-
1
-
-
0028302033
-
Gpd1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic-stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway
-
Albertyn J., Hohmann S., Thevelein J.M., Prior B.A. Gpd1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic-stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 1994, 14:4135-4144.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 4135-4144
-
-
Albertyn, J.1
Hohmann, S.2
Thevelein, J.M.3
Prior, B.A.4
-
2
-
-
0030908893
-
The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
-
Ansell R., Granath K., Hohmann S., Thevelein J.M., Adler L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 1997, 16:2179-2187.
-
(1997)
EMBO J.
, vol.16
, pp. 2179-2187
-
-
Ansell, R.1
Granath, K.2
Hohmann, S.3
Thevelein, J.M.4
Adler, L.5
-
3
-
-
0035170286
-
Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae
-
Bakker B.M., Overkamp K.M., van Maris A.J., Kotter P., Luttik M.A., van Dijken J.P., Pronk J.T. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2001, 25:15-37.
-
(2001)
FEMS Microbiol. Rev.
, vol.25
, pp. 15-37
-
-
Bakker, B.M.1
Overkamp, K.M.2
van Maris, A.J.3
Kotter, P.4
Luttik, M.A.5
van Dijken, J.P.6
Pronk, J.T.7
-
4
-
-
79955164750
-
Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
-
Bastian S., Liu X., Meyerowitz J.T., Snow C.D., Chen M.M., Arnold F.H. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab. Eng. 2011, 13:345-352.
-
(2011)
Metab. Eng.
, vol.13
, pp. 345-352
-
-
Bastian, S.1
Liu, X.2
Meyerowitz, J.T.3
Snow, C.D.4
Chen, M.M.5
Arnold, F.H.6
-
5
-
-
70349759561
-
Biotechnological production of 2,3-butanediol-current state and prospects
-
Celinska E., Grajek W. Biotechnological production of 2,3-butanediol-current state and prospects. Biotechnol. Adv. 2009, 27:715-725.
-
(2009)
Biotechnol. Adv.
, vol.27
, pp. 715-725
-
-
Celinska, E.1
Grajek, W.2
-
6
-
-
0021774515
-
Brewers[U+05F3] yeast pyruvate decarboxylase produces acetoin from acetaldehyde: a novel tool to study the mechanism of steps subsequent to carbon dioxide loss
-
Chen G.C., Jordan F. Brewers[U+05F3] yeast pyruvate decarboxylase produces acetoin from acetaldehyde: a novel tool to study the mechanism of steps subsequent to carbon dioxide loss. Biochemistry 1984, 23:3576-3582.
-
(1984)
Biochemistry
, vol.23
, pp. 3576-3582
-
-
Chen, G.C.1
Jordan, F.2
-
7
-
-
84901001601
-
Engineering redox balance through cofactor systerms
-
Chen X.L., Li S.B., Liu L.M. Engineering redox balance through cofactor systerms. Trends Biotechnol. 2014, 32:337-343.
-
(2014)
Trends Biotechnol.
, vol.32
, pp. 337-343
-
-
Chen, X.L.1
Li, S.B.2
Liu, L.M.3
-
8
-
-
0036713452
-
Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae
-
Cronwright G.R., Rohwer J.M., Prior B.A. Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2002, 68:4448-4456.
-
(2002)
Appl. Environ. Microbiol.
, vol.68
, pp. 4448-4456
-
-
Cronwright, G.R.1
Rohwer, J.M.2
Prior, B.A.3
-
9
-
-
54049146291
-
The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review
-
de
-
Smidt O., du Preez J.C., Albertyn J. The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res. 2008, 8:967-978. de.
-
(2008)
FEMS Yeast Res.
, vol.8
, pp. 967-978
-
-
Smidt, O.1
du Preez, J.C.2
Albertyn, J.3
-
10
-
-
84855568105
-
Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae
-
de Smidt O., du Preez J.C., Albertyn J. Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae. FEMS Yeast Res. 2012, 12:33-47.
