메뉴 건너뛰기




Volumn 38, Issue 3, 2017, Pages 291-304

Brain Pericytes As Mediators of Neuroinflammation

Author keywords

blood brain barrier; drug therapy; neurodegeneration

Indexed keywords

CELL ADHESION MOLECULE; CELL ANTIGEN; CELL RECEPTOR; CHEMOKINE; CYTOKINE; MATRIX METALLOPROTEINASE; REACTIVE OXYGEN METABOLITE; TRANSCRIPTION FACTOR;

EID: 85010736824     PISSN: 01656147     EISSN: 18733735     Source Type: Journal    
DOI: 10.1016/j.tips.2016.12.001     Document Type: Review
Times cited : (250)

References (116)
  • 1
    • 80055014830 scopus 로고    scopus 로고
    • Central nervous system pericytes in health and disease
    • 1 Winkler, E.A., et al. Central nervous system pericytes in health and disease. Nat. Neurosci. 14 (2011), 1398–1405.
    • (2011) Nat. Neurosci. , vol.14 , pp. 1398-1405
    • Winkler, E.A.1
  • 2
    • 84902652960 scopus 로고    scopus 로고
    • The pericyte: a forgotten cell type with important implications for Alzheimer's disease?
    • 2 Winkler, E.A., et al. The pericyte: a forgotten cell type with important implications for Alzheimer's disease?. Brain Pathol. 24 (2014), 371–386.
    • (2014) Brain Pathol. , vol.24 , pp. 371-386
    • Winkler, E.A.1
  • 3
    • 85004115629 scopus 로고    scopus 로고
    • Mesenchymal stem cells and pericytes: to what extent are they related?
    • Published online November 3, 2016
    • 3 de Souza, L.E., et al. Mesenchymal stem cells and pericytes: to what extent are they related?. Stem Cells Dev., 2016, 10.1089/scd.2016.0109 Published online November 3, 2016.
    • (2016) Stem Cells Dev.
    • de Souza, L.E.1
  • 4
    • 84961355183 scopus 로고    scopus 로고
    • What is a pericyte?
    • Published online September 10, 2015
    • 4 Attwell, D., et al. What is a pericyte?. J. Cereb. Blood Flow Metab., 2015, 10.1177/0271678X15610340 Published online September 10, 2015.
    • (2015) J. Cereb. Blood Flow Metab.
    • Attwell, D.1
  • 5
    • 79961230399 scopus 로고    scopus 로고
    • Pericytes: developmental, physiological, and pathological perspectives, problems, and promises
    • 5 Armulik, A., et al. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21 (2011), 193–215.
    • (2011) Dev. Cell , vol.21 , pp. 193-215
    • Armulik, A.1
  • 6
    • 84971228973 scopus 로고    scopus 로고
    • Cultured pericytes from human brain show phenotypic and functional differences associated with differential CD90 expression
    • 6 Park, T.I., et al. Cultured pericytes from human brain show phenotypic and functional differences associated with differential CD90 expression. Sci. Rep., 6, 2016, 26587.
    • (2016) Sci. Rep. , vol.6 , pp. 26587
    • Park, T.I.1
  • 7
    • 78649467527 scopus 로고    scopus 로고
    • Pericytes regulate the blood–brain barrier
    • 7 Armulik, A., et al. Pericytes regulate the blood–brain barrier. Nature 468 (2010), 557–561.
    • (2010) Nature , vol.468 , pp. 557-561
    • Armulik, A.1
  • 8
    • 84893073902 scopus 로고    scopus 로고
    • Lipopolysaccharide activates TLR4-mediated NF-κB signaling pathway and proinflammatory response in human pericytes
    • 8 Guijarro-Munoz, I., et al. Lipopolysaccharide activates TLR4-mediated NF-κB signaling pathway and proinflammatory response in human pericytes. J. Biol. Chem. 289 (2014), 2457–2468.
    • (2014) J. Biol. Chem. , vol.289 , pp. 2457-2468
    • Guijarro-Munoz, I.1
  • 9
    • 84894459903 scopus 로고    scopus 로고
    • Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro
    • 9 Pieper, C., et al. Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res. 1550 (2014), 1–8.
    • (2014) Brain Res. , vol.1550 , pp. 1-8
    • Pieper, C.1
  • 10
    • 84880328646 scopus 로고    scopus 로고
    • Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood–brain barrier
    • 10 Pieper, C., et al. Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood–brain barrier. Brain Res. 1524 (2013), 1–11.
    • (2013) Brain Res. , vol.1524 , pp. 1-11
    • Pieper, C.1
  • 11
    • 85018201031 scopus 로고    scopus 로고
    • An anti-inflammatory role for C/EBPδ in human brain pericytes
    • 11 Rustenhoven, J., et al. An anti-inflammatory role for C/EBPδ in human brain pericytes. Sci. Rep., 5, 2015, 12132.
    • (2015) Sci. Rep. , vol.5 , pp. 12132
    • Rustenhoven, J.1
  • 12
    • 84904747301 scopus 로고    scopus 로고
    • A role for human brain pericytes in neuroinflammation
    • 12 Jansson, D., et al. A role for human brain pericytes in neuroinflammation. J. Neuroinflammation, 11, 2014, 104.
    • (2014) J. Neuroinflammation , vol.11 , pp. 104
    • Jansson, D.1
  • 13
    • 84957704766 scopus 로고    scopus 로고
    • TGF-β1 regulates human brain pericyte inflammatory processes involved in neurovasculature function
    • 13 Rustenhoven, J., et al. TGF-β1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J. Neuroinflammation 13 (2016), 1–15.
