-
1
-
-
84907386500
-
Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease
-
Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med 2014; 371:1131-1141.
-
(2014)
N Engl J Med
, vol.371
, pp. 1131-1141
-
-
Shulman, G.I.1
-
2
-
-
84879621442
-
AMPK, insulin resistance, and the metabolic syndrome
-
Ruderman NB, Carling D, Prentki M, Cacicedo JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest 2013; 123:2764-2772.
-
(2013)
J Clin Invest
, vol.123
, pp. 2764-2772
-
-
Ruderman, N.B.1
Carling, D.2
Prentki, M.3
Cacicedo, J.M.4
-
3
-
-
85013230596
-
AMPK signalling in health and disease
-
Carling D. AMPK signalling in health and disease. Curr Opin Cell Biol 2017; 45:31-37.
-
(2017)
Curr Opin Cell Biol
, vol.45
, pp. 31-37
-
-
Carling, D.1
-
5
-
-
84885168009
-
AMP is a true physiological regulator of AMP-Activated protein kinase by both allosteric activation and enhancing net phosphorylation
-
Gowans GJ, Hawley SA, Ross FA, Hardie DG. AMP is a true physiological regulator of AMP-Activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 2013; 18:556-566.
-
(2013)
Cell Metab
, vol.18
, pp. 556-566
-
-
Gowans, G.J.1
Hawley, S.A.2
Ross, F.A.3
Hardie, D.G.4
-
6
-
-
84883709817
-
AMPK: A target for drugs and natural products with effects on both diabetes and cancer
-
Hardie DG. AMPK: A target for drugs and natural products with effects on both diabetes and cancer. Diabetes 2013; 62:2164-2172.
-
(2013)
Diabetes
, vol.62
, pp. 2164-2172
-
-
Hardie, D.G.1
-
7
-
-
84889887123
-
Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin
-
Fullerton MD, Galic S, Marcinko K, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 2013; 19:1649-1654.
-
(2013)
Nat Med
, vol.19
, pp. 1649-1654
-
-
Fullerton, M.D.1
Galic, S.2
Marcinko, K.3
-
8
-
-
84904764021
-
AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice
-
ONeill HM, Lally JS, Galic S, et al. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia 2014; 57:1693-1702.
-
(2014)
Diabetologia
, vol.57
, pp. 1693-1702
-
-
ONeill, H.M.1
Lally, J.S.2
Galic, S.3
-
9
-
-
84940445363
-
Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner
-
Kjobsted R, Treebak JT, Fentz J, et al. Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner. Diabetes 2015; 64:2042-2055.
-
(2015)
Diabetes
, vol.64
, pp. 2042-2055
-
-
Kjobsted, R.1
Treebak, J.T.2
Fentz, J.3
-
10
-
-
85018744876
-
Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK
-
Kjobsted R, Munk-Hansen N, Birk JB, et al. Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK. Diabetes 2017; 66:598-612.
-
(2017)
Diabetes
, vol.66
, pp. 598-612
-
-
Kjobsted, R.1
Munk-Hansen, N.2
Birk, J.B.3
-
11
-
-
84994462147
-
A Tbc1d1 Ser231Ala-knockin mutation partially impairs AICAR-but not exercise-induced muscle glucose uptake in mice
-
Chen Q, Xie B, Zhu S, et al. A Tbc1d1 Ser231Ala-knockin mutation partially impairs AICAR-but not exercise-induced muscle glucose uptake in mice. Diabetologia 2017; 60:336-345.
-
(2017)
Diabetologia
, vol.60
, pp. 336-345
-
-
Chen, Q.1
Xie, B.2
Zhu, S.3
-
12
-
-
84884742734
-
Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle
-
Liu Y, Lai YC, Hill EV, et al. Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle. Biochem J 2013; 455:195-206.
-
(2013)
Biochem J
, vol.455
, pp. 195-206
-
-
Liu, Y.1
Lai, Y.C.2
Hill, E.V.3
-
13
-
-
84930589100
-
AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging
-
Bujak AL, Crane JD, Lally JS, et al. AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab 2015; 21:883-890.
