-
1
-
-
80055014830
-
Central nervous system pericytes in health and disease
-
1 Winkler, E.A., et al. Central nervous system pericytes in health and disease. Nat. Neurosci. 14 (2011), 1398–1405.
-
(2011)
Nat. Neurosci.
, vol.14
, pp. 1398-1405
-
-
Winkler, E.A.1
-
2
-
-
84902652960
-
The pericyte: a forgotten cell type with important implications for Alzheimer's disease?
-
2 Winkler, E.A., et al. The pericyte: a forgotten cell type with important implications for Alzheimer's disease?. Brain Pathol. 24 (2014), 371–386.
-
(2014)
Brain Pathol.
, vol.24
, pp. 371-386
-
-
Winkler, E.A.1
-
3
-
-
85004115629
-
Mesenchymal stem cells and pericytes: to what extent are they related?
-
Published online November 3, 2016
-
3 de Souza, L.E., et al. Mesenchymal stem cells and pericytes: to what extent are they related?. Stem Cells Dev., 2016, 10.1089/scd.2016.0109 Published online November 3, 2016.
-
(2016)
Stem Cells Dev.
-
-
de Souza, L.E.1
-
4
-
-
84961355183
-
What is a pericyte?
-
Published online September 10, 2015
-
4 Attwell, D., et al. What is a pericyte?. J. Cereb. Blood Flow Metab., 2015, 10.1177/0271678X15610340 Published online September 10, 2015.
-
(2015)
J. Cereb. Blood Flow Metab.
-
-
Attwell, D.1
-
5
-
-
79961230399
-
Pericytes: developmental, physiological, and pathological perspectives, problems, and promises
-
5 Armulik, A., et al. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21 (2011), 193–215.
-
(2011)
Dev. Cell
, vol.21
, pp. 193-215
-
-
Armulik, A.1
-
6
-
-
84971228973
-
Cultured pericytes from human brain show phenotypic and functional differences associated with differential CD90 expression
-
6 Park, T.I., et al. Cultured pericytes from human brain show phenotypic and functional differences associated with differential CD90 expression. Sci. Rep., 6, 2016, 26587.
-
(2016)
Sci. Rep.
, vol.6
, pp. 26587
-
-
Park, T.I.1
-
7
-
-
78649467527
-
Pericytes regulate the blood–brain barrier
-
7 Armulik, A., et al. Pericytes regulate the blood–brain barrier. Nature 468 (2010), 557–561.
-
(2010)
Nature
, vol.468
, pp. 557-561
-
-
Armulik, A.1
-
8
-
-
84893073902
-
Lipopolysaccharide activates TLR4-mediated NF-κB signaling pathway and proinflammatory response in human pericytes
-
8 Guijarro-Munoz, I., et al. Lipopolysaccharide activates TLR4-mediated NF-κB signaling pathway and proinflammatory response in human pericytes. J. Biol. Chem. 289 (2014), 2457–2468.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 2457-2468
-
-
Guijarro-Munoz, I.1
-
9
-
-
84894459903
-
Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro
-
9 Pieper, C., et al. Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res. 1550 (2014), 1–8.
-
(2014)
Brain Res.
, vol.1550
, pp. 1-8
-
-
Pieper, C.1
-
10
-
-
84880328646
-
Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood–brain barrier
-
10 Pieper, C., et al. Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood–brain barrier. Brain Res. 1524 (2013), 1–11.
-
(2013)
Brain Res.
, vol.1524
, pp. 1-11
-
-
Pieper, C.1
-
11
-
-
85018201031
-
An anti-inflammatory role for C/EBPδ in human brain pericytes
-
11 Rustenhoven, J., et al. An anti-inflammatory role for C/EBPδ in human brain pericytes. Sci. Rep., 5, 2015, 12132.
-
(2015)
Sci. Rep.
, vol.5
, pp. 12132
-
-
Rustenhoven, J.1
-
12
-
-
84904747301
-
A role for human brain pericytes in neuroinflammation
-
12 Jansson, D., et al. A role for human brain pericytes in neuroinflammation. J. Neuroinflammation, 11, 2014, 104.
-
(2014)
J. Neuroinflammation
, vol.11
, pp. 104
-
-
Jansson, D.1
-
13
-
-
84957704766
-
TGF-β1 regulates human brain pericyte inflammatory processes involved in neurovasculature function
-
13 Rustenhoven, J., et al. TGF-β1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J. Neuroinflammation 13 (2016), 1–15.
-
(2016)
J. Neuroinflammation
, vol.13
, pp. 1-15
-
-
Rustenhoven, J.1
-
14
-
-
84904370000
-
Tumor necrosis factor-alpha-stimulated brain pericytes possess a unique cytokine and chemokine release profile and enhance microglial activation
-
14 Matsumoto, J., et al. Tumor necrosis factor-alpha-stimulated brain pericytes possess a unique cytokine and chemokine release profile and enhance microglial activation. Neurosci. Lett. 578 (2014), 133–138.
-
(2014)
Neurosci. Lett.