-
(2012)
FEMS Yeast Res.
, vol.12
, pp. 33-47
-
-
de Smidt, O.1
du Preez, J.C.2
Albertyn, J.3
-
11
-
-
84877105466
-
3[U+05F3] Truncation of the GPD1 promoter in Saccharomyces cerevisiae for improved ethanol yield and productivity
-
Ding W.T., Zhang G.C., Liu J.J. 3[U+05F3] Truncation of the GPD1 promoter in Saccharomyces cerevisiae for improved ethanol yield and productivity. Appl. Environ. Microbiol. 2013, 79:3273-3281.
-
(2013)
Appl. Environ. Microbiol.
, vol.79
, pp. 3273-3281
-
-
Ding, W.T.1
Zhang, G.C.2
Liu, J.J.3
-
12
-
-
0025194333
-
Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae
-
Drewke C., Thielen J., Ciriacy M. Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae. J. Bacteriol. 1990, 172:3909-3917.
-
(1990)
J. Bacteriol.
, vol.172
, pp. 3909-3917
-
-
Drewke, C.1
Thielen, J.2
Ciriacy, M.3
-
13
-
-
0029097555
-
Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1
-
Eriksson P., Andre L., Ansell R., Blomberg A., Adler L. Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol. Microbiol. 1995, 17:95-107.
-
(1995)
Mol. Microbiol.
, vol.17
, pp. 95-107
-
-
Eriksson, P.1
Andre, L.2
Ansell, R.3
Blomberg, A.4
Adler, L.5
-
14
-
-
0029984511
-
Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose
-
Flikweert M.T., Van Der Zanden L., Janssen W.M., Steensma H.Y., Van Dijken J.P., Pronk J.T. Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 1996, 12:247-257.
-
(1996)
Yeast
, vol.12
, pp. 247-257
-
-
Flikweert, M.T.1
Van Der Zanden, L.2
Janssen, W.M.3
Steensma, H.Y.4
Van Dijken, J.P.5
Pronk, J.T.6
-
15
-
-
0037313750
-
Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
-
Forster J., Famili I., Fu P., Palsson B.O., Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 2003, 13:244-253.
-
(2003)
Genome Res.
, vol.13
, pp. 244-253
-
-
Forster, J.1
Famili, I.2
Fu, P.3
Palsson, B.O.4
Nielsen, J.5
-
16
-
-
75749134466
-
Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
-
Guadalupe Medina V., Almering M.J., van Maris A.J., Pronk J.T. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl. Environ. Microbiol. 2010, 76:190-195.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 190-195
-
-
Guadalupe Medina, V.1
Almering, M.J.2
van Maris, A.J.3
Pronk, J.T.4
-
17
-
-
0037088811
-
A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
-
Gueldener U., Heinisch J., Koehler G.J., Voss D., Hegemann J.H. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002, 30:e23.
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. e23
-
-
Gueldener, U.1
Heinisch, J.2
Koehler, G.J.3
Voss, D.4
Hegemann, J.H.5
-
18
-
-
33746891860
-
Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism
-
Heux S., Cachon R., Dequin S. Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metab. Eng. 2006, 8:303-314.
-
(2006)
Metab. Eng.
, vol.8
, pp. 303-314
-
-
Heux, S.1
Cachon, R.2
Dequin, S.3
-
19
-
-
84864186953
-
Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
-
Hong K.K., Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 2012, 69:2671-2690.
-
(2012)
Cell. Mol. Life Sci.
, vol.69
, pp. 2671-2690
-
-
Hong, K.K.1
Nielsen, J.2
-
20
-
-
84893776114
-
Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae
-
Hou J., Suo F., Wang C., Li X., Shen Y., Bao X. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae. BMC Biotechnol. 2014, 14:13.
-
(2014)
BMC Biotechnol.
