메뉴 건너뛰기




Volumn 31, Issue , 2015, Pages 94-101

Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing

Author keywords

2,3 Butanediol; Alcohol dehydrogenase; Glycerol 3 phosphate dehydrogenase; NADH oxidase; Saccharomyces cerevisiae

Indexed keywords

BACTERIOLOGY; ETHANOL; FERMENTATION; GLYCEROL;

EID: 84940033066     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2015.07.006     Document Type: Article
Times cited : (92)

References (48)
  • 1
    • 0028302033 scopus 로고
    • Gpd1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic-stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway
    • Albertyn J., Hohmann S., Thevelein J.M., Prior B.A. Gpd1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic-stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 1994, 14:4135-4144.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 4135-4144
    • Albertyn, J.1    Hohmann, S.2    Thevelein, J.M.3    Prior, B.A.4
  • 2
    • 0030908893 scopus 로고    scopus 로고
    • The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
    • Ansell R., Granath K., Hohmann S., Thevelein J.M., Adler L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 1997, 16:2179-2187.
    • (1997) EMBO J. , vol.16 , pp. 2179-2187
    • Ansell, R.1    Granath, K.2    Hohmann, S.3    Thevelein, J.M.4    Adler, L.5
  • 4
    • 79955164750 scopus 로고    scopus 로고
    • Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
    • Bastian S., Liu X., Meyerowitz J.T., Snow C.D., Chen M.M., Arnold F.H. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab. Eng. 2011, 13:345-352.
    • (2011) Metab. Eng. , vol.13 , pp. 345-352
    • Bastian, S.1    Liu, X.2    Meyerowitz, J.T.3    Snow, C.D.4    Chen, M.M.5    Arnold, F.H.6
  • 5
    • 70349759561 scopus 로고    scopus 로고
    • Biotechnological production of 2,3-butanediol-current state and prospects
    • Celinska E., Grajek W. Biotechnological production of 2,3-butanediol-current state and prospects. Biotechnol. Adv. 2009, 27:715-725.
    • (2009) Biotechnol. Adv. , vol.27 , pp. 715-725
    • Celinska, E.1    Grajek, W.2
  • 6
    • 0021774515 scopus 로고
    • Brewers[U+05F3] yeast pyruvate decarboxylase produces acetoin from acetaldehyde: a novel tool to study the mechanism of steps subsequent to carbon dioxide loss
    • Chen G.C., Jordan F. Brewers[U+05F3] yeast pyruvate decarboxylase produces acetoin from acetaldehyde: a novel tool to study the mechanism of steps subsequent to carbon dioxide loss. Biochemistry 1984, 23:3576-3582.
    • (1984) Biochemistry , vol.23 , pp. 3576-3582
    • Chen, G.C.1    Jordan, F.2
  • 7
    • 84901001601 scopus 로고    scopus 로고
    • Engineering redox balance through cofactor systerms
    • Chen X.L., Li S.B., Liu L.M. Engineering redox balance through cofactor systerms. Trends Biotechnol. 2014, 32:337-343.
    • (2014) Trends Biotechnol. , vol.32 , pp. 337-343
    • Chen, X.L.1    Li, S.B.2    Liu, L.M.3
  • 8
    • 0036713452 scopus 로고    scopus 로고
    • Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae
    • Cronwright G.R., Rohwer J.M., Prior B.A. Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2002, 68:4448-4456.
    • (2002) Appl. Environ. Microbiol. , vol.68 , pp. 4448-4456
    • Cronwright, G.R.1    Rohwer, J.M.2    Prior, B.A.3
  • 9
    • 54049146291 scopus 로고    scopus 로고
    • The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review
    • de
    • Smidt O., du Preez J.C., Albertyn J. The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res. 2008, 8:967-978. de.
    • (2008) FEMS Yeast Res. , vol.8 , pp. 967-978
    • Smidt, O.1    du Preez, J.C.2    Albertyn, J.3
  • 10
    • 84855568105 scopus 로고    scopus 로고
    • Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae
    • de Smidt O., du Preez J.C., Albertyn J. Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae. FEMS Yeast Res. 2012, 12:33-47.
    • (2012) FEMS Yeast Res. , vol.12 , pp. 33-47
    • de Smidt, O.1    du Preez, J.C.2    Albertyn, J.3
  • 11
    • 84877105466 scopus 로고    scopus 로고
    • 3[U+05F3] Truncation of the GPD1 promoter in Saccharomyces cerevisiae for improved ethanol yield and productivity
