로고
    • Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
    • Kim S.J., Seo S.O., Jin Y.S., Seo J.H. Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour. Technol. 2013, 146:274-281.
    • (2013) Bioresour. Technol. , vol.146 , pp. 274-281
    • Kim, S.J.1    Seo, S.O.2    Jin, Y.S.3    Seo, J.H.4
  • 19
    • 84862231336 scopus 로고    scopus 로고
    • High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
    • Kim S.R., Ha S.J., Kong I.I., Jin Y.S. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab. Eng. 2012, 14:336-343.
    • (2012) Metab. Eng. , vol.14 , pp. 336-343
    • Kim, S.R.1    Ha, S.J.2    Kong, I.I.3    Jin, Y.S.4
  • 20
    • 84882640990 scopus 로고    scopus 로고
    • Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
    • Kim S.R., Park Y.C., Jin Y.S., Seo J.H. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 2013, 31:851-861.
    • (2013) Biotechnol. Adv. , vol.31 , pp. 851-861
    • Kim, S.R.1    Park, Y.C.2    Jin, Y.S.3    Seo, J.H.4
  • 21
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces cerevisiae
    • Kotter P., Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1993, 38:776-783.
    • (1993) Appl. Microbiol. Biotechnol. , vol.38 , pp. 776-783
    • Kotter, P.1    Ciriacy, M.2
  • 22
    • 77949451258 scopus 로고    scopus 로고
    • Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization
    • Krahulec S., Petschacher B., Wallner M., Longus K., Klimacek M., Nidetzky B. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb. Cell Fact. 2010, 9:16.
    • (2010) Microb. Cell Fact. , vol.9 , pp. 16
    • Krahulec, S.1    Petschacher, B.2    Wallner, M.3    Longus, K.4    Klimacek, M.5    Nidetzky, B.6
  • 23
    • 84859480640 scopus 로고    scopus 로고
    • Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae
    • Lee S.H., Kodaki T., Park Y.C., Seo J.H. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. J. Biotechnol. 2012, 158:184-191.
    • (2012) J. Biotechnol. , vol.158 , pp. 184-191
    • Lee, S.H.1    Kodaki, T.2    Park, Y.C.3    Seo, J.H.4
  • 24
    • 0033941131 scopus 로고    scopus 로고
    • Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase gene
    • Lee W.J., Ryu Y.W., Seo J.H. Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase gene. Process Biochem. 2000, 35:1199-1203.
    • (2000) Process Biochem. , vol.35 , pp. 1199-1203
    • Lee, W.J.1    Ryu, Y.W.2    Seo, J.H.3
  • 25
    • 77954539599 scopus 로고    scopus 로고
    • A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2,3-butanediol by Klebsiella pneumoniae
    • Li D., Dai J.Y., Xiu Z.L. A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2,3-butanediol by Klebsiella pneumoniae. Bioresour. Technol. 2010, 101:8342-8347.
    • (2010) Bioresour. Technol. , vol.101 , pp. 8342-8347
    • Li, D.1    Dai, J.Y.2    Xiu, Z.L.3
  • 26
    • 84873998947 scopus 로고    scopus 로고
    • Medium optimization and proteome analysis of (RR)-2,3-butanediol production by Paenibacillus polymyxa ATCC 12321
    • Li J.S., Wang W., Ma Y.H., Zeng A.P. Medium optimization and proteome analysis of (RR)-2,3-butanediol production by Paenibacillus polymyxa ATCC 12321. Appl. Microbiol. Biotechnol. 2013, 97:585-597.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 585-597
    • Li, J.S.1    Wang, W.2    Ma, Y.H.3    Zeng, A.P.4
  • 28
    • 63949086429 scopus 로고    scopus 로고
    • Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    • Madhavan A., Tamalampudi S., Ushida K., Kanai D., Katahira S., Srivastava A., Fukuda H., Bisaria V.S., Kondo A. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 2009, 82:1067-1078.