, vol.578
, pp. 133-138
-
-
Matsumoto, J.1
-
15
-
-
80053929920
-
Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide
-
15 Kovac, A., et al. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J. Neuroinflammation, 8, 2011, 139.
-
(2011)
J. Neuroinflammation
, vol.8
, pp. 139
-
-
Kovac, A.1
-
16
-
-
84891959070
-
Adult human glia, pericytes and meningeal fibroblasts respond similarly to IFNy but not to TGFβ1 or M-CSF
-
16 Smith, A.M., et al. Adult human glia, pericytes and meningeal fibroblasts respond similarly to IFNy but not to TGFβ1 or M-CSF. PLoS One, 8, 2013, e80463.
-
(2013)
PLoS One
, vol.8
, pp. e80463
-
-
Smith, A.M.1
-
17
-
-
84864306054
-
Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo
-
17 Proebstl, D., et al. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J. Exp. Med. 209 (2012), 1219–1234.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1219-1234
-
-
Proebstl, D.1
-
18
-
-
0033105296
-
Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes
-
18 Balabanov, R., et al. Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J. Neurosci. Res. 55 (1999), 578–587.
-
(1999)
J. Neurosci. Res.
, vol.55
, pp. 578-587
-
-
Balabanov, R.1
-
19
-
-
0029016245
-
T lymphocyte adhesion to human brain pericytes is mediated via very late antigen-4/vascular cell adhesion molecule-1 interactions
-
19 Verbeek, M.M., et al. T lymphocyte adhesion to human brain pericytes is mediated via very late antigen-4/vascular cell adhesion molecule-1 interactions. J. Immunol. 154 (1995), 5876–5884.
-
(1995)
J. Immunol.
, vol.154
, pp. 5876-5884
-
-
Verbeek, M.M.1
-
20
-
-
84875412732
-
Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes
-
20 Ayres-Sander, C.E., et al. Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes. PLoS One, 8, 2013, e60025.
-
(2013)
PLoS One
, vol.8
, pp. e60025
-
-
Ayres-Sander, C.E.1
-
21
-
-
84871189221
-
Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs
-
21 Stark, K., et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat. Immunol. 14 (2013), 41–51.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 41-51
-
-
Stark, K.1
-
22
-
-
58149402415
-
Perivascular spaces and the two steps to neuroinflammation
-
22 Owens, T., et al. Perivascular spaces and the two steps to neuroinflammation. J. Neuropathol. Exp. Neurol. 67 (2008), 1113–1121.
-
(2008)
J. Neuropathol. Exp. Neurol.
, vol.67
, pp. 1113-1121
-
-
Owens, T.1
-
23
-
-
85014656015
-
Pericytes of the neurovascular unit: key functions and signaling pathways
-
23 Sweeney, M.D., et al. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19 (2016), 771–783.
-
(2016)
Nat. Neurosci.
, vol.19
, pp. 771-783
-
-
Sweeney, M.D.1
-
24
-
-
73949122565
-
Venular basement membranes ubiquitously express matrix protein low-expression regions: characterization in multiple tissues and remodeling during inflammation
-
24 Voisin, M-B., et al. Venular basement membranes ubiquitously express matrix protein low-expression regions: characterization in multiple tissues and remodeling during inflammation. Am. J. Pathol. 176 (2010), 482–495.
-
(2010)
Am. J. Pathol.
, vol.176
, pp. 482-495
-
-
Voisin, M.-B.1
-
25
-
-
33745029732
-
Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils
-
25 Wang, S., et al. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J. Exp. Med. 203 (2006), 1519–1532.
-
(2006)
J. Exp. Med.
, vol.203
, pp. 1519-1532
-
-
Wang, S.1
-
26
-
-
84874397559
-
TNF-α promotes cerebral pericyte remodeling in vitro, via a switch from α1 to α2 integrins
-
331–310
-
26 Tigges, U., et al. TNF-α promotes cerebral pericyte remodeling in vitro, via a switch from α1 to α2 integrins. J. Neuroinflammation, 1, 2013 331–310.
-
(2013)
J. Neuroinflammation
, vol.1
-
-
Tigges, U.1
-
27
-
-
84897564199
-
Capillary pericytes regulate cerebral blood flow in health and disease
-
27 Hall, C.N., et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508 (2014), 55–60.
-
(2014)
Nature
, vol.508
, pp. 55-60
-
-
Hall, C.N.1
-
28
-
-
4444333049
-
Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases
-
28 Minghetti, L., Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 63 (2004), 901–910.
-
(2004)
J. Neuropathol. Exp. Neurol.
, vol.63
, pp. 901-910
-
-
Minghetti, L.1
-
29
-
-
0032495195
-
Inducible nitric oxide synthase expression is selectively induced in astrocytes isolated from adult human brain
-
29 Zhao, M-L., et al. Inducible nitric oxide synthase expression is selectively induced in astrocytes isolated from adult human brain. Brain Res. 813 (1998), 402–405.
-
(1998)
Brain Res.
, vol.813
, pp. 402-405
-
-
Zhao, M.-L.1
-
30
-
-
0036627211
-
Tight junctions of the blood–brain barrier: development, composition and regulation
-
30 Wolburg, H., Lippoldt, A., Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul. Pharmacol. 38 (2002), 323–337.
-
(2002)
Vascul. Pharmacol.