    • Ding W.T., Zhang G.C., Liu J.J. 3[U+05F3] Truncation of the GPD1 promoter in Saccharomyces cerevisiae for improved ethanol yield and productivity. Appl. Environ. Microbiol. 2013, 79:3273-3281.
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 3273-3281
    • Ding, W.T.1    Zhang, G.C.2    Liu, J.J.3
  • 12
    • 0025194333 scopus 로고
    • Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae
    • Drewke C., Thielen J., Ciriacy M. Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae. J. Bacteriol. 1990, 172:3909-3917.
    • (1990) J. Bacteriol. , vol.172 , pp. 3909-3917
    • Drewke, C.1    Thielen, J.2    Ciriacy, M.3
  • 13
    • 0029097555 scopus 로고
    • Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1
    • Eriksson P., Andre L., Ansell R., Blomberg A., Adler L. Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol. Microbiol. 1995, 17:95-107.
    • (1995) Mol. Microbiol. , vol.17 , pp. 95-107
    • Eriksson, P.1    Andre, L.2    Ansell, R.3    Blomberg, A.4    Adler, L.5
  • 15
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Forster J., Famili I., Fu P., Palsson B.O., Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 2003, 13:244-253.
    • (2003) Genome Res. , vol.13 , pp. 244-253
    • Forster, J.1    Famili, I.2    Fu, P.3    Palsson, B.O.4    Nielsen, J.5
  • 16
    • 75749134466 scopus 로고    scopus 로고
    • Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
    • Guadalupe Medina V., Almering M.J., van Maris A.J., Pronk J.T. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl. Environ. Microbiol. 2010, 76:190-195.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 190-195
    • Guadalupe Medina, V.1    Almering, M.J.2    van Maris, A.J.3    Pronk, J.T.4
  • 17
    • 0037088811 scopus 로고    scopus 로고
    • A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
    • Gueldener U., Heinisch J., Koehler G.J., Voss D., Hegemann J.H. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002, 30:e23.
    • (2002) Nucleic Acids Res. , vol.30 , pp. e23
    • Gueldener, U.1    Heinisch, J.2    Koehler, G.J.3    Voss, D.4    Hegemann, J.H.5
  • 18
    • 33746891860 scopus 로고    scopus 로고
    • Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism
    • Heux S., Cachon R., Dequin S. Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metab. Eng. 2006, 8:303-314.
    • (2006) Metab. Eng. , vol.8 , pp. 303-314
    • Heux, S.1    Cachon, R.2    Dequin, S.3
  • 19
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
    • Hong K.K., Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 2012, 69:2671-2690.
    • (2012) Cell. Mol. Life Sci. , vol.69 , pp. 2671-2690
    • Hong, K.K.1    Nielsen, J.2
  • 20
    • 84893776114 scopus 로고    scopus 로고
    • Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae
    • Hou J., Suo F., Wang C., Li X., Shen Y., Bao X. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae. BMC Biotechnol. 2014, 14:13.
    • (2014) BMC Biotechnol. , vol.14 , pp. 13
    • Hou, J.1    Suo, F.2    Wang, C.3    Li, X.4    Shen, Y.5    Bao, X.6
  • 21
    • 62949084480 scopus 로고    scopus 로고
    • Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae
    • Hou J., Vemuri G.N., Bao X., Olsson L. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2009, 82:909-919.
    • (2009) Appl. Microbiol. Biotechnol. , vol.82 , pp. 909-919
    • Hou, J.1    Vemuri, G.N.2    Bao, X.3    Olsson, L.4
  • 22
    • 84856777402 scopus 로고    scopus 로고
    • Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae
    • Ida Y., Furusawa C., Hirasawa T., Shimizu H. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2012, 113:192-195.
    • (2012) J. Biosci. Bioeng. , vol.113 , pp. 192-195
    • Ida, Y.1    Furusawa, C.2    Hirasawa, T.3    Shimizu, H.4
  • 23
    • 84878016831 scopus 로고    scopus 로고
    • Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction
    • Ida Y., Hirasawa T., Furusawa C., Shimizu H. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Appl. Microbiol. Biotechnol. 2013, 97:4811-4819.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 4811-4819
    • Ida, Y.1    Hirasawa, T.2    Furusawa, C.3    Shimizu, H.4
  • 24
    • 84928745415 scopus 로고    scopus 로고
    • Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium
    • Jantama K., Polyiam P., Khunnonkwao P., Chan S., Sangproo M., Khor K., Jantama S.S., Kanchanatawee S. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Metab. Eng. 2015, 30:16-26.
    • (2015) Metab. Eng. , vol.30 , pp. 16-26
    • Jantama, K.1    Polyiam, P.2    Khunnonkwao, P.3    Chan, S.4    Sangproo, M.5    Khor, K.6    Jantama, S.S.7    Kanchanatawee, S.8
  • 25
    • 79952694448 scopus 로고    scopus 로고
    • Microbial 2,3-butanediol production: a state-of-the-art review
    • Ji X.J., Huang H., Ouyang P.K. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol. Adv. 2011, 29:351-364.
    • (2011) Biotechnol. Adv. , vol.29 , pp. 351-364
    • Ji, X.J.1    Huang, H.2    Ouyang, P.K.3
  • 26
    • 85040956326 scopus 로고    scopus 로고
    • Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae
    • Ji X.J., Xia Z.F., Fu N.H., Nie Z.K., Shen M.Q., Tian Q.Q., Huang H. Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae. Biotechnol. Biofuels 2013, 6.
    • (2013) Biotechnol. Biofuels , vol.6
    • Ji, X.J.1    Xia, Z.F.2    Fu, N.H.3    Nie, Z.K.4    Shen, M.Q.5    Tian, Q.Q.6    Huang, H.7
  • 27
    • 84940044539 scopus 로고    scopus 로고
    • Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae
    • Kim J.W., Seo S.O., Zhang G.C., Jin Y.S., Seo J.H. Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Bioresour. Technol. 2015, 191:512-519.
    • (2015) Bioresour. Technol. , vol.191 , pp. 512-519
    • Kim, J.W.1    Seo, S.O.2    Zhang, G.C.3    Jin, Y.S.4    Seo, J.H.5
  • 28
    • 84909955815 scopus 로고    scopus 로고
    • Synthetic scaffold based on a cohesin-dockerin interaction for improved production of 2,3-butanediol in Saccharomyces cerevisiae
    • Kim S., Hahn J.S. Synthetic scaffold based on a cohesin-dockerin interaction for improved production of 2,3-butanediol in Saccharomyces cerevisiae. J. Biotechnol. 2014, 192:192-196.
    • (2014) J. Biotechnol. , vol.192 , pp. 192-196
    • Kim, S.1    Hahn, J.S.2
  • 29
    • 84882274841 scopus 로고    scopus 로고
    • Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
    • Kim S.J., Seo S.O., Jin Y.S., Seo J.H. Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour. Technol. 2013, 146:274-281.
    • (2013) Bioresour. Technol. , vol.146 , pp. 274-281
    • Kim, S.J.1    Seo, S.O.2    Jin, Y.S.3    Seo, J.H.4
  • 30
    • 84923922989 scopus 로고    scopus 로고
    • Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae
    • Kim S.J., Seo S.O., Park Y.C., Jin Y.S., Seo J.H. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. J. Biotechnol. 2014, 192:376-382.
    • (2014) J. Biotechnol. , vol.192 , pp. 376-382
    • Kim, S.J.1    Seo, S.O.2    Park, Y.C.3    Jin, Y.S.4    Seo, J.H.5
  • 31
    • 33845286497 scopus 로고    scopus 로고
    • Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae
    • Kong Q.X., Gu J.G., Cao L.M., Zhang A.L., Chen X., Zhao X.M. Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae. Biotechnol. Lett. 2006, 28:2033-2038.
    • (2006) Biotechnol. Lett. , vol.28 , pp. 2033-2038
    • Kong, Q.X.1    Gu, J.G.2    Cao, L.M.3    Zhang, A.L.4    Chen, X.5    Zhao, X.M.6
  • 32
    • 0036891388 scopus 로고    scopus 로고
    • The three zinc-containing alcohol dehydrogenases from baker[U+05F3]s yeast, Saccharomyces cerevisiae
    • Leskovac V., Trivic S., Pericin D. The three zinc-containing alcohol dehydrogenases from baker[U+05F3]s yeast, Saccharomyces cerevisiae. FEMS Yeast Res. 2002, 2:481-494.
    • (2002) FEMS Yeast Res. , vol.2 , pp. 481-494
    • Leskovac, V.1    Trivic, S.2    Pericin, D.3
  • 33
    • 84919915096 scopus 로고    scopus 로고
    • Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars
    • Li L., Li K., Wang Y., Chen C., Xu Y., Zhang L., Han B., Gao C., Tao F., Ma C., Xu P. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab. Eng. 2015, 28:19-27.
    • (2015) Metab. Eng. , vol.28 , pp. 19-27
    • Li, L.1    Li, K.2    Wang, Y.3    Chen, C.4    Xu, Y.5    Zhang, L.6    Han, B.7    Gao, C.8    Tao, F.9    Ma, C.10    Xu, P.11
  • 34
    • 84896297653 scopus 로고    scopus 로고
    • Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol
    • Lian J., Chao R., Zhao H. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab. Eng. 2014, 23:92-99.
    • (2014) Metab. Eng. , vol.23 , pp. 92-99
    • Lian, J.1    Chao, R.2    Zhao, H.3
  • 35