-
(2015)
Cell Metab
, vol.21
, pp. 883-890
-
-
Bujak, A.L.1
Crane, J.D.2
Lally, J.S.3
-
14
-
-
84940439443
-
The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice
-
Marcinko K, Bujak AL, Lally JS, et al. The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice. Mol Metab 2015; 4:643-651.
-
(2015)
Mol Metab
, vol.4
, pp. 643-651
-
-
Marcinko, K.1
Bujak, A.L.2
Lally, J.S.3
-
15
-
-
84907693957
-
Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications
-
Vernochet C, Damilano F, Mourier A, et al. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. FASEB J 2014; 28:4408-4419.
-
(2014)
FASEB J
, vol.28
, pp. 4408-4419
-
-
Vernochet, C.1
Damilano, F.2
Mourier, A.3
-
16
-
-
34848872799
-
Obesity-Associated improvements in metabolic profile through expansion of adipose tissue
-
Kim JY, van de Wall E, Laplante M, et al. Obesity-Associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 2007; 117:2621-2637.
-
(2007)
J Clin Invest
, vol.117
, pp. 2621-2637
-
-
Kim, J.Y.1
Van De Wall, E.2
Laplante, M.3
-
17
-
-
85016091855
-
What have human experimental overfeeding studies taught us about adipose tissue expansion and susceptibility to obesity and metabolic complications?
-
Cuthbertson DJ, Steele T, Wilding JP, et al. What have human experimental overfeeding studies taught us about adipose tissue expansion and susceptibility to obesity and metabolic complications? Int J Obes (Lond) 2017.
-
(2017)
Int J Obes (Lond)
-
-
Cuthbertson, D.J.1
Steele, T.2
Wilding, J.P.3
-
18
-
-
84911896533
-
Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans
-
Chondronikola M, Volpi E, Borsheim E, et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 2014; 63:4089-4099.
-
(2014)
Diabetes
, vol.63
, pp. 4089-4099
-
-
Chondronikola, M.1
Volpi, E.2
Borsheim, E.3
-
19
-
-
84923212941
-
Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis
-
Crane JD, Palanivel R, Mottillo EP, et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat Med 2015; 21:166-172.
-
(2015)
Nat Med
, vol.21
, pp. 166-172
-
-
Crane, J.D.1
Palanivel, R.2
Mottillo, E.P.3
-
20
-
-
84954318420
-
Metabolism AMP-Activated protein kinase mediates mitochondrial fission in response to energy stress
-
Toyama EQ, Herzig S, Courchet J, et al., Metabolism. AMP-Activated protein kinase mediates mitochondrial fission in response to energy stress. Science 2016; 351:275-281.
-
(2016)
Science
, vol.351
, pp. 275-281
-
-
Toyama, E.Q.1
Herzig, S.2
Courchet, J.3
-
21
-
-
84925494009
-
Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate
-
Ducommun S, Deak M, Sumpton D, et al. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate. Cell Signal 2015; 27:978-988.
-
(2015)
Cell Signal
, vol.27
, pp. 978-988
-
-
Ducommun, S.1
Deak, M.2
Sumpton, D.3
-
22
-
-
84948425160
-
Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction
-
Schaffer BE, Levin RS, Hertz NT, et al. Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction. Cell Metab 2015; 22: 907-921.
-
(2015)
Cell Metab
, vol.22
, pp. 907-921
-
-
Schaffer, B.E.1
Levin, R.S.2
Hertz, N.T.3
-
23
-
-
85011579299
-
AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1 RBBP7, and HAT1
-
Marin TL, Gongol B, Zhang F, et al. AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Sci Signal 2017; 10:pii: eaaf7478.