, vol.14
, pp. 13
-
-
Hou, J.1
Suo, F.2
Wang, C.3
Li, X.4
Shen, Y.5
Bao, X.6
-
21
-
-
62949084480
-
Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae
-
Hou J., Vemuri G.N., Bao X., Olsson L. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2009, 82:909-919.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.82
, pp. 909-919
-
-
Hou, J.1
Vemuri, G.N.2
Bao, X.3
Olsson, L.4
-
22
-
-
84856777402
-
Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae
-
Ida Y., Furusawa C., Hirasawa T., Shimizu H. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2012, 113:192-195.
-
(2012)
J. Biosci. Bioeng.
, vol.113
, pp. 192-195
-
-
Ida, Y.1
Furusawa, C.2
Hirasawa, T.3
Shimizu, H.4
-
23
-
-
84878016831
-
Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction
-
Ida Y., Hirasawa T., Furusawa C., Shimizu H. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Appl. Microbiol. Biotechnol. 2013, 97:4811-4819.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 4811-4819
-
-
Ida, Y.1
Hirasawa, T.2
Furusawa, C.3
Shimizu, H.4
-
24
-
-
84928745415
-
Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium
-
Jantama K., Polyiam P., Khunnonkwao P., Chan S., Sangproo M., Khor K., Jantama S.S., Kanchanatawee S. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Metab. Eng. 2015, 30:16-26.
-
(2015)
Metab. Eng.
, vol.30
, pp. 16-26
-
-
Jantama, K.1
Polyiam, P.2
Khunnonkwao, P.3
Chan, S.4
Sangproo, M.5
Khor, K.6
Jantama, S.S.7
Kanchanatawee, S.8
-
25
-
-
79952694448
-
Microbial 2,3-butanediol production: a state-of-the-art review
-
Ji X.J., Huang H., Ouyang P.K. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol. Adv. 2011, 29:351-364.
-
(2011)
Biotechnol. Adv.
, vol.29
, pp. 351-364
-
-
Ji, X.J.1
Huang, H.2
Ouyang, P.K.3
-
26
-
-
85040956326
-
Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae
-
Ji X.J., Xia Z.F., Fu N.H., Nie Z.K., Shen M.Q., Tian Q.Q., Huang H. Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae. Biotechnol. Biofuels 2013, 6.
-
(2013)
Biotechnol. Biofuels
, vol.6
-
-
Ji, X.J.1
Xia, Z.F.2
Fu, N.H.3
Nie, Z.K.4
Shen, M.Q.5
Tian, Q.Q.6
Huang, H.7
-
27
-
-
84940044539
-
Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae
-
Kim J.W., Seo S.O., Zhang G.C., Jin Y.S., Seo J.H. Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Bioresour. Technol. 2015, 191:512-519.
-
(2015)
Bioresour. Technol.
, vol.191
, pp. 512-519
-
-
Kim, J.W.1
Seo, S.O.2
Zhang, G.C.3
Jin, Y.S.4
Seo, J.H.5
-
28
-
-
84909955815
-
Synthetic scaffold based on a cohesin-dockerin interaction for improved production of 2,3-butanediol in Saccharomyces cerevisiae
-
Kim S., Hahn J.S. Synthetic scaffold based on a cohesin-dockerin interaction for improved production of 2,3-butanediol in Saccharomyces cerevisiae. J. Biotechnol. 2014, 192:192-196.
-
(2014)
J. Biotechnol.
, vol.192
, pp. 192-196
-
-
Kim, S.1
Hahn, J.S.2
-
29
-
-
84882274841
-
Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
-
Kim S.J., Seo S.O., Jin Y.S., Seo J.H. Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour. Technol. 2013, 146:274-281.
-
(2013)
Bioresour. Technol.
, vol.146
, pp. 274-281
-
-
Kim, S.J.1
Seo, S.O.2
Jin, Y.S.3
Seo, J.H.4
-
30
-
-
84923922989
-
Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae
-
Kim S.J., Seo S.O., Park Y.C., Jin Y.S., Seo J.H. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. J. Biotechnol. 2014, 192:376-382.