    • (2016) J. Neuroinflammation , vol.13 , pp. 1-15
    • Rustenhoven, J.1
  • 14
    • 84904370000 scopus 로고    scopus 로고
    • Tumor necrosis factor-alpha-stimulated brain pericytes possess a unique cytokine and chemokine release profile and enhance microglial activation
    • 14 Matsumoto, J., et al. Tumor necrosis factor-alpha-stimulated brain pericytes possess a unique cytokine and chemokine release profile and enhance microglial activation. Neurosci. Lett. 578 (2014), 133–138.
    • (2014) Neurosci. Lett. , vol.578 , pp. 133-138
    • Matsumoto, J.1
  • 15
    • 80053929920 scopus 로고    scopus 로고
    • Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide
    • 15 Kovac, A., et al. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J. Neuroinflammation, 8, 2011, 139.
    • (2011) J. Neuroinflammation , vol.8 , pp. 139
    • Kovac, A.1
  • 16
    • 84891959070 scopus 로고    scopus 로고
    • Adult human glia, pericytes and meningeal fibroblasts respond similarly to IFNy but not to TGFβ1 or M-CSF
    • 16 Smith, A.M., et al. Adult human glia, pericytes and meningeal fibroblasts respond similarly to IFNy but not to TGFβ1 or M-CSF. PLoS One, 8, 2013, e80463.
    • (2013) PLoS One , vol.8 , pp. e80463
    • Smith, A.M.1
  • 17
    • 84864306054 scopus 로고    scopus 로고
    • Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo
    • 17 Proebstl, D., et al. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J. Exp. Med. 209 (2012), 1219–1234.
    • (2012) J. Exp. Med. , vol.209 , pp. 1219-1234
    • Proebstl, D.1
  • 18
    • 0033105296 scopus 로고    scopus 로고
    • Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes
    • 18 Balabanov, R., et al. Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J. Neurosci. Res. 55 (1999), 578–587.
    • (1999) J. Neurosci. Res. , vol.55 , pp. 578-587
    • Balabanov, R.1
  • 19
    • 0029016245 scopus 로고
    • T lymphocyte adhesion to human brain pericytes is mediated via very late antigen-4/vascular cell adhesion molecule-1 interactions
    • 19 Verbeek, M.M., et al. T lymphocyte adhesion to human brain pericytes is mediated via very late antigen-4/vascular cell adhesion molecule-1 interactions. J. Immunol. 154 (1995), 5876–5884.
    • (1995) J. Immunol. , vol.154 , pp. 5876-5884
    • Verbeek, M.M.1
  • 20
    • 84875412732 scopus 로고    scopus 로고
    • Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes
    • 20 Ayres-Sander, C.E., et al. Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes. PLoS One, 8, 2013, e60025.
    • (2013) PLoS One , vol.8 , pp. e60025
    • Ayres-Sander, C.E.1
  • 21
    • 84871189221 scopus 로고    scopus 로고
    • Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs
    • 21 Stark, K., et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat. Immunol. 14 (2013), 41–51.
    • (2013) Nat. Immunol. , vol.14 , pp. 41-51
    • Stark, K.1
  • 22
    • 58149402415 scopus 로고    scopus 로고
    • Perivascular spaces and the two steps to neuroinflammation
    • 22 Owens, T., et al. Perivascular spaces and the two steps to neuroinflammation. J. Neuropathol. Exp. Neurol. 67 (2008), 1113–1121.
    • (2008) J. Neuropathol. Exp. Neurol. , vol.67 , pp. 1113-1121
    • Owens, T.1
  • 23
    • 85014656015 scopus 로고    scopus 로고
    • Pericytes of the neurovascular unit: key functions and signaling pathways
    • 23 Sweeney, M.D., et al. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19 (2016), 771–783.
    • (2016) Nat. Neurosci. , vol.19 , pp. 771-783
    • Sweeney, M.D.1
  • 24
    • 73949122565 scopus 로고    scopus 로고
    • Venular basement membranes ubiquitously express matrix protein low-expression regions: characterization in multiple tissues and remodeling during inflammation
    • 24 Voisin, M-B., et al. Venular basement membranes ubiquitously express matrix protein low-expression regions: characterization in multiple tissues and remodeling during inflammation. Am. J. Pathol. 176 (2010), 482–495.
    • (2010) Am. J. Pathol. , vol.176 , pp. 482-495
    • Voisin, M.-B.1
  • 25
    • 33745029732 scopus 로고    scopus 로고
    • Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils
    • 25 Wang, S., et al. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J. Exp. Med. 203 (2006), 1519–1532.
    • (2006) J. Exp. Med. , vol.203 , pp. 1519-1532
    • Wang, S.1
  • 26
    • 84874397559 scopus 로고    scopus 로고
    • TNF-α promotes cerebral pericyte remodeling in vitro, via a switch from α1 to α2 integrins
    • 331–310
    • 26 Tigges, U., et al. TNF-α promotes cerebral pericyte remodeling in vitro, via a switch from α1 to α2 integrins. J. Neuroinflammation, 1, 2013 331–310.
    • (2013) J. Neuroinflammation , vol.1
    • Tigges, U.1
  • 27
    • 84897564199 scopus 로고    scopus 로고
    • Capillary pericytes regulate cerebral blood flow in health and disease
    • 27 Hall, C.N., et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508 (2014), 55–60.
    • (2014) Nature , vol.508 , pp. 55-60
    • Hall, C.N.1
  • 28
    • 4444333049 scopus 로고    scopus 로고
    • Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases
    • 28 Minghetti, L., Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 63 (2004), 901–910.
    • (2004) J. Neuropathol. Exp. Neurol. , vol.63 , pp. 901-910
    • Minghetti, L.1
  • 29
    • 0032495195 scopus 로고    scopus 로고
    • Inducible nitric oxide synthase expression is selectively induced in astrocytes isolated from adult human brain
    • 29 Zhao, M-L., et al. Inducible nitric oxide synthase expression is selectively induced in astrocytes isolated from adult human brain. Brain Res. 813 (1998), 402–405.