-
(2017)
Sci Signal
, vol.10
, pp. eaaf7478
-
-
Marin, T.L.1
Gongol, B.2
Zhang, F.3
-
24
-
-
84942819409
-
MicroRNA-455 regulates brown adipogenesis via a novel HIF1an-AMPK-PGC1alpha signaling network
-
Zhang H, Guan M, Townsend KL, et al. MicroRNA-455 regulates brown adipogenesis via a novel HIF1an-AMPK-PGC1alpha signaling network. EMBO Rep 2015; 16:1378-1393.
-
(2015)
EMBO Rep
, vol.16
, pp. 1378-1393
-
-
Zhang, H.1
Guan, M.2
Townsend, K.L.3
-
25
-
-
84992376572
-
AMPK/alpha-ketoglutarate axis dynamically mediates DNA demethylation in the Prdm16 promoter and brown adipogenesis
-
Yang Q, Liang X, Sun X, et al. AMPK/alpha-ketoglutarate axis dynamically mediates DNA demethylation in the Prdm16 promoter and brown adipogenesis. Cell Metab 2016; 24:542-554.
-
(2016)
Cell Metab
, vol.24
, pp. 542-554
-
-
Yang, Q.1
Liang, X.2
Sun, X.3
-
26
-
-
85013491978
-
A high-Throughput, image-based screen to identify kinases involved in brown adipocyte development
-
Perdikari A, Kulenkampff E, Rudigier C, et al. A high-Throughput, image-based screen to identify kinases involved in brown adipocyte development. Sci Signal 2017; 10.
-
Sci Signal
, vol.2017
, pp. 10
-
-
Perdikari, A.1
Kulenkampff, E.2
Rudigier, C.3
-
27
-
-
84992374677
-
Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function
-
Mottillo EP, Desjardins EM, Crane JD, et al. Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function. Cell Metab 2016; 24:118-129.
-
(2016)
Cell Metab
, vol.24
, pp. 118-129
-
-
Mottillo, E.P.1
Desjardins, E.M.2
Crane, J.D.3
-
28
-
-
84878366989
-
The effects of chronic AMPK activation on hepatic triglyceride accumulation and glycerol 3-phosphate acyltransferase activity with high fat feeding
-
Henriksen BS, Curtis ME, Fillmore N, et al. The effects of chronic AMPK activation on hepatic triglyceride accumulation and glycerol 3-phosphate acyltransferase activity with high fat feeding. Diabetol Metab Syndr 2013; 5:29.
-
(2013)
Diabetol Metab Syndr
, vol.5
, pp. 29
-
-
Henriksen, B.S.1
Curtis, M.E.2
Fillmore, N.3
-
29
-
-
84896826866
-
5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo
-
Hasenour CM, Ridley DE, Hughey CC, et al. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo. J Biol Chem 2014; 289:5950-5959.
-
(2014)
J Biol Chem
, vol.289
, pp. 5950-5959
-
-
Hasenour, C.M.1
Ridley, D.E.2
Hughey, C.C.3
-
30
-
-
84969132762
-
Metabolite regulation of nuclear localization of carbohydrate response element-binding protein (ChREBP). Role of AMP as an allosteric inhibitor
-
Sato S, Jung H, Nakagawa T, et al. Metabolite regulation of nuclear localization of carbohydrate response element-binding protein (ChREBP). Role of AMP as an allosteric inhibitor. J Biol Chem 2016; 291:10515-10527.
-
(2016)
J Biol Chem
, vol.291
, pp. 10515-10527
-
-
Sato, S.1
Jung, H.2
Nakagawa, T.3
-
31
-
-
84873707522
-
Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP
-
Miller RA, Chu Q, Xie J, et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 2013; 494:256-260.
-
(2013)
Nature
, vol.494
, pp. 256-260
-
-
Miller, R.A.1
Chu, Q.2
Xie, J.3
-
32
-
-
84960416125
-
Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2 binding
-
Langendorf CG, Ngoei KR, Scott JW, et al. Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2 binding. Nat Commun 2016; 7:10912.