    • (2009) Appl. Microbiol. Biotechnol. , vol.82 , pp. 1067-1078
    • Madhavan, A.1    Tamalampudi, S.2    Ushida, K.3    Kanai, D.4    Katahira, S.5    Srivastava, A.6    Fukuda, H.7    Bisaria, V.S.8    Kondo, A.9
  • 29
    • 0036162767 scopus 로고    scopus 로고
    • Enhancement of (RR)-2,3-butanediol production from xylose by Paenibacillus polymyxa at elevated temperatures
    • Marwoto B., Nakashimada Y., Kakizono T., Nishio N. Enhancement of (RR)-2,3-butanediol production from xylose by Paenibacillus polymyxa at elevated temperatures. Biotechnol. Lett. 2002, 24:109-114.
    • (2002) Biotechnol. Lett. , vol.24 , pp. 109-114
    • Marwoto, B.1    Nakashimada, Y.2    Kakizono, T.3    Nishio, N.4
  • 30
    • 1642279900 scopus 로고    scopus 로고
    • Metabolic analysis of acetate accumulation, during xylose consumption by Paenibacillus polymyxa
    • Marwoto B., Nakashimada Y., Kakizono T., Nishio N. Metabolic analysis of acetate accumulation, during xylose consumption by Paenibacillus polymyxa. Appl. Microbiol. Biotechnol. 2004, 64:112-119.
    • (2004) Appl. Microbiol. Biotechnol. , vol.64 , pp. 112-119
    • Marwoto, B.1    Nakashimada, Y.2    Kakizono, T.3    Nishio, N.4
  • 31
    • 84861442550 scopus 로고    scopus 로고
    • Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
    • Ng C.Y., Jung M.Y., Lee J., Oh M.K. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb. Cell Fact. 2012, 11:68.
    • (2012) Microb. Cell Fact. , vol.11 , pp. 68
    • Ng, C.Y.1    Jung, M.Y.2    Lee, J.3    Oh, M.K.4
  • 32
    • 84863180530 scopus 로고    scopus 로고
    • Effects of overexpression of acetaldehyde dehydrogenase 6 and acetyl-CoA synthetase 1 on xylitol production in recombinant Saccharomyces cerevisiae
    • Oh E.J., Bae Y.H., Kim K.H., Park Y.C., Seo J.H. Effects of overexpression of acetaldehyde dehydrogenase 6 and acetyl-CoA synthetase 1 on xylitol production in recombinant Saccharomyces cerevisiae. Biocatal. Agric. Biotechnol. 2012, 1:15-19.
    • (2012) Biocatal. Agric. Biotechnol. , vol.1 , pp. 15-19
    • Oh, E.J.1    Bae, Y.H.2    Kim, K.H.3    Park, Y.C.4    Seo, J.H.5
  • 33
    • 0000607694 scopus 로고
    • Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates
    • Olsson L., Hahn-Hägerdal B. Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates. Process Biochem. 1993, 28:249-257.
    • (1993) Process Biochem. , vol.28 , pp. 249-257
    • Olsson, L.1    Hahn-Hägerdal, B.2
  • 35
    • 0024669291 scopus 로고
    • A System of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski R.S., Hieter P. A System of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989, 122:19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 36
    • 0035746731 scopus 로고    scopus 로고
    • Successful nonfreezing, subzero preservation of rat liver with 2,3-butanediol and type I antifreeze protein
    • Soltys K.A., Batta A.K., Koneru B. Successful nonfreezing, subzero preservation of rat liver with 2,3-butanediol and type I antifreeze protein. J. Surg. Res. 2001, 96:30-34.
    • (2001) J. Surg. Res. , vol.96 , pp. 30-34
    • Soltys, K.A.1    Batta, A.K.2    Koneru, B.3
  • 37
    • 62949123358 scopus 로고    scopus 로고
    • Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae
    • Sun L.H., Wang X.D., Dai J.Y., Xiu Z.L. Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 2009, 82:847-852.