    • (1998) Brain Res. , vol.813 , pp. 402-405
    • Zhao, M.-L.1
  • 30
    • 0036627211 scopus 로고    scopus 로고
    • Tight junctions of the blood–brain barrier: development, composition and regulation
    • 30 Wolburg, H., Lippoldt, A., Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul. Pharmacol. 38 (2002), 323–337.
    • (2002) Vascul. Pharmacol. , vol.38 , pp. 323-337
    • Wolburg, H.1    Lippoldt, A.2
  • 31
    • 0022371325 scopus 로고
    • Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon
    • 31 Mann, G., et al. Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon. BBA Biomembranes 819 (1985), 241–248.
    • (1985) BBA Biomembranes , vol.819 , pp. 241-248
    • Mann, G.1
  • 32
    • 0028806803 scopus 로고
    • Cerebrovascular permeability to peptides: manipulations of transport systems at the blood–brain barrier
    • 32 Zlokovic, B.V., Cerebrovascular permeability to peptides: manipulations of transport systems at the blood–brain barrier. Pharm. Res. 12 (1995), 1395–1406.
    • (1995) Pharm. Res. , vol.12 , pp. 1395-1406
    • Zlokovic, B.V.1
  • 33
    • 0025299471 scopus 로고
    • Kinetics of arginine-vasopressin uptake at the blood–brain barrier
    • 33 Zlokovic, B.V., et al. Kinetics of arginine-vasopressin uptake at the blood–brain barrier. BBA Biomembranes 1025 (1990), 191–198.
    • (1990) BBA Biomembranes , vol.1025 , pp. 191-198
    • Zlokovic, B.V.1
  • 34
    • 0023220909 scopus 로고
    • Transport of leucine-enkephalin across the blood–brain barrier in the perfused guinea pig brain
    • 34 Zloković, B.V., et al. Transport of leucine-enkephalin across the blood–brain barrier in the perfused guinea pig brain. J. Neurochem. 49 (1987), 310–315.
    • (1987) J. Neurochem. , vol.49 , pp. 310-315
    • Zloković, B.V.1
  • 35
    • 0142259710 scopus 로고    scopus 로고
    • Three or more routes for leukocyte migration into the central nervous system
    • 35 Ransohoff, R.M., et al. Three or more routes for leukocyte migration into the central nervous system. Nat. Rev. Immunol. 3 (2003), 569–581.
    • (2003) Nat. Rev. Immunol. , vol.3 , pp. 569-581
    • Ransohoff, R.M.1
  • 36
    • 84992111543 scopus 로고    scopus 로고
    • Blood–brain barrier leakage in patients with early Alzheimer disease
    • 36 van de Haar, H.J., et al. Blood–brain barrier leakage in patients with early Alzheimer disease. Radiology 281 (2016), 527–535.
    • (2016) Radiology , vol.281 , pp. 527-535
    • van de Haar, H.J.1
  • 37
    • 81555200043 scopus 로고    scopus 로고
    • Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders
    • 37 Zlokovic, B.V., Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat. Rev. Neurosci. 12 (2011), 723–738.
    • (2011) Nat. Rev. Neurosci. , vol.12 , pp. 723-738
    • Zlokovic, B.V.1
  • 38
    • 84978946283 scopus 로고    scopus 로고
    • Neurovascular unit impairment in early Alzheimer's disease measured with magnetic resonance imaging
    • 38 van de Haar, H.J., et al. Neurovascular unit impairment in early Alzheimer's disease measured with magnetic resonance imaging. Neurobiol. Aging 45 (2016), 190–196.
    • (2016) Neurobiol. Aging , vol.45 , pp. 190-196
    • van de Haar, H.J.1
  • 39
    • 34247343262 scopus 로고    scopus 로고
    • Microvascular injury and blood–brain barrier leakage in Alzheimer's disease
    • 39 Zipser, B., et al. Microvascular injury and blood–brain barrier leakage in Alzheimer's disease. Neurobiol. Aging 28 (2007), 977–986.
    • (2007) Neurobiol. Aging , vol.28 , pp. 977-986
    • Zipser, B.1
  • 40
    • 0035047718 scopus 로고    scopus 로고
    • Cerebral microvascular pathology in aging and Alzheimer's disease
    • 40 Farkas, E., Luiten, P.G., Cerebral microvascular pathology in aging and Alzheimer's disease. Prog. Neurobiol. 64 (2001), 575–611.
    • (2001) Prog. Neurobiol. , vol.64 , pp. 575-611
    • Farkas, E.1    Luiten, P.G.2
  • 41
    • 84876288324 scopus 로고    scopus 로고
    • Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer's disease
    • 41 Sengillo, J.D., et al. Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer's disease. Brain Pathol. 23 (2013), 303–310.
    • (2013) Brain Pathol. , vol.23 , pp. 303-310
    • Sengillo, J.D.1
  • 42
    • 84921326695 scopus 로고    scopus 로고
    • Blood–brain barrier breakdown in the aging human hippocampus
    • 42 Montagne, A., et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85 (2015), 296–302.
    • (2015) Neuron , vol.85 , pp. 296-302
    • Montagne, A.1
  • 43
    • 84951568640 scopus 로고    scopus 로고
    • Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease
    • 43 Halliday, M.R., et al. Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. J. Cereb. Blood Flow Metab. 36 (2016), 216–227.
    • (2016) J. Cereb. Blood Flow Metab. , vol.36 , pp. 216-227
    • Halliday, M.R.1
  • 44
    • 78049279739 scopus 로고    scopus 로고
    • Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging
    • 44 Bell, R.D., et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68 (2010), 409–427.
    • (2010) Neuron , vol.68 , pp. 409-427
    • Bell, R.D.1
  • 45
    • 84870815173 scopus 로고    scopus 로고
    • Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation
    • 45 Davalos, D., et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat. Commun., 3, 2012, 1227.