, vol.38
, pp. 323-337
-
-
Wolburg, H.1
Lippoldt, A.2
-
31
-
-
0022371325
-
Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon
-
31 Mann, G., et al. Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon. BBA Biomembranes 819 (1985), 241–248.
-
(1985)
BBA Biomembranes
, vol.819
, pp. 241-248
-
-
Mann, G.1
-
32
-
-
0028806803
-
Cerebrovascular permeability to peptides: manipulations of transport systems at the blood–brain barrier
-
32 Zlokovic, B.V., Cerebrovascular permeability to peptides: manipulations of transport systems at the blood–brain barrier. Pharm. Res. 12 (1995), 1395–1406.
-
(1995)
Pharm. Res.
, vol.12
, pp. 1395-1406
-
-
Zlokovic, B.V.1
-
33
-
-
0025299471
-
Kinetics of arginine-vasopressin uptake at the blood–brain barrier
-
33 Zlokovic, B.V., et al. Kinetics of arginine-vasopressin uptake at the blood–brain barrier. BBA Biomembranes 1025 (1990), 191–198.
-
(1990)
BBA Biomembranes
, vol.1025
, pp. 191-198
-
-
Zlokovic, B.V.1
-
34
-
-
0023220909
-
Transport of leucine-enkephalin across the blood–brain barrier in the perfused guinea pig brain
-
34 Zloković, B.V., et al. Transport of leucine-enkephalin across the blood–brain barrier in the perfused guinea pig brain. J. Neurochem. 49 (1987), 310–315.
-
(1987)
J. Neurochem.
, vol.49
, pp. 310-315
-
-
Zloković, B.V.1
-
35
-
-
0142259710
-
Three or more routes for leukocyte migration into the central nervous system
-
35 Ransohoff, R.M., et al. Three or more routes for leukocyte migration into the central nervous system. Nat. Rev. Immunol. 3 (2003), 569–581.
-
(2003)
Nat. Rev. Immunol.
, vol.3
, pp. 569-581
-
-
Ransohoff, R.M.1
-
36
-
-
84992111543
-
Blood–brain barrier leakage in patients with early Alzheimer disease
-
36 van de Haar, H.J., et al. Blood–brain barrier leakage in patients with early Alzheimer disease. Radiology 281 (2016), 527–535.
-
(2016)
Radiology
, vol.281
, pp. 527-535
-
-
van de Haar, H.J.1
-
37
-
-
81555200043
-
Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders
-
37 Zlokovic, B.V., Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat. Rev. Neurosci. 12 (2011), 723–738.
-
(2011)
Nat. Rev. Neurosci.
, vol.12
, pp. 723-738
-
-
Zlokovic, B.V.1
-
38
-
-
84978946283
-
Neurovascular unit impairment in early Alzheimer's disease measured with magnetic resonance imaging
-
38 van de Haar, H.J., et al. Neurovascular unit impairment in early Alzheimer's disease measured with magnetic resonance imaging. Neurobiol. Aging 45 (2016), 190–196.
-
(2016)
Neurobiol. Aging
, vol.45
, pp. 190-196
-
-
van de Haar, H.J.1
-
39
-
-
34247343262
-
Microvascular injury and blood–brain barrier leakage in Alzheimer's disease
-
39 Zipser, B., et al. Microvascular injury and blood–brain barrier leakage in Alzheimer's disease. Neurobiol. Aging 28 (2007), 977–986.
-
(2007)
Neurobiol. Aging
, vol.28
, pp. 977-986
-
-
Zipser, B.1
-
40
-
-
0035047718
-
Cerebral microvascular pathology in aging and Alzheimer's disease
-
40 Farkas, E., Luiten, P.G., Cerebral microvascular pathology in aging and Alzheimer's disease. Prog. Neurobiol. 64 (2001), 575–611.
-
(2001)
Prog. Neurobiol.
, vol.64
, pp. 575-611
-
-
Farkas, E.1
Luiten, P.G.2
-
41
-
-
84876288324
-
Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer's disease
-
41 Sengillo, J.D., et al. Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer's disease. Brain Pathol. 23 (2013), 303–310.
-
(2013)
Brain Pathol.
, vol.23
, pp. 303-310
-
-
Sengillo, J.D.1
-
42
-
-
84921326695
-
Blood–brain barrier breakdown in the aging human hippocampus
-
42 Montagne, A., et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85 (2015), 296–302.
-
(2015)
Neuron
, vol.85
, pp. 296-302
-
-
Montagne, A.1
-
43
-
-
84951568640
-
Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease
-
43 Halliday, M.R., et al. Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. J. Cereb. Blood Flow Metab. 36 (2016), 216–227.
-
(2016)
J. Cereb. Blood Flow Metab.
, vol.36
, pp. 216-227
-
-
Halliday, M.R.1
-
44
-
-
78049279739
-
Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging
-
44 Bell, R.D., et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68 (2010), 409–427.
-
(2010)
Neuron
, vol.68
, pp. 409-427
-
-
Bell, R.D.1
-
45
-
-
84870815173
-
Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation
-
45 Davalos, D., et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat. Commun., 3, 2012, 1227.
-
(2012)
Nat. Commun.
, vol.3
, pp. 1227
-
-
Davalos, D.1
-
46
-
-
84941578601
-
Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation
-
46 Ryu, J.K., et al. Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat. Commun., 6, 2015, 8164.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8164
-
-
Ryu, J.K.1
-
47
-
-
34547791784
-
Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease
-
47 Paul, J., et al. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease. J. Exp. Med. 204 (2007), 1999–2008.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1999-2008
-
-
Paul, J.1
-
48
-
-
84924250456
-
Nox4 is a major source of superoxide production in human brain pericytes
-
48 Kuroda, J., et al. Nox4 is a major source of superoxide production in human brain pericytes. J. Vasc. Res. 51 (2014), 429–438.