-
(2014)
J. Biotechnol.
, vol.192
, pp. 376-382
-
-
Kim, S.J.1
Seo, S.O.2
Park, Y.C.3
Jin, Y.S.4
Seo, J.H.5
-
31
-
-
33845286497
-
Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae
-
Kong Q.X., Gu J.G., Cao L.M., Zhang A.L., Chen X., Zhao X.M. Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae. Biotechnol. Lett. 2006, 28:2033-2038.
-
(2006)
Biotechnol. Lett.
, vol.28
, pp. 2033-2038
-
-
Kong, Q.X.1
Gu, J.G.2
Cao, L.M.3
Zhang, A.L.4
Chen, X.5
Zhao, X.M.6
-
32
-
-
0036891388
-
The three zinc-containing alcohol dehydrogenases from baker[U+05F3]s yeast, Saccharomyces cerevisiae
-
Leskovac V., Trivic S., Pericin D. The three zinc-containing alcohol dehydrogenases from baker[U+05F3]s yeast, Saccharomyces cerevisiae. FEMS Yeast Res. 2002, 2:481-494.
-
(2002)
FEMS Yeast Res.
, vol.2
, pp. 481-494
-
-
Leskovac, V.1
Trivic, S.2
Pericin, D.3
-
33
-
-
84919915096
-
Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars
-
Li L., Li K., Wang Y., Chen C., Xu Y., Zhang L., Han B., Gao C., Tao F., Ma C., Xu P. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab. Eng. 2015, 28:19-27.
-
(2015)
Metab. Eng.
, vol.28
, pp. 19-27
-
-
Li, L.1
Li, K.2
Wang, Y.3
Chen, C.4
Xu, Y.5
Zhang, L.6
Han, B.7
Gao, C.8
Tao, F.9
Ma, C.10
Xu, P.11
-
34
-
-
84896297653
-
Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol
-
Lian J., Chao R., Zhao H. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab. Eng. 2014, 23:92-99.
-
(2014)
Metab. Eng.
, vol.23
, pp. 92-99
-
-
Lian, J.1
Chao, R.2
Zhao, H.3
-
35
-
-
0028953840
-
Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
-
Mumberg D., Muller R., Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 1995, 156:119-122.
-
(1995)
Gene
, vol.156
, pp. 119-122
-
-
Mumberg, D.1
Muller, R.2
Funk, M.3
-
36
-
-
84907311048
-
Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin
-
Nakashima N., Akita H., Hoshino T. Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin. Metab. Eng. 2014, 25:204-214.
-
(2014)
Metab. Eng.
, vol.25
, pp. 204-214
-
-
Nakashima, N.1
Akita, H.2
Hoshino, T.3
-
37
-
-
84903818697
-
2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae
-
Nan H., Seo S.O., Oh E.J., Seo J.H., Cate J.H., Jin Y.S. 2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2014, 98:5757-5764.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 5757-5764
-
-
Nan, H.1
Seo, S.O.2
Oh, E.J.3
Seo, J.H.4
Cate, J.H.5
Jin, Y.S.6
-
38
-
-
84861442550
-
Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
-
Ng C.Y., Jung M.Y., Lee J., Oh M.K. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb. Cell Fact. 2012, 11:68.
-
(2012)
Microb. Cell Fact.
, vol.11
, pp. 68
-
-
Ng, C.Y.1
Jung, M.Y.2
Lee, J.3
Oh, M.K.4
-
39
-
-
0030448870
-
Pyruvate metabolism in Saccharomyces cerevisiae
-
Pronk J.T., Yde Steensma H., Van Dijken J.P. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 1996, 12:1607-1633.
-
(1996)
Yeast
, vol.12
, pp. 1607-1633
-
-
Pronk, J.T.1
Yde Steensma, H.2
Van Dijken, J.P.3
-
40
-
-
0030027827
-
Origin and production of acetoin during wine yeast fermentation
-
Romano P., Suzzi G. Origin and production of acetoin during wine yeast fermentation. Appl. Environ. Microbiol. 1996, 62:309-315.