    • (2012) Nat. Commun. , vol.3 , pp. 1227
    • Davalos, D.1
  • 46
    • 84941578601 scopus 로고    scopus 로고
    • Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation
    • 46 Ryu, J.K., et al. Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat. Commun., 6, 2015, 8164.
    • (2015) Nat. Commun. , vol.6 , pp. 8164
    • Ryu, J.K.1
  • 47
    • 34547791784 scopus 로고    scopus 로고
    • Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease
    • 47 Paul, J., et al. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease. J. Exp. Med. 204 (2007), 1999–2008.
    • (2007) J. Exp. Med. , vol.204 , pp. 1999-2008
    • Paul, J.1
  • 48
    • 84924250456 scopus 로고    scopus 로고
    • Nox4 is a major source of superoxide production in human brain pericytes
    • 48 Kuroda, J., et al. Nox4 is a major source of superoxide production in human brain pericytes. J. Vasc. Res. 51 (2014), 429–438.
    • (2014) J. Vasc. Res. , vol.51 , pp. 429-438
    • Kuroda, J.1
  • 49
    • 84973322290 scopus 로고    scopus 로고
    • Detrimental role of pericyte Nox4 in the acute phase of brain ischemia
    • 49 Nishimura, A., et al. Detrimental role of pericyte Nox4 in the acute phase of brain ischemia. J. Cereb. Blood Flow Metab. 36 (2016), 1143–1154.
    • (2016) J. Cereb. Blood Flow Metab. , vol.36 , pp. 1143-1154
    • Nishimura, A.1
  • 50
    • 80052033836 scopus 로고    scopus 로고
    • Brain pericytes among cells constituting the blood–brain barrier are highly sensitive to tumor necrosis factor-alpha, releasing matrix metalloproteinase-9 and migrating in vitro
    • 50 Takata, F., et al. Brain pericytes among cells constituting the blood–brain barrier are highly sensitive to tumor necrosis factor-alpha, releasing matrix metalloproteinase-9 and migrating in vitro. J. Neuroinflammation, 8, 2011, 106.
    • (2011) J. Neuroinflammation , vol.8 , pp. 106
    • Takata, F.1
  • 51
    • 84916226547 scopus 로고    scopus 로고
    • p38 MAP kinase mediates transforming-growth factor-1-induced upregulation of matrix metalloproteinase-9 but not -2 in human brain pericytes
    • 51 Takahashi, Y., et al. p38 MAP kinase mediates transforming-growth factor-1-induced upregulation of matrix metalloproteinase-9 but not -2 in human brain pericytes. Brain Res. 1593 (2014), 1–8.
    • (2014) Brain Res. , vol.1593 , pp. 1-8
    • Takahashi, Y.1
  • 52
    • 77955982672 scopus 로고    scopus 로고
    • Regulation of the blood–brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro
    • 52 Thanabalasundaram, G., et al. Regulation of the blood–brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro. Brain Res. 1347 (2010), 1–10.
    • (2010) Brain Res. , vol.1347 , pp. 1-10
    • Thanabalasundaram, G.1
  • 53
    • 84895895877 scopus 로고    scopus 로고
    • Vascular endothelial growth factors enhance the permeability of the mouse blood–brain barrier
    • 53 Jiang, S., et al. Vascular endothelial growth factors enhance the permeability of the mouse blood–brain barrier. PLoS One, 9, 2014, e86407.
    • (2014) PLoS One , vol.9 , pp. e86407
    • Jiang, S.1
  • 54
    • 84929493104 scopus 로고    scopus 로고
    • Pericytes contribute to the disruption of the cerebral endothelial barrier via increasing VEGF expression: implications for stroke
    • 54 Bai, Y., et al. Pericytes contribute to the disruption of the cerebral endothelial barrier via increasing VEGF expression: implications for stroke. PLoS One, 10, 2015, e0124362.
    • (2015) PLoS One , vol.10 , pp. e0124362
    • Bai, Y.1
  • 55
    • 77950516409 scopus 로고    scopus 로고
    • Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement
    • 55 Bauer, A.T., et al. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J. Cereb. Blood Flow Metab. 30 (2010), 837–848.
    • (2010) J. Cereb. Blood Flow Metab. , vol.30 , pp. 837-848
    • Bauer, A.T.1
  • 56
    • 84883796045 scopus 로고    scopus 로고
    • Relationship between cyclophilin a levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein E4 carriers and blood–brain barrier breakdown
    • 56 Halliday, M.R., et al. Relationship between cyclophilin a levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein E4 carriers and blood–brain barrier breakdown. JAMA Neurol. 70 (2013), 1198–1200.
    • (2013) JAMA Neurol. , vol.70 , pp. 1198-1200
    • Halliday, M.R.1
  • 57
    • 84962439520 scopus 로고    scopus 로고
    • Dysfunction of brain pericytes in chronic neuroinflammation
    • 57 Persidsky, Y., et al. Dysfunction of brain pericytes in chronic neuroinflammation. J. Cereb. Blood Flow Metab. 36 (2015), 794–807.
    • (2015) J. Cereb. Blood Flow Metab. , vol.36 , pp. 794-807
    • Persidsky, Y.1
  • 58
    • 84988527691 scopus 로고    scopus 로고
    • Interferon-γ blocks signalling through PDGFRβ in human brain pericytes
    • 58 Jansson, D., et al. Interferon-γ blocks signalling through PDGFRβ in human brain pericytes. J. Neuroinflammation 13 (2016), 1–19.
    • (2016) J. Neuroinflammation , vol.13 , pp. 1-19
    • Jansson, D.1
  • 59
    • 67349280877 scopus 로고    scopus 로고
    • Detachment of brain pericytes from the basal lamina is involved in disruption of the blood–brain barrier caused by lipopolysaccharide-induced sepsis in mice
    • 59 Nishioku, T., et al. Detachment of brain pericytes from the basal lamina is involved in disruption of the blood–brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell. Mol. Neurobiol. 29 (2009), 309–316.