-
(2014)
J. Vasc. Res.
, vol.51
, pp. 429-438
-
-
Kuroda, J.1
-
49
-
-
84973322290
-
Detrimental role of pericyte Nox4 in the acute phase of brain ischemia
-
49 Nishimura, A., et al. Detrimental role of pericyte Nox4 in the acute phase of brain ischemia. J. Cereb. Blood Flow Metab. 36 (2016), 1143–1154.
-
(2016)
J. Cereb. Blood Flow Metab.
, vol.36
, pp. 1143-1154
-
-
Nishimura, A.1
-
50
-
-
80052033836
-
Brain pericytes among cells constituting the blood–brain barrier are highly sensitive to tumor necrosis factor-alpha, releasing matrix metalloproteinase-9 and migrating in vitro
-
50 Takata, F., et al. Brain pericytes among cells constituting the blood–brain barrier are highly sensitive to tumor necrosis factor-alpha, releasing matrix metalloproteinase-9 and migrating in vitro. J. Neuroinflammation, 8, 2011, 106.
-
(2011)
J. Neuroinflammation
, vol.8
, pp. 106
-
-
Takata, F.1
-
51
-
-
84916226547
-
p38 MAP kinase mediates transforming-growth factor-1-induced upregulation of matrix metalloproteinase-9 but not -2 in human brain pericytes
-
51 Takahashi, Y., et al. p38 MAP kinase mediates transforming-growth factor-1-induced upregulation of matrix metalloproteinase-9 but not -2 in human brain pericytes. Brain Res. 1593 (2014), 1–8.
-
(2014)
Brain Res.
, vol.1593
, pp. 1-8
-
-
Takahashi, Y.1
-
52
-
-
77955982672
-
Regulation of the blood–brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro
-
52 Thanabalasundaram, G., et al. Regulation of the blood–brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro. Brain Res. 1347 (2010), 1–10.
-
(2010)
Brain Res.
, vol.1347
, pp. 1-10
-
-
Thanabalasundaram, G.1
-
53
-
-
84895895877
-
Vascular endothelial growth factors enhance the permeability of the mouse blood–brain barrier
-
53 Jiang, S., et al. Vascular endothelial growth factors enhance the permeability of the mouse blood–brain barrier. PLoS One, 9, 2014, e86407.
-
(2014)
PLoS One
, vol.9
, pp. e86407
-
-
Jiang, S.1
-
54
-
-
84929493104
-
Pericytes contribute to the disruption of the cerebral endothelial barrier via increasing VEGF expression: implications for stroke
-
54 Bai, Y., et al. Pericytes contribute to the disruption of the cerebral endothelial barrier via increasing VEGF expression: implications for stroke. PLoS One, 10, 2015, e0124362.
-
(2015)
PLoS One
, vol.10
, pp. e0124362
-
-
Bai, Y.1
-
55
-
-
77950516409
-
Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement
-
55 Bauer, A.T., et al. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J. Cereb. Blood Flow Metab. 30 (2010), 837–848.
-
(2010)
J. Cereb. Blood Flow Metab.
, vol.30
, pp. 837-848
-
-
Bauer, A.T.1
-
56
-
-
84883796045
-
Relationship between cyclophilin a levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein E4 carriers and blood–brain barrier breakdown
-
56 Halliday, M.R., et al. Relationship between cyclophilin a levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein E4 carriers and blood–brain barrier breakdown. JAMA Neurol. 70 (2013), 1198–1200.
-
(2013)
JAMA Neurol.
, vol.70
, pp. 1198-1200
-
-
Halliday, M.R.1
-
57
-
-
84962439520
-
Dysfunction of brain pericytes in chronic neuroinflammation
-
57 Persidsky, Y., et al. Dysfunction of brain pericytes in chronic neuroinflammation. J. Cereb. Blood Flow Metab. 36 (2015), 794–807.
-
(2015)
J. Cereb. Blood Flow Metab.
, vol.36
, pp. 794-807
-
-
Persidsky, Y.1
-
58
-
-
84988527691
-
Interferon-γ blocks signalling through PDGFRβ in human brain pericytes
-
58 Jansson, D., et al. Interferon-γ blocks signalling through PDGFRβ in human brain pericytes. J. Neuroinflammation 13 (2016), 1–19.
-
(2016)
J. Neuroinflammation
, vol.13
, pp. 1-19
-
-
Jansson, D.1
-
59
-
-
67349280877
-
Detachment of brain pericytes from the basal lamina is involved in disruption of the blood–brain barrier caused by lipopolysaccharide-induced sepsis in mice
-
59 Nishioku, T., et al. Detachment of brain pericytes from the basal lamina is involved in disruption of the blood–brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell. Mol. Neurobiol. 29 (2009), 309–316.
-
(2009)
Cell. Mol. Neurobiol.