-
(2016)
Nat Commun
, vol.7
, pp. 10912
-
-
Langendorf, C.G.1
Ngoei, K.R.2
Scott, J.W.3
-
33
-
-
84904556335
-
Mechanism of action of compound-13: An alpha1-selective small molecule activator of AMPK
-
Hunter RW, Foretz M, Bultot L, et al. Mechanism of action of compound-13: An alpha1-selective small molecule activator of AMPK. Chem Biol 2014; 21:866-879.
-
(2014)
Chem Biol
, vol.21
, pp. 866-879
-
-
Hunter, R.W.1
Foretz, M.2
Bultot, L.3
-
34
-
-
84893683610
-
Cordycepin activates AMP-Activated protein kinase (AMPK) via interaction with the gamma1 subunit
-
Wu C, Guo Y, Su Y, et al. Cordycepin activates AMP-Activated protein kinase (AMPK) via interaction with the gamma1 subunit. J Cell Mol Med 2014; 18:293-304.
-
(2014)
J Cell Mol Med
, vol.18
, pp. 293-304
-
-
Wu, C.1
Guo, Y.2
Su, Y.3
-
35
-
-
33744514139
-
Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome
-
Cool B, Zinker B, Chiou W, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 2006; 3:403-416.
-
(2006)
Cell Metab
, vol.3
, pp. 403-416
-
-
Cool, B.1
Zinker, B.2
Chiou, W.3
-
36
-
-
84890963021
-
Structural basis of AMPK regulation by small molecule activators
-
Xiao B, Sanders MJ, Carmena D, et al. Structural basis of AMPK regulation by small molecule activators. Nat Commun 2013; 4:3017.
-
(2013)
Nat Commun
, vol.4
, pp. 3017
-
-
Xiao, B.1
Sanders, M.J.2
Carmena, D.3
-
37
-
-
84898601973
-
A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis
-
Zadra G, Photopoulos C, Tyekucheva S, et al. A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol Med 2014; 6:519-538.
-
(2014)
EMBO Mol Med
, vol.6
, pp. 519-538
-
-
Zadra, G.1
Photopoulos, C.2
Tyekucheva, S.3
-
38
-
-
84935013342
-
Inhibition of AMP-Activated protein kinase at the allosteric drug-binding site promotes islet insulin release
-
Scott JW, Galic S, Graham KL, et al. Inhibition of AMP-Activated protein kinase at the allosteric drug-binding site promotes islet insulin release. Chem Biol 2015; 22:705-711.
-
(2015)
Chem Biol
, vol.22
, pp. 705-711
-
-
Scott, J.W.1
Galic, S.2
Graham, K.L.3
-
39
-
-
85000360917
-
Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis
-
Pinkosky SL, Newton RS, Day EA, et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat Commun 2016; 7:13457.
-
(2016)
Nat Commun
, vol.7
, pp. 13457
-
-
Pinkosky, S.L.1
Newton, R.S.2
Day, E.A.3
-
40
-
-
84942588417
-
Differential effects of AMPK agonists on cell growth and metabolism
-
Vincent EE, Coelho PP, Blagih J, et al. Differential effects of AMPK agonists on cell growth and metabolism. Oncogene 2015; 34:3627-3639.
-
(2015)
Oncogene
, vol.34
, pp. 3627-3639
-
-
Vincent, E.E.1
Coelho, P.P.2
Blagih, J.3
-
41
-
-
84861222690
-
The ancient drug salicylate directly activates AMP-Activated protein kinase
-
Hawley SA, Fullerton MD, Ross FA, et al. The ancient drug salicylate directly activates AMP-Activated protein kinase. Science 2012; 336: 918-922.
-
(2012)
Science
, vol.336
, pp. 918-922
-
-
Hawley, S.A.1
Fullerton, M.D.2
Ross, F.A.3
-
42
-
-
84930606184
-
Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity
-
Ford RJ, Fullerton MD, Pinkosky SL, et al. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J 2015; 468:125-132.
-
(2015)
Biochem J
, vol.468
, pp. 125-132
-
-
Ford, R.J.1
Fullerton, M.D.2
Pinkosky, S.L.3
-
43
-
-
84901725138
-
A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: Comparison with effects of contraction and other AMPK activators
-
Lai YC, Kviklyte S, Vertommen D, et al. A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators. Biochem J 2014; 460:363-375.