    • (2009) Cell. Mol. Neurobiol. , vol.29 , pp. 309-316
    • Nishioku, T.1
  • 60
    • 78650604334 scopus 로고    scopus 로고
    • Multipotent PDGFRβ-expressing cells in the circulation of stroke patients
    • 60 Jung, K-H., et al. Multipotent PDGFRβ-expressing cells in the circulation of stroke patients. Neurobiol. Dis. 41 (2011), 489–497.
    • (2011) Neurobiol. Dis. , vol.41 , pp. 489-497
    • Jung, K.-H.1
  • 61
    • 84943375348 scopus 로고    scopus 로고
    • Shedding of soluble platelet-derived growth factor receptor-β from human brain pericytes
    • 61 Sagare, A.P., et al. Shedding of soluble platelet-derived growth factor receptor-β from human brain pericytes. Neurosci. Lett. 607 (2015), 97–101.
    • (2015) Neurosci. Lett. , vol.607 , pp. 97-101
    • Sagare, A.P.1
  • 62
    • 84903314983 scopus 로고    scopus 로고
    • Involvement of matrix metalloproteinase-9 in amyloid-beta 1-42-induced shedding of the pericyte proteoglycan NG2
    • 62 Schultz, N., et al. Involvement of matrix metalloproteinase-9 in amyloid-beta 1-42-induced shedding of the pericyte proteoglycan NG2. J. Neuropathol. Exp. Neurol. 73 (2014), 684–692.
    • (2014) J. Neuropathol. Exp. Neurol. , vol.73 , pp. 684-692
    • Schultz, N.1
  • 63
    • 0015539357 scopus 로고
    • Accumulation of protein tracers in pericytes of the central nervous system following systemic injection in immature mice
    • 63 Kristensson, K., Olsson, Y., Accumulation of protein tracers in pericytes of the central nervous system following systemic injection in immature mice. Acta Neurol. Scand. 49 (1973), 189–194.
    • (1973) Acta Neurol. Scand. , vol.49 , pp. 189-194
    • Kristensson, K.1    Olsson, Y.2
  • 64
    • 85026324171 scopus 로고    scopus 로고
    • Amylin alters human brain pericyte viability and NG2 expression
    • Published online June 28, 2016
    • 64 Schultz, N., et al. Amylin alters human brain pericyte viability and NG2 expression. J. Cereb. Blood Flow Metab., 2016, 10.1177/0271678X16657093 Published online June 28, 2016.
    • (2016) J. Cereb. Blood Flow Metab.
    • Schultz, N.1
  • 65
    • 0033407485 scopus 로고    scopus 로고
    • Brain macrophages: on the role of pericytes and perivascular cells
    • 65 Thomas, W.E., Brain macrophages: on the role of pericytes and perivascular cells. Brain Res. Rev. 31 (1999), 42–57.
    • (1999) Brain Res. Rev. , vol.31 , pp. 42-57
    • Thomas, W.E.1
  • 66
    • 0030250260 scopus 로고    scopus 로고
    • CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2
    • 66 Balabanov, R., et al. CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2. Microvasc. Res. 52 (1996), 127–142.
    • (1996) Microvasc. Res. , vol.52 , pp. 127-142
    • Balabanov, R.1
  • 67
    • 0021458902 scopus 로고
    • Submicroscopic changes of cortical capillary pericytes in human perifocal brain edema
    • 67 Castejón, O., Submicroscopic changes of cortical capillary pericytes in human perifocal brain edema. J. Submicrosc. Cytol. 16 (1984), 601–618.
    • (1984) J. Submicrosc. Cytol. , vol.16 , pp. 601-618
    • Castejón, O.1
  • 68
    • 84890576583 scopus 로고    scopus 로고
    • Pericyte loss influences Alzheimer-like neurodegeneration in mice
    • 68 Sagare, A.P., et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat. Commun., 4, 2013, 2932.
    • (2013) Nat. Commun. , vol.4 , pp. 2932
    • Sagare, A.P.1
  • 69
    • 78149255128 scopus 로고    scopus 로고
    • Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain
    • 69 Zlokovic, B.V., et al. Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain. J. Neurochem. 115 (2010), 1077–1089.
    • (2010) J. Neurochem. , vol.115 , pp. 1077-1089
    • Zlokovic, B.V.1
  • 70
    • 57449084208 scopus 로고    scopus 로고
    • ApoE isoform-specific disruption of amyloid β peptide clearance from mouse brain
    • 70 Deane, R., et al. ApoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J. Clin. Invest. 118 (2008), 4002–4013.
    • (2008) J. Clin. Invest. , vol.118 , pp. 4002-4013
    • Deane, R.1
  • 71
    • 4043061467 scopus 로고    scopus 로고
    • LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms
    • 71 Deane, R., et al. LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43 (2004), 333–344.
    • (2004) Neuron , vol.43 , pp. 333-344
    • Deane, R.1
  • 72
    • 0034521392 scopus 로고    scopus 로고
    • Clearance of Alzheimer's amyloid-β 1-40 peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier
    • 72 Shibata, M., et al. Clearance of Alzheimer's amyloid-β 1-40 peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. J. Clin. Invest. 106 (2000), 1489–1499.