, vol.29
, pp. 309-316
-
-
Nishioku, T.1
-
60
-
-
78650604334
-
Multipotent PDGFRβ-expressing cells in the circulation of stroke patients
-
60 Jung, K-H., et al. Multipotent PDGFRβ-expressing cells in the circulation of stroke patients. Neurobiol. Dis. 41 (2011), 489–497.
-
(2011)
Neurobiol. Dis.
, vol.41
, pp. 489-497
-
-
Jung, K.-H.1
-
61
-
-
84943375348
-
Shedding of soluble platelet-derived growth factor receptor-β from human brain pericytes
-
61 Sagare, A.P., et al. Shedding of soluble platelet-derived growth factor receptor-β from human brain pericytes. Neurosci. Lett. 607 (2015), 97–101.
-
(2015)
Neurosci. Lett.
, vol.607
, pp. 97-101
-
-
Sagare, A.P.1
-
62
-
-
84903314983
-
Involvement of matrix metalloproteinase-9 in amyloid-beta 1-42-induced shedding of the pericyte proteoglycan NG2
-
62 Schultz, N., et al. Involvement of matrix metalloproteinase-9 in amyloid-beta 1-42-induced shedding of the pericyte proteoglycan NG2. J. Neuropathol. Exp. Neurol. 73 (2014), 684–692.
-
(2014)
J. Neuropathol. Exp. Neurol.
, vol.73
, pp. 684-692
-
-
Schultz, N.1
-
63
-
-
0015539357
-
Accumulation of protein tracers in pericytes of the central nervous system following systemic injection in immature mice
-
63 Kristensson, K., Olsson, Y., Accumulation of protein tracers in pericytes of the central nervous system following systemic injection in immature mice. Acta Neurol. Scand. 49 (1973), 189–194.
-
(1973)
Acta Neurol. Scand.
, vol.49
, pp. 189-194
-
-
Kristensson, K.1
Olsson, Y.2
-
64
-
-
85026324171
-
Amylin alters human brain pericyte viability and NG2 expression
-
Published online June 28, 2016
-
64 Schultz, N., et al. Amylin alters human brain pericyte viability and NG2 expression. J. Cereb. Blood Flow Metab., 2016, 10.1177/0271678X16657093 Published online June 28, 2016.
-
(2016)
J. Cereb. Blood Flow Metab.
-
-
Schultz, N.1
-
65
-
-
0033407485
-
Brain macrophages: on the role of pericytes and perivascular cells
-
65 Thomas, W.E., Brain macrophages: on the role of pericytes and perivascular cells. Brain Res. Rev. 31 (1999), 42–57.
-
(1999)
Brain Res. Rev.
, vol.31
, pp. 42-57
-
-
Thomas, W.E.1
-
66
-
-
0030250260
-
CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2
-
66 Balabanov, R., et al. CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2. Microvasc. Res. 52 (1996), 127–142.
-
(1996)
Microvasc. Res.
, vol.52
, pp. 127-142
-
-
Balabanov, R.1
-
67
-
-
0021458902
-
Submicroscopic changes of cortical capillary pericytes in human perifocal brain edema
-
67 Castejón, O., Submicroscopic changes of cortical capillary pericytes in human perifocal brain edema. J. Submicrosc. Cytol. 16 (1984), 601–618.
-
(1984)
J. Submicrosc. Cytol.
, vol.16
, pp. 601-618
-
-
Castejón, O.1
-
68
-
-
84890576583
-
Pericyte loss influences Alzheimer-like neurodegeneration in mice
-
68 Sagare, A.P., et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat. Commun., 4, 2013, 2932.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2932
-
-
Sagare, A.P.1
-
69
-
-
78149255128
-
Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain
-
69 Zlokovic, B.V., et al. Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain. J. Neurochem. 115 (2010), 1077–1089.
-
(2010)
J. Neurochem.
, vol.115
, pp. 1077-1089
-
-
Zlokovic, B.V.1
-
70
-
-
57449084208
-
ApoE isoform-specific disruption of amyloid β peptide clearance from mouse brain
-
70 Deane, R., et al. ApoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J. Clin. Invest. 118 (2008), 4002–4013.
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 4002-4013
-
-
Deane, R.1
-
71
-
-
4043061467
-
LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms
-
71 Deane, R., et al. LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43 (2004), 333–344.
-
(2004)
Neuron
, vol.43
, pp. 333-344
-
-
Deane, R.1
-
72
-
-
0034521392
-
Clearance of Alzheimer's amyloid-β 1-40 peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier
-
72 Shibata, M., et al. Clearance of Alzheimer's amyloid-β 1-40 peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. J. Clin. Invest. 106 (2000), 1489–1499.
-
(2000)
J. Clin. Invest.
, vol.106
, pp. 1489-1499
-
-
Shibata, M.1
-
73
-
-
59649110562
-
SRF and myocardin regulate LRP-mediated amyloid-β clearance in brain vascular cells
-
73 Bell, R.D., et al. SRF and myocardin regulate LRP-mediated amyloid-β clearance in brain vascular cells. Nat. Cell Biol. 11 (2009), 143–153.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 143-153
-
-
Bell, R.D.1
-
74
-
-
0028982272
-
Amyloid β-protein aggregation nullifies its pathologic properties in cultured cerebrovascular smooth muscle cells
-
74 Davis-Salinas, J., Van Nostrand, W.E., Amyloid β-protein aggregation nullifies its pathologic properties in cultured cerebrovascular smooth muscle cells. J. Biol. Chem. 270 (1995), 20887–20890.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 20887-20890
-
-
Davis-Salinas, J.1
Van Nostrand, W.E.2
-
75
-
-
84867722515
-
Amyloid-β-dependent compromise of microvascular structure and function in a model of Alzheimer's disease
-
75 Dorr, A., et al. Amyloid-β-dependent compromise of microvascular structure and function in a model of Alzheimer's disease. Brain 135 (2012), 3039–3050.