-
(2014)
Biochem J
, vol.460
, pp. 363-375
-
-
Lai, Y.C.1
Kviklyte, S.2
Vertommen, D.3
-
44
-
-
84871226706
-
AMP-Activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism
-
Pinkosky SL, Filippov S, Srivastava RA, et al. AMP-Activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J Lipid Res 2013; 54:134-151.
-
(2013)
J Lipid Res
, vol.54
, pp. 134-151
-
-
Pinkosky, S.L.1
Filippov, S.2
Srivastava, R.A.3
-
45
-
-
84992416929
-
Recent progress in the identification of adenosine monophosphate-Activated protein kinase (AMPK) activators
-
Cameron KO, Kurumbail RG. Recent progress in the identification of adenosine monophosphate-Activated protein kinase (AMPK) activators. Bioorg Med Chem Lett 2016; 26:5139-5148.
-
(2016)
Bioorg Med Chem Lett
, vol.26
, pp. 5139-5148
-
-
Cameron, K.O.1
Kurumbail, R.G.2
-
46
-
-
84994385898
-
Physiological expression of AMPKgamma2RG mutation causes Wolff-Parkinson-White syndrome and induces kidney injury in mice
-
Yang X, Mudgett J, Bou-About G, et al. Physiological expression of AMPKgamma2RG mutation causes Wolff-Parkinson-White syndrome and induces kidney injury in mice. J Biol Chem 2016; 291: 23428-23439.
-
(2016)
J Biol Chem
, vol.291
, pp. 23428-23439
-
-
Yang, X.1
Mudgett, J.2
Bou-About, G.3
-
47
-
-
84964600616
-
Chronic activation of gamma2 AMPK induces obesity and reduces beta cell function
-
Yavari A, Stocker CJ, Ghaffari S, et al. Chronic activation of gamma2 AMPK induces obesity and reduces beta cell function. Cell Metab 2016; 23: 821-836.
-
(2016)
Cell Metab
, vol.23
, pp. 821-836
-
-
Yavari, A.1
Stocker, C.J.2
Ghaffari, S.3
-
48
-
-
84991233696
-
Glycosylation site occupancy in health, congenital disorder of glycosylation and fatty liver disease
-
Hulsmeier AJ, Tobler M, Burda P, Hennet T. Glycosylation site occupancy in health, congenital disorder of glycosylation and fatty liver disease. Sci Rep 2016; 6:33927.
-
(2016)
Sci Rep
, vol.6
, pp. 33927
-
-
Hulsmeier, A.J.1
Tobler, M.2
Burda, P.3
Hennet, T.4
-
49
-
-
84959422596
-
Advanced glycation end products induce obesity and hepatosteatosis in CD-1 wild-Type mice
-
Sayej WN, Knight Iii PR, Guo WA, et al. Advanced glycation end products induce obesity and hepatosteatosis in CD-1 wild-Type mice. Biomed Res Int 2016; 2016:7867852.
-
(2016)
Biomed Res Int
, vol.2016
, pp. 7867852
-
-
Sayej, W.N.1
Knight, P.R.2
Guo, W.A.3
-
50
-
-
84933678172
-
De novo lipogenesis in metabolic homeostasis: More friend than foe?
-
Solinas G, Boren J, Dulloo AG. De novo lipogenesis in metabolic homeostasis: more friend than foe? Mol Metab 2015; 4:367-377.
-
(2015)
Mol Metab
, vol.4
, pp. 367-377
-
-
Solinas, G.1
Boren, J.2
Dulloo, A.G.3
-
51
-
-
84902306653
-
Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation
-
Chow JD, Lawrence RT, Healy ME, et al. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Mol Metab 2014; 3:419-431.
-
(2014)
Mol Metab
, vol.3
, pp. 419-431
-
-
Chow, J.D.1
Lawrence, R.T.2
Healy, M.E.3
|