    • (2000) J. Clin. Invest. , vol.106 , pp. 1489-1499
    • Shibata, M.1
  • 73
    • 59649110562 scopus 로고    scopus 로고
    • SRF and myocardin regulate LRP-mediated amyloid-β clearance in brain vascular cells
    • 73 Bell, R.D., et al. SRF and myocardin regulate LRP-mediated amyloid-β clearance in brain vascular cells. Nat. Cell Biol. 11 (2009), 143–153.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 143-153
    • Bell, R.D.1
  • 74
    • 0028982272 scopus 로고
    • Amyloid β-protein aggregation nullifies its pathologic properties in cultured cerebrovascular smooth muscle cells
    • 74 Davis-Salinas, J., Van Nostrand, W.E., Amyloid β-protein aggregation nullifies its pathologic properties in cultured cerebrovascular smooth muscle cells. J. Biol. Chem. 270 (1995), 20887–20890.
    • (1995) J. Biol. Chem. , vol.270 , pp. 20887-20890
    • Davis-Salinas, J.1    Van Nostrand, W.E.2
  • 75
    • 84867722515 scopus 로고    scopus 로고
    • Amyloid-β-dependent compromise of microvascular structure and function in a model of Alzheimer's disease
    • 75 Dorr, A., et al. Amyloid-β-dependent compromise of microvascular structure and function in a model of Alzheimer's disease. Brain 135 (2012), 3039–3050.
    • (2012) Brain , vol.135 , pp. 3039-3050
    • Dorr, A.1
  • 76
    • 84887399490 scopus 로고    scopus 로고
    • Cerebral arterial pulsation drives paravascular CSF–interstitial fluid exchange in the murine brain
    • 76 Iliff, J.J., et al. Cerebral arterial pulsation drives paravascular CSF–interstitial fluid exchange in the murine brain. J. Neurosci. 33 (2013), 18190–18199.
    • (2013) J. Neurosci. , vol.33 , pp. 18190-18199
    • Iliff, J.J.1
  • 77
    • 40149099870 scopus 로고    scopus 로고
    • Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology
    • 77 Carare, R., et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 34 (2008), 131–144.
    • (2008) Neuropathol. Appl. Neurobiol. , vol.34 , pp. 131-144
    • Carare, R.1
  • 78
    • 84906319162 scopus 로고    scopus 로고
    • Brain pericytes acquire a microglial phenotype after stroke
    • 78 Ozen, I., et al. Brain pericytes acquire a microglial phenotype after stroke. Acta Neuropathol. 128 (2014), 381–396.
    • (2014) Acta Neuropathol. , vol.128 , pp. 381-396
    • Ozen, I.1
  • 79
    • 84980318131 scopus 로고    scopus 로고
    • Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke
    • 79 Sakuma, R., et al. Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J. Neuroinflammation, 13, 2016, 1.
    • (2016) J. Neuroinflammation , vol.13 , pp. 1
    • Sakuma, R.1
  • 80
    • 84959299256 scopus 로고    scopus 로고
    • Role of nucleotide-binding oligomerization domain 1 (NOD1) in pericyte-mediated vascular inflammation
    • 80 Navarro, R., et al. Role of nucleotide-binding oligomerization domain 1 (NOD1) in pericyte-mediated vascular inflammation. J. Cell. Mol. Med. 20 (2016), 980–986.
    • (2016) J. Cell. Mol. Med. , vol.20 , pp. 980-986
    • Navarro, R.1
  • 81
    • 84869224408 scopus 로고    scopus 로고
    • Selective targeting of interferon γ to stromal fibroblasts and pericytes as a novel therapeutic approach to inhibit angiogenesis and tumor growth
    • 81 Bansal, R., et al. Selective targeting of interferon γ to stromal fibroblasts and pericytes as a novel therapeutic approach to inhibit angiogenesis and tumor growth. Mol. Cancer Ther. 11 (2012), 2419–2428.
    • (2012) Mol. Cancer Ther. , vol.11 , pp. 2419-2428
    • Bansal, R.1
  • 82
    • 84952637264 scopus 로고    scopus 로고
    • How microglia kill neurons
    • 82 Brown, G.C., Vilalta, A., How microglia kill neurons. Brain Res. 1628 (2015), 288–297.
    • (2015) Brain Res. , vol.1628 , pp. 288-297
    • Brown, G.C.1    Vilalta, A.2
  • 83
    • 84967184780 scopus 로고    scopus 로고
    • The PDGF-BB–SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages
    • 83 Yang, Y., et al. The PDGF-BB–SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat. Commun., 7, 2016, 11385.
    • (2016) Nat. Commun. , vol.7 , pp. 11385
    • Yang, Y.1
  • 84
    • 84966429058 scopus 로고    scopus 로고
    • IL-33 ameliorates Alzheimer's disease-like pathology and cognitive decline
    • 84 Fu, A.K., et al. IL-33 ameliorates Alzheimer's disease-like pathology and cognitive decline. Proc. Natl Acad. Sci. U. S. A. 113 (2016), E2705–E2713.
    • (2016) Proc. Natl Acad. Sci. U. S. A. , vol.113 , pp. E2705-E2713
    • Fu, A.K.1
  • 85
    • 33745573660 scopus 로고    scopus 로고
    • Control of microglial neurotoxicity by the fractalkine receptor
    • 85 Cardona, A.E., et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9 (2006), 917–924.
    • (2006) Nat. Neurosci. , vol.9 , pp. 917-924
    • Cardona, A.E.1
  • 86
    • 78650885436 scopus 로고    scopus 로고
    • Human placental pericytes poorly stimulate and actively regulate allogeneic CD4 T cell responses
    • 86 Maier, C.L., Pober, J.S., Human placental pericytes poorly stimulate and actively regulate allogeneic CD4 T cell responses. Arterioscler. Thromb. Vasc. Biol. 31 (2011), 183–189.
    • (2011) Arterioscler. Thromb. Vasc. Biol. , vol.31 , pp. 183-189
    • Maier, C.L.1    Pober, J.S.2
  • 87
    • 84908032901 scopus 로고    scopus 로고
    • Immunoevasive pericytes from human pluripotent stem cells preferentially modulate induction of allogeneic regulatory T cells
    • 87 Domev, H., et al. Immunoevasive pericytes from human pluripotent stem cells preferentially modulate induction of allogeneic regulatory T cells. Stem Cells Transl. Med. 3 (2014), 1169–1181.