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • Mumberg D., Muller R., Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 1995, 156:119-122.
    • (1995) Gene , vol.156 , pp. 119-122
    • Mumberg, D.1    Muller, R.2    Funk, M.3
  • 36
    • 84907311048 scopus 로고    scopus 로고
    • Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin
    • Nakashima N., Akita H., Hoshino T. Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin. Metab. Eng. 2014, 25:204-214.
    • (2014) Metab. Eng. , vol.25 , pp. 204-214
    • Nakashima, N.1    Akita, H.2    Hoshino, T.3
  • 37
  • 38
    • 84861442550 scopus 로고    scopus 로고
    • Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
    • Ng C.Y., Jung M.Y., Lee J., Oh M.K. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb. Cell Fact. 2012, 11:68.
    • (2012) Microb. Cell Fact. , vol.11 , pp. 68
    • Ng, C.Y.1    Jung, M.Y.2    Lee, J.3    Oh, M.K.4
  • 39
    • 0030448870 scopus 로고    scopus 로고
    • Pyruvate metabolism in Saccharomyces cerevisiae
    • Pronk J.T., Yde Steensma H., Van Dijken J.P. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 1996, 12:1607-1633.
    • (1996) Yeast , vol.12 , pp. 1607-1633
    • Pronk, J.T.1    Yde Steensma, H.2    Van Dijken, J.P.3
  • 40
    • 0030027827 scopus 로고    scopus 로고
    • Origin and production of acetoin during wine yeast fermentation
    • Romano P., Suzzi G. Origin and production of acetoin during wine yeast fermentation. Appl. Environ. Microbiol. 1996, 62:309-315.
    • (1996) Appl. Environ. Microbiol. , vol.62 , pp. 309-315
    • Romano, P.1    Suzzi, G.2
  • 41
    • 0035954393 scopus 로고    scopus 로고
    • Catalytic acid-base groups in yeast pyruvate decarboxylase. 2. Insights into the specific roles of D28 and E477 from the rates and stereospecificity of formation of carboligase side products
    • Sergienko E.A., Jordan F. Catalytic acid-base groups in yeast pyruvate decarboxylase. 2. Insights into the specific roles of D28 and E477 from the rates and stereospecificity of formation of carboligase side products. Biochemistry 2001, 40:7369-7381.
    • (2001) Biochemistry , vol.40 , pp. 7369-7381
    • Sergienko, E.A.1    Jordan, F.2
  • 42
    • 84899500275 scopus 로고    scopus 로고
    • Coenzyme regeneration catalyzed by NADH oxidase from Lactococcus lactis
    • Sudar M., Findrik Z., Domanovac M.V., Vasic-Racki D. Coenzyme regeneration catalyzed by NADH oxidase from Lactococcus lactis. Biochem. Eng. J. 2014, 88:12-18.
    • (2014) Biochem. Eng. J. , vol.88 , pp. 12-18
    • Sudar, M.1    Findrik, Z.2    Domanovac, M.V.3    Vasic-Racki, D.4
  • 43
    • 84862318026 scopus 로고    scopus 로고
    • Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase
    • Sun J.A., Zhang L.Y., Rao B., Shen Y.L., Wei D.Z. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour. Technol. 2012, 119:94-98.
    • (2012) Bioresour. Technol. , vol.119 , pp. 94-98
    • Sun, J.A.1    Zhang, L.Y.2    Rao, B.3    Shen, Y.L.4    Wei, D.Z.5
  • 46
    • 84893482649 scopus 로고    scopus 로고
    • Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value
    • Yan D., Wang C., Zhou J., Liu Y., Yang M., Xing J. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour. Technol. 2014, 156:232-239.
    • (2014) Bioresour. Technol. , vol.156 , pp. 232-239
    • Yan, D.1    Wang, C.2    Zhou, J.3    Liu, Y.4    Yang, M.5    Xing, J.6
  • 47
    • 84863182778 scopus 로고    scopus 로고
    • Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase
    • Zhang G.C., Liu J.J., Ding W.T. Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase. Appl. Environ. Microbiol. 2012, 78:1081-1086.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 1081-1086
    • Zhang, G.C.1    Liu, J.J.2    Ding, W.T.3
  • 48
    • 84896881649 scopus 로고    scopus 로고
    • The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis
    • Zhang X., Zhang R.Z., Bao T., Rao Z.M., Yang T.W., Xu M.J., Xu Z.H., Li H.Z., Yang S.T. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab. Eng. 2014, 23:34-41.
    • (2014) Metab. Eng. , vol.23 , pp. 34-41
    • Zhang, X.1    Zhang, R.Z.2    Bao, T.3    Rao, Z.M.4    Yang, T.W.5    Xu, M.J.6    Xu, Z.H.7    Li, H.Z.8    Yang, S.T.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.