-
(2012)
Brain
, vol.135
, pp. 3039-3050
-
-
Dorr, A.1
-
76
-
-
84887399490
-
Cerebral arterial pulsation drives paravascular CSF–interstitial fluid exchange in the murine brain
-
76 Iliff, J.J., et al. Cerebral arterial pulsation drives paravascular CSF–interstitial fluid exchange in the murine brain. J. Neurosci. 33 (2013), 18190–18199.
-
(2013)
J. Neurosci.
, vol.33
, pp. 18190-18199
-
-
Iliff, J.J.1
-
77
-
-
40149099870
-
Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology
-
77 Carare, R., et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 34 (2008), 131–144.
-
(2008)
Neuropathol. Appl. Neurobiol.
, vol.34
, pp. 131-144
-
-
Carare, R.1
-
78
-
-
84906319162
-
Brain pericytes acquire a microglial phenotype after stroke
-
78 Ozen, I., et al. Brain pericytes acquire a microglial phenotype after stroke. Acta Neuropathol. 128 (2014), 381–396.
-
(2014)
Acta Neuropathol.
, vol.128
, pp. 381-396
-
-
Ozen, I.1
-
79
-
-
84980318131
-
Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke
-
79 Sakuma, R., et al. Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J. Neuroinflammation, 13, 2016, 1.
-
(2016)
J. Neuroinflammation
, vol.13
, pp. 1
-
-
Sakuma, R.1
-
80
-
-
84959299256
-
Role of nucleotide-binding oligomerization domain 1 (NOD1) in pericyte-mediated vascular inflammation
-
80 Navarro, R., et al. Role of nucleotide-binding oligomerization domain 1 (NOD1) in pericyte-mediated vascular inflammation. J. Cell. Mol. Med. 20 (2016), 980–986.
-
(2016)
J. Cell. Mol. Med.
, vol.20
, pp. 980-986
-
-
Navarro, R.1
-
81
-
-
84869224408
-
Selective targeting of interferon γ to stromal fibroblasts and pericytes as a novel therapeutic approach to inhibit angiogenesis and tumor growth
-
81 Bansal, R., et al. Selective targeting of interferon γ to stromal fibroblasts and pericytes as a novel therapeutic approach to inhibit angiogenesis and tumor growth. Mol. Cancer Ther. 11 (2012), 2419–2428.
-
(2012)
Mol. Cancer Ther.
, vol.11
, pp. 2419-2428
-
-
Bansal, R.1
-
82
-
-
84952637264
-
How microglia kill neurons
-
82 Brown, G.C., Vilalta, A., How microglia kill neurons. Brain Res. 1628 (2015), 288–297.
-
(2015)
Brain Res.
, vol.1628
, pp. 288-297
-
-
Brown, G.C.1
Vilalta, A.2
-
83
-
-
84967184780
-
The PDGF-BB–SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages
-
83 Yang, Y., et al. The PDGF-BB–SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat. Commun., 7, 2016, 11385.
-
(2016)
Nat. Commun.
, vol.7
, pp. 11385
-
-
Yang, Y.1
-
84
-
-
84966429058
-
IL-33 ameliorates Alzheimer's disease-like pathology and cognitive decline
-
84 Fu, A.K., et al. IL-33 ameliorates Alzheimer's disease-like pathology and cognitive decline. Proc. Natl Acad. Sci. U. S. A. 113 (2016), E2705–E2713.
-
(2016)
Proc. Natl Acad. Sci. U. S. A.
, vol.113
, pp. E2705-E2713
-
-
Fu, A.K.1
-
85
-
-
33745573660
-
Control of microglial neurotoxicity by the fractalkine receptor
-
85 Cardona, A.E., et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9 (2006), 917–924.
-
(2006)
Nat. Neurosci.
, vol.9
, pp. 917-924
-
-
Cardona, A.E.1
-
86
-
-
78650885436
-
Human placental pericytes poorly stimulate and actively regulate allogeneic CD4 T cell responses
-
86 Maier, C.L., Pober, J.S., Human placental pericytes poorly stimulate and actively regulate allogeneic CD4 T cell responses. Arterioscler. Thromb. Vasc. Biol. 31 (2011), 183–189.
-
(2011)
Arterioscler. Thromb. Vasc. Biol.
, vol.31
, pp. 183-189
-
-
Maier, C.L.1
Pober, J.S.2
-
87
-
-
84908032901
-
Immunoevasive pericytes from human pluripotent stem cells preferentially modulate induction of allogeneic regulatory T cells
-
87 Domev, H., et al. Immunoevasive pericytes from human pluripotent stem cells preferentially modulate induction of allogeneic regulatory T cells. Stem Cells Transl. Med. 3 (2014), 1169–1181.
-
(2014)
Stem Cells Transl. Med.