    • (2014) Stem Cells Transl. Med. , vol.3 , pp. 1169-1181
    • Domev, H.1
  • 88
    • 0034004454 scopus 로고    scopus 로고
    • Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation
    • 88 Owens, T., Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation. Eur. J. Immunol. 30 (2000), 1002–1009.
    • (2000) Eur. J. Immunol. , vol.30 , pp. 1002-1009
    • Owens, T.1
  • 89
    • 14644407410 scopus 로고    scopus 로고
    • Postischemic reperfusion: ultrastructural blood–brain barrier and hemodynamic correlative changes in an awake model of transient forebrain ischemia
    • 89 Melgar, M.A., et al. Postischemic reperfusion: ultrastructural blood–brain barrier and hemodynamic correlative changes in an awake model of transient forebrain ischemia. Neurosurgery 56 (2005), 571–581.
    • (2005) Neurosurgery , vol.56 , pp. 571-581
    • Melgar, M.A.1
  • 90
    • 77950482945 scopus 로고    scopus 로고
    • Memory CD4 T cells: generation, reactivation and re-assignment
    • 90 MacLeod, M.K., et al. Memory CD4 T cells: generation, reactivation and re-assignment. Immunology 130 (2010), 10–15.
    • (2010) Immunology , vol.130 , pp. 10-15
    • MacLeod, M.K.1
  • 91
    • 0027244759 scopus 로고
    • + cells by murine brain microvessel endothelial cells and smooth muscle/pericytes
    • + cells by murine brain microvessel endothelial cells and smooth muscle/pericytes. J. Immunol. 151 (1993), 38–47.
    • (1993) J. Immunol. , vol.151 , pp. 38-47
    • Fabry, Z.1
  • 92
    • 84894464622 scopus 로고    scopus 로고
    • The human side of microglia
    • 92 Smith, A.M., Dragunow, M., The human side of microglia. Trends Neurosci. 37 (2014), 125–135.
    • (2014) Trends Neurosci. , vol.37 , pp. 125-135
    • Smith, A.M.1    Dragunow, M.2
  • 93
    • 84962683154 scopus 로고    scopus 로고
    • Insight into the molecular imaging of Alzheimer's disease
    • 93 Arora, A., Bhagat, N., Insight into the molecular imaging of Alzheimer's disease. Int. J. Biomed. Imaging, 2016, 2016, 7462014.
    • (2016) Int. J. Biomed. Imaging , vol.2016 , pp. 7462014
    • Arora, A.1    Bhagat, N.2
  • 94
    • 84962326428 scopus 로고    scopus 로고
    • Two-and three-dimensional co-culture models of soft tissue healing: pericyte–endothelial cell interaction
    • 94 Jennewein, M., et al. Two-and three-dimensional co-culture models of soft tissue healing: pericyte–endothelial cell interaction. Cell Tissue Res. 365 (2016), 279–293.
    • (2016) Cell Tissue Res. , vol.365 , pp. 279-293
    • Jennewein, M.1
  • 95
    • 84878893830 scopus 로고    scopus 로고
    • Human pericyte–endothelial cell interactions in co-culture models mimicking the diabetic retinal microvascular environment
    • 95 Tarallo, S., et al. Human pericyte–endothelial cell interactions in co-culture models mimicking the diabetic retinal microvascular environment. Acta Diabetol. 49 (2012), 141–151.
    • (2012) Acta Diabetol. , vol.49 , pp. 141-151
    • Tarallo, S.1
  • 96
    • 84928412002 scopus 로고    scopus 로고
    • 3D functional and perfusable microvascular networks for organotypic microfluidic models
    • 96 Bersini, S., Moretti, M., 3D functional and perfusable microvascular networks for organotypic microfluidic models. J. Mater. Sci. Mater. Med., 26, 2015, 180.
    • (2015) J. Mater. Sci. Mater. Med. , vol.26 , pp. 180
    • Bersini, S.1    Moretti, M.2
  • 97
    • 84877292573 scopus 로고    scopus 로고
    • Diffusion of macromolecules in the brain: implications for drug delivery
    • 97 Wolak, D.J., Thorne, R.G., Diffusion of macromolecules in the brain: implications for drug delivery. Mol. Pharm. 10 (2013), 1492–1504.
    • (2013) Mol. Pharm. , vol.10 , pp. 1492-1504
    • Wolak, D.J.1    Thorne, R.G.2
  • 98
    • 85008354898 scopus 로고    scopus 로고
    • Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury
    • Published online November 21, 2016
    • 98 Leaf, I.A., et al. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J. Clin. Invest., 2016, 10.1172/JCI87532 Published online November 21, 2016.
    • (2016) J. Clin. Invest.
    • Leaf, I.A.1
  • 99
    • 84929839390 scopus 로고    scopus 로고
    • Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells
    • 99 Nakagomi, T., et al. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells 33 (2015), 1962–1974.
    • (2015) Stem Cells , vol.33 , pp. 1962-1974
    • Nakagomi, T.1
  • 100
    • 84992386887 scopus 로고    scopus 로고
    • Sall1 is a transcriptional regulator defining microglia identity and function
    • 100 Buttgereit, A., et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17 (2016), 1397–1406.
    • (2016) Nat. Immunol. , vol.17 , pp. 1397-1406
    • Buttgereit, A.1
  • 101
    • 84893745524 scopus 로고    scopus 로고
    • Identification of a unique TGF-β-dependent molecular and functional signature in microglia
    • 101 Butovsky, O., et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17 (2014), 131–143.