-
(1996)
Appl. Environ. Microbiol.
, vol.62
, pp. 309-315
-
-
Romano, P.1
Suzzi, G.2
-
41
-
-
0035954393
-
Catalytic acid-base groups in yeast pyruvate decarboxylase. 2. Insights into the specific roles of D28 and E477 from the rates and stereospecificity of formation of carboligase side products
-
Sergienko E.A., Jordan F. Catalytic acid-base groups in yeast pyruvate decarboxylase. 2. Insights into the specific roles of D28 and E477 from the rates and stereospecificity of formation of carboligase side products. Biochemistry 2001, 40:7369-7381.
-
(2001)
Biochemistry
, vol.40
, pp. 7369-7381
-
-
Sergienko, E.A.1
Jordan, F.2
-
42
-
-
84899500275
-
Coenzyme regeneration catalyzed by NADH oxidase from Lactococcus lactis
-
Sudar M., Findrik Z., Domanovac M.V., Vasic-Racki D. Coenzyme regeneration catalyzed by NADH oxidase from Lactococcus lactis. Biochem. Eng. J. 2014, 88:12-18.
-
(2014)
Biochem. Eng. J.
, vol.88
, pp. 12-18
-
-
Sudar, M.1
Findrik, Z.2
Domanovac, M.V.3
Vasic-Racki, D.4
-
43
-
-
84862318026
-
Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase
-
Sun J.A., Zhang L.Y., Rao B., Shen Y.L., Wei D.Z. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour. Technol. 2012, 119:94-98.
-
(2012)
Bioresour. Technol.
, vol.119
, pp. 94-98
-
-
Sun, J.A.1
Zhang, L.Y.2
Rao, B.3
Shen, Y.L.4
Wei, D.Z.5
-
44
-
-
0345869655
-
Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast
-
van Maris A.J., Geertman J.M., Vermeulen A., Groothuizen M.K., Winkler A.A., Piper M.D., van Dijken J.P., Pronk J.T. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl. Environ. Microbiol. 2004, 70:159-166.
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, pp. 159-166
-
-
van Maris, A.J.1
Geertman, J.M.2
Vermeulen, A.3
Groothuizen, M.K.4
Winkler, A.A.5
Piper, M.D.6
van Dijken, J.P.7
Pronk, J.T.8
-
45
-
-
33847785682
-
Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae
-
Vemuri G.N., Eiteman M.A., McEwen J.E., Olsson L., Nielsen J. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2007, 104:2402-2407.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 2402-2407
-
-
Vemuri, G.N.1
Eiteman, M.A.2
McEwen, J.E.3
Olsson, L.4
Nielsen, J.5
-
46
-
-
84893482649
-
Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value
-
Yan D., Wang C., Zhou J., Liu Y., Yang M., Xing J. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour. Technol. 2014, 156:232-239.
-
(2014)
Bioresour. Technol.
, vol.156
, pp. 232-239
-
-
Yan, D.1
Wang, C.2
Zhou, J.3
Liu, Y.4
Yang, M.5
Xing, J.6
-
47
-
-
84863182778
-
Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase
-
Zhang G.C., Liu J.J., Ding W.T. Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase. Appl. Environ. Microbiol. 2012, 78:1081-1086.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 1081-1086
-
-
Zhang, G.C.1
Liu, J.J.2
Ding, W.T.3
-
48
-
-
84896881649
-
The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis
-
Zhang X., Zhang R.Z., Bao T., Rao Z.M., Yang T.W., Xu M.J., Xu Z.H., Li H.Z., Yang S.T. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab. Eng. 2014, 23:34-41.
-
(2014)
Metab. Eng.
, vol.23
, pp. 34-41
-
-
Zhang, X.1
Zhang, R.Z.2
Bao, T.3
Rao, Z.M.4
Yang, T.W.5
Xu, M.J.6
Xu, Z.H.7
Li, H.Z.8
Yang, S.T.9
|