, vol.3
, pp. 1169-1181
-
-
Domev, H.1
-
88
-
-
0034004454
-
Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation
-
88 Owens, T., Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation. Eur. J. Immunol. 30 (2000), 1002–1009.
-
(2000)
Eur. J. Immunol.
, vol.30
, pp. 1002-1009
-
-
Owens, T.1
-
89
-
-
14644407410
-
Postischemic reperfusion: ultrastructural blood–brain barrier and hemodynamic correlative changes in an awake model of transient forebrain ischemia
-
89 Melgar, M.A., et al. Postischemic reperfusion: ultrastructural blood–brain barrier and hemodynamic correlative changes in an awake model of transient forebrain ischemia. Neurosurgery 56 (2005), 571–581.
-
(2005)
Neurosurgery
, vol.56
, pp. 571-581
-
-
Melgar, M.A.1
-
90
-
-
77950482945
-
Memory CD4 T cells: generation, reactivation and re-assignment
-
90 MacLeod, M.K., et al. Memory CD4 T cells: generation, reactivation and re-assignment. Immunology 130 (2010), 10–15.
-
(2010)
Immunology
, vol.130
, pp. 10-15
-
-
MacLeod, M.K.1
-
91
-
-
0027244759
-
+ cells by murine brain microvessel endothelial cells and smooth muscle/pericytes
-
+ cells by murine brain microvessel endothelial cells and smooth muscle/pericytes. J. Immunol. 151 (1993), 38–47.
-
(1993)
J. Immunol.
, vol.151
, pp. 38-47
-
-
Fabry, Z.1
-
92
-
-
84894464622
-
The human side of microglia
-
92 Smith, A.M., Dragunow, M., The human side of microglia. Trends Neurosci. 37 (2014), 125–135.
-
(2014)
Trends Neurosci.
, vol.37
, pp. 125-135
-
-
Smith, A.M.1
Dragunow, M.2
-
93
-
-
84962683154
-
Insight into the molecular imaging of Alzheimer's disease
-
93 Arora, A., Bhagat, N., Insight into the molecular imaging of Alzheimer's disease. Int. J. Biomed. Imaging, 2016, 2016, 7462014.
-
(2016)
Int. J. Biomed. Imaging
, vol.2016
, pp. 7462014
-
-
Arora, A.1
Bhagat, N.2
-
94
-
-
84962326428
-
Two-and three-dimensional co-culture models of soft tissue healing: pericyte–endothelial cell interaction
-
94 Jennewein, M., et al. Two-and three-dimensional co-culture models of soft tissue healing: pericyte–endothelial cell interaction. Cell Tissue Res. 365 (2016), 279–293.
-
(2016)
Cell Tissue Res.
, vol.365
, pp. 279-293
-
-
Jennewein, M.1
-
95
-
-
84878893830
-
Human pericyte–endothelial cell interactions in co-culture models mimicking the diabetic retinal microvascular environment
-
95 Tarallo, S., et al. Human pericyte–endothelial cell interactions in co-culture models mimicking the diabetic retinal microvascular environment. Acta Diabetol. 49 (2012), 141–151.
-
(2012)
Acta Diabetol.
, vol.49
, pp. 141-151
-
-
Tarallo, S.1
-
96
-
-
84928412002
-
3D functional and perfusable microvascular networks for organotypic microfluidic models
-
96 Bersini, S., Moretti, M., 3D functional and perfusable microvascular networks for organotypic microfluidic models. J. Mater. Sci. Mater. Med., 26, 2015, 180.
-
(2015)
J. Mater. Sci. Mater. Med.
, vol.26
, pp. 180
-
-
Bersini, S.1
Moretti, M.2
-
97
-
-
84877292573
-
Diffusion of macromolecules in the brain: implications for drug delivery
-
97 Wolak, D.J., Thorne, R.G., Diffusion of macromolecules in the brain: implications for drug delivery. Mol. Pharm. 10 (2013), 1492–1504.
-
(2013)
Mol. Pharm.
, vol.10
, pp. 1492-1504
-
-
Wolak, D.J.1
Thorne, R.G.2
-
98
-
-
85008354898
-
Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury
-
Published online November 21, 2016
-
98 Leaf, I.A., et al. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J. Clin. Invest., 2016, 10.1172/JCI87532 Published online November 21, 2016.
-
(2016)
J. Clin. Invest.
-
-
Leaf, I.A.1
-
99
-
-
84929839390
-
Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells
-
99 Nakagomi, T., et al. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells 33 (2015), 1962–1974.
-
(2015)
Stem Cells
, vol.33
, pp. 1962-1974
-
-
Nakagomi, T.1
-
100
-
-
84992386887
-
Sall1 is a transcriptional regulator defining microglia identity and function
-
100 Buttgereit, A., et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17 (2016), 1397–1406.
-
(2016)
Nat. Immunol.
, vol.17
, pp. 1397-1406
-
-
Buttgereit, A.1
-
101
-
-
84893745524
-
Identification of a unique TGF-β-dependent molecular and functional signature in microglia
-
101 Butovsky, O., et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17 (2014), 131–143.
-
(2014)
Nat. Neurosci.