    • (2014) Nat. Neurosci. , vol.17 , pp. 131-143
    • Butovsky, O.1
  • 102
    • 77950391566 scopus 로고    scopus 로고
    • Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy
    • 102 Raica, M., Cimpean, A.M., Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals 3 (2010), 572–599.
    • (2010) Pharmaceuticals , vol.3 , pp. 572-599
    • Raica, M.1    Cimpean, A.M.2
  • 103
    • 84971574776 scopus 로고    scopus 로고
    • Pericyte-targeting drug delivery and tissue engineering
    • 103 Kang, E., Shin, J.W., Pericyte-targeting drug delivery and tissue engineering. Int. J. Nanomedicine, 11, 2016, 2397.
    • (2016) Int. J. Nanomedicine , vol.11 , pp. 2397
    • Kang, E.1    Shin, J.W.2
  • 104
    • 84976260728 scopus 로고    scopus 로고
    • Platelet-derived growth factor-BB has neurorestorative effects and modulates the pericyte response in a partial 6-hydroxydopamine lesion mouse model of Parkinson's disease
    • 104 Padel, T., et al. Platelet-derived growth factor-BB has neurorestorative effects and modulates the pericyte response in a partial 6-hydroxydopamine lesion mouse model of Parkinson's disease. Neurobiol. Dis. 94 (2016), 95–105.
    • (2016) Neurobiol. Dis. , vol.94 , pp. 95-105
    • Padel, T.1
  • 105
    • 84988931070 scopus 로고    scopus 로고
    • IL-17 promotes neutrophil-mediated immunity by activating microvascular pericytes and not endothelium
    • 105 Liu, R., et al. IL-17 promotes neutrophil-mediated immunity by activating microvascular pericytes and not endothelium. J. Immunol. 197 (2016), 2400–2408.
    • (2016) J. Immunol. , vol.197 , pp. 2400-2408
    • Liu, R.1
  • 106
    • 84991383345 scopus 로고    scopus 로고
    • Analysis of the brain mural cell transcriptome
    • 106 He, L., et al. Analysis of the brain mural cell transcriptome. Sci. Rep., 6, 2016, 35108.
    • (2016) Sci. Rep. , vol.6 , pp. 35108
    • He, L.1
  • 107
    • 84872363503 scopus 로고    scopus 로고
    • Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis
    • 107 Winkler, E.A., et al. Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol. 125 (2013), 111–120.
    • (2013) Acta Neuropathol. , vol.125 , pp. 111-120
    • Winkler, E.A.1
  • 108
    • 0031017399 scopus 로고    scopus 로고
    • Rapid degeneration of cultured human brain pericytes by amyloid β protein
    • 108 Verbeek, M.M., et al. Rapid degeneration of cultured human brain pericytes by amyloid β protein. J. Neurochem. 68 (1997), 1135–1141.
    • (1997) J. Neurochem. , vol.68 , pp. 1135-1141
    • Verbeek, M.M.1
  • 109
    • 84929483899 scopus 로고    scopus 로고
    • Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system
    • 109 Muramatsu, R., et al. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. J. Biol. Chem. 290 (2015), 11515–11525.
    • (2015) J. Biol. Chem. , vol.290 , pp. 11515-11525
    • Muramatsu, R.1
  • 110
    • 84994323119 scopus 로고    scopus 로고
    • Pericytes in diabetes-associated vascular disease
    • 110 Warmke, N., et al. Pericytes in diabetes-associated vascular disease. J. Diabetes Complications 30 (2016), 1643–1650.
    • (2016) J. Diabetes Complications , vol.30 , pp. 1643-1650
    • Warmke, N.1
  • 111
    • 84877760624 scopus 로고    scopus 로고
    • Cerebrovascular remodeling and epilepsy
    • 111 Marchi, N., Lerner-Natoli, M., Cerebrovascular remodeling and epilepsy. Neuroscientist 19 (2013), 304–312.
    • (2013) Neuroscientist , vol.19 , pp. 304-312
    • Marchi, N.1    Lerner-Natoli, M.2
  • 112
    • 84867511655 scopus 로고    scopus 로고
    • The role of pericytes in blood–brain barrier function and stroke
    • 112 Liu, S., et al. The role of pericytes in blood–brain barrier function and stroke. Curr. Pharm. Des. 18 (2012), 3653–3662.
    • (2012) Curr. Pharm. Des. , vol.18 , pp. 3653-3662
    • Liu, S.1
  • 113
    • 84940874500 scopus 로고    scopus 로고
    • Traumatic brain injury results in rapid pericyte loss followed by reactive pericytosis in the cerebral cortex
    • 113 Zehendner, C.M., et al. Traumatic brain injury results in rapid pericyte loss followed by reactive pericytosis in the cerebral cortex. Sci. Rep., 5, 2015, 13497.
    • (2015) Sci. Rep. , vol.5 , pp. 13497
    • Zehendner, C.M.1
  • 114
    • 79960099283 scopus 로고    scopus 로고
    • A pericyte origin of spinal cord scar tissue
    • 114 Göritz, C., et al. A pericyte origin of spinal cord scar tissue. Science 333 (2011), 238–242.
    • (2011) Science , vol.333 , pp. 238-242
    • Göritz, C.1
  • 115
    • 84888317089 scopus 로고    scopus 로고
    • Immature mesenchymal stem cell-like pericytes as mediators of immunosuppression in human malignant glioma
    • 115 Ochs, K., et al. Immature mesenchymal stem cell-like pericytes as mediators of immunosuppression in human malignant glioma. J. Neuroimmunol. 265 (2013), 106–116.
    • (2013) J. Neuroimmunol. , vol.265 , pp. 106-116
    • Ochs, K.1
  • 116
    • 84875755046 scopus 로고    scopus 로고
    • Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth
    • 116 Cheng, L., et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153 (2013), 139–152.
    • (2013) Cell , vol.153 , pp. 139-152
    • Cheng, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.