    • (2009) Appl. Microbiol. Biotechnol. , vol.82 , pp. 847-852
    • Sun, L.H.1    Wang, X.D.2    Dai, J.Y.3    Xiu, Z.L.4
  • 38
    • 0035098550 scopus 로고    scopus 로고
    • Biological production of 2,3-butanediol
    • Syu M.J. Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol. 2001, 55:10-18.
    • (2001) Appl. Microbiol. Biotechnol. , vol.55 , pp. 10-18
    • Syu, M.J.1
  • 40
    • 77955662487 scopus 로고    scopus 로고
    • Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production
    • Wang A.L., Wang Y., Jiang T.Y., Li L.X., Ma C.Q., Xu P. Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Appl. Microbiol. Biotechnol. 2010, 87:965-970.
    • (2010) Appl. Microbiol. Biotechnol. , vol.87 , pp. 965-970
    • Wang, A.L.1    Wang, Y.2    Jiang, T.Y.3    Li, L.X.4    Ma, C.Q.5    Xu, P.6
  • 41
    • 0034927504 scopus 로고    scopus 로고
    • Glycerol production by microbial fermentation: a review
    • Wang Z.X., Zhuge J., Fang H., Prior B.A. Glycerol production by microbial fermentation: a review. Biotechnol. Adv. 2001, 19:201-223.
    • (2001) Biotechnol. Adv. , vol.19 , pp. 201-223
    • Wang, Z.X.1    Zhuge, J.2    Fang, H.3    Prior, B.A.4
  • 42
    • 84885439374 scopus 로고    scopus 로고
    • Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast
    • Wei N., Quarterman J., Kim S.R., Cate J.H., Jin Y.-S. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat. Commun. 2013, 4.
    • (2013) Nat. Commun. , vol.4
    • Wei, N.1    Quarterman, J.2    Kim, S.R.3    Cate, J.H.4    Jin, Y.-S.5
  • 43
    • 11244299779 scopus 로고    scopus 로고
    • Industrial bioconversion of renewable resources as an alternative to conventional chemistry
    • Willke T., Vorlop K.D. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 2004, 66:131-142.
    • (2004) Appl. Microbiol. Biotechnol. , vol.66 , pp. 131-142
    • Willke, T.1    Vorlop, K.D.2
  • 44
  • 45
    • 70349290656 scopus 로고    scopus 로고
    • Enantioselective synthesis of pure (RR)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases
    • Yan Y.J., Lee C.C., Liao J.C. Enantioselective synthesis of pure (RR)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org. Biomol. Chem. 2009, 7:3914-3917.
    • (2009) Org. Biomol. Chem. , vol.7 , pp. 3914-3917
    • Yan, Y.J.1    Lee, C.C.2    Liao, J.C.3
  • 46
    • 79960086791 scopus 로고    scopus 로고
    • Novel (2R,3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321
    • Yu B., Sun J.B., Bommareddy R.R., Song L.F., Zeng A.P. Novel (2R,3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321. Appl. Environ. Microbiol. 2011, 77:4230-4233.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 4230-4233
    • Yu, B.1    Sun, J.B.2    Bommareddy, R.R.3    Song, L.F.4    Zeng, A.P.5
  • 47
    • 0028765764 scopus 로고
    • Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions
    • Zeng A.P., Byun T.G., Posten C., Deckwer W.D. Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions. Biotechnol. Bioeng. 1994, 44:1107-1114.
    • (1994) Biotechnol. Bioeng. , vol.44 , pp. 1107-1114
    • Zeng, A.P.1    Byun, T.G.2    Posten, C.3    Deckwer, W.D.4
  • 48
    • 84863182778 scopus 로고    scopus 로고
    • Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase
    • Zhang G.C., Liu J.J., Ding W.T. Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase. Appl. Environ. Microbiol. 2012, 78:1081-1086.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 1081-1086
    • Zhang, G.C.1    Liu, J.J.2    Ding, W.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.