, vol.17
, pp. 131-143
-
-
Butovsky, O.1
-
102
-
-
77950391566
-
Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy
-
102 Raica, M., Cimpean, A.M., Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals 3 (2010), 572–599.
-
(2010)
Pharmaceuticals
, vol.3
, pp. 572-599
-
-
Raica, M.1
Cimpean, A.M.2
-
103
-
-
84971574776
-
Pericyte-targeting drug delivery and tissue engineering
-
103 Kang, E., Shin, J.W., Pericyte-targeting drug delivery and tissue engineering. Int. J. Nanomedicine, 11, 2016, 2397.
-
(2016)
Int. J. Nanomedicine
, vol.11
, pp. 2397
-
-
Kang, E.1
Shin, J.W.2
-
104
-
-
84976260728
-
Platelet-derived growth factor-BB has neurorestorative effects and modulates the pericyte response in a partial 6-hydroxydopamine lesion mouse model of Parkinson's disease
-
104 Padel, T., et al. Platelet-derived growth factor-BB has neurorestorative effects and modulates the pericyte response in a partial 6-hydroxydopamine lesion mouse model of Parkinson's disease. Neurobiol. Dis. 94 (2016), 95–105.
-
(2016)
Neurobiol. Dis.
, vol.94
, pp. 95-105
-
-
Padel, T.1
-
105
-
-
84988931070
-
IL-17 promotes neutrophil-mediated immunity by activating microvascular pericytes and not endothelium
-
105 Liu, R., et al. IL-17 promotes neutrophil-mediated immunity by activating microvascular pericytes and not endothelium. J. Immunol. 197 (2016), 2400–2408.
-
(2016)
J. Immunol.
, vol.197
, pp. 2400-2408
-
-
Liu, R.1
-
106
-
-
84991383345
-
Analysis of the brain mural cell transcriptome
-
106 He, L., et al. Analysis of the brain mural cell transcriptome. Sci. Rep., 6, 2016, 35108.
-
(2016)
Sci. Rep.
, vol.6
, pp. 35108
-
-
He, L.1
-
107
-
-
84872363503
-
Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis
-
107 Winkler, E.A., et al. Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol. 125 (2013), 111–120.
-
(2013)
Acta Neuropathol.
, vol.125
, pp. 111-120
-
-
Winkler, E.A.1
-
108
-
-
0031017399
-
Rapid degeneration of cultured human brain pericytes by amyloid β protein
-
108 Verbeek, M.M., et al. Rapid degeneration of cultured human brain pericytes by amyloid β protein. J. Neurochem. 68 (1997), 1135–1141.
-
(1997)
J. Neurochem.
, vol.68
, pp. 1135-1141
-
-
Verbeek, M.M.1
-
109
-
-
84929483899
-
Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system
-
109 Muramatsu, R., et al. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. J. Biol. Chem. 290 (2015), 11515–11525.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 11515-11525
-
-
Muramatsu, R.1
-
110
-
-
84994323119
-
Pericytes in diabetes-associated vascular disease
-
110 Warmke, N., et al. Pericytes in diabetes-associated vascular disease. J. Diabetes Complications 30 (2016), 1643–1650.
-
(2016)
J. Diabetes Complications
, vol.30
, pp. 1643-1650
-
-
Warmke, N.1
-
111
-
-
84877760624
-
Cerebrovascular remodeling and epilepsy
-
111 Marchi, N., Lerner-Natoli, M., Cerebrovascular remodeling and epilepsy. Neuroscientist 19 (2013), 304–312.
-
(2013)
Neuroscientist
, vol.19
, pp. 304-312
-
-
Marchi, N.1
Lerner-Natoli, M.2
-
112
-
-
84867511655
-
The role of pericytes in blood–brain barrier function and stroke
-
112 Liu, S., et al. The role of pericytes in blood–brain barrier function and stroke. Curr. Pharm. Des. 18 (2012), 3653–3662.
-
(2012)
Curr. Pharm. Des.
, vol.18
, pp. 3653-3662
-
-
Liu, S.1
-
113
-
-
84940874500
-
Traumatic brain injury results in rapid pericyte loss followed by reactive pericytosis in the cerebral cortex
-
113 Zehendner, C.M., et al. Traumatic brain injury results in rapid pericyte loss followed by reactive pericytosis in the cerebral cortex. Sci. Rep., 5, 2015, 13497.
-
(2015)
Sci. Rep.
, vol.5
, pp. 13497
-
-
Zehendner, C.M.1
-
114
-
-
79960099283
-
A pericyte origin of spinal cord scar tissue
-
114 Göritz, C., et al. A pericyte origin of spinal cord scar tissue. Science 333 (2011), 238–242.
-
(2011)
Science
, vol.333
, pp. 238-242
-
-
Göritz, C.1
-
115
-
-
84888317089
-
Immature mesenchymal stem cell-like pericytes as mediators of immunosuppression in human malignant glioma
-
115 Ochs, K., et al. Immature mesenchymal stem cell-like pericytes as mediators of immunosuppression in human malignant glioma. J. Neuroimmunol. 265 (2013), 106–116.
-
(2013)
J. Neuroimmunol.
, vol.265
, pp. 106-116
-
-
Ochs, K.1
-
116
-
-
84875755046
-
Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth
-
116 Cheng, L., et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153 (2013), 139–152.
-
(2013)
Cell
, vol.153
, pp. 139-152
-
-
Cheng, L.1
|