-
1
-
-
57349100348
-
Brain inflammation initiates seizures
-
Kleen JK, Holmes GL. Brain inflammation initiates seizures. Nat Med. 2008;14(12):1309-10.
-
(2008)
Nat Med
, vol.14
, Issue.12
, pp. 1309-1310
-
-
Kleen, J.K.1
Holmes, G.L.2
-
2
-
-
0036965965
-
Inflammatory response in acute traumatic brain injury: a double-edged sword
-
Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T. Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care. 2002;8(2):101-5.
-
(2002)
Curr Opin Crit Care
, vol.8
, Issue.2
, pp. 101-105
-
-
Morganti-Kossmann, M.C.1
Rancan, M.2
Stahel, P.F.3
Kossmann, T.4
-
3
-
-
0033979993
-
Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia
-
del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol. 2000;10(1):95-112.
-
(2000)
Brain Pathol
, vol.10
, Issue.1
, pp. 95-112
-
-
Zoppo, G.1
Ginis, I.2
Hallenbeck, J.M.3
Iadecola, C.4
Wang, X.5
Feuerstein, G.Z.6
-
4
-
-
77950363010
-
Mechanisms underlying inflammation in neurodegeneration
-
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918-34.
-
(2010)
Cell
, vol.140
, Issue.6
, pp. 918-934
-
-
Glass, C.K.1
Saijo, K.2
Winner, B.3
Marchetto, M.C.4
Gage, F.H.5
-
5
-
-
84884246344
-
Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain
-
Ramesh G, MacLean AG, Philipp MT. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm. 2013;2013:480739.
-
(2013)
Mediators Inflamm
, vol.2013
, pp. 480739
-
-
Ramesh, G.1
MacLean, A.G.2
Philipp, M.T.3
-
6
-
-
33750591957
-
Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer's pathology
-
Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, et al. Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer's pathology. J Clin Invest. 2006;116(11):3060-9.
-
(2006)
J Clin Invest
, vol.116
, Issue.11
, pp. 3060-3069
-
-
Tesseur, I.1
Zou, K.2
Esposito, L.3
Bard, F.4
Berber, E.5
Can, J.V.6
-
7
-
-
0028230259
-
Effects of transforming growth factor beta 1 on scar production in the injured central nervous system of the rat
-
Logan A, Berry M, Gonzalez AM, Frautschy SA, Sporn MB, Baird A. Effects of transforming growth factor beta 1 on scar production in the injured central nervous system of the rat. Eur J Neurosci. 1994;6(3):355-63.
-
(1994)
Eur J Neurosci
, vol.6
, Issue.3
, pp. 355-363
-
-
Logan, A.1
Berry, M.2
Gonzalez, A.M.3
Frautschy, S.A.4
Sporn, M.B.5
Baird, A.6
-
8
-
-
0026510668
-
Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation
-
Lindholm D, Castren E, Kiefer R, Zafra F, Thoenen H. Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol. 1992;117(2):395-400.
-
(1992)
J Cell Biol
, vol.117
, Issue.2
, pp. 395-400
-
-
Lindholm, D.1
Castren, E.2
Kiefer, R.3
Zafra, F.4
Thoenen, H.5
-
9
-
-
42649120343
-
Brain area-specific effect of TGF-beta signaling on Wnt-dependent neural stem cell expansion
-
Falk S, Wurdak H, Ittner LM, Ille F, Sumara G, Schmid MT, et al. Brain area-specific effect of TGF-beta signaling on Wnt-dependent neural stem cell expansion. Cell Stem Cell. 2008;2(5):472-83.
-
(2008)
Cell Stem Cell
, vol.2
, Issue.5
, pp. 472-483
-
-
Falk, S.1
Wurdak, H.2
Ittner, L.M.3
Ille, F.4
Sumara, G.5
Schmid, M.T.6
-
10
-
-
0344013136
-
TGFbeta directs gene expression of activated microglia to an anti-inflammatory phenotype strongly focusing on chemokine genes and cell migratory genes
-
Paglinawan R, Malipiero U, Schlapbach R, Frei K, Reith W, Fontana A. TGFbeta directs gene expression of activated microglia to an anti-inflammatory phenotype strongly focusing on chemokine genes and cell migratory genes. Glia. 2003;44(3):219-31.
-
(2003)
Glia
, vol.44
, Issue.3
, pp. 219-231
-
-
Paglinawan, R.1
Malipiero, U.2
Schlapbach, R.3
Frei, K.4
Reith, W.5
Fontana, A.6
-
11
-
-
0028073808
-
Differential modulation of astrocyte cytokine gene expression by TGF-beta
-
Benveniste EN, Kwon J, Chung WJ, Sampson J, Pandya K, Tang LP. Differential modulation of astrocyte cytokine gene expression by TGF-beta. J Immunol. 1994;153(11):5210-21.
-
(1994)
J Immunol
, vol.153
, Issue.11
, pp. 5210-5221
-
-
Benveniste, E.N.1
Kwon, J.2
Chung, W.J.3
Sampson, J.4
Pandya, K.5
Tang, L.P.6
-
12
-
-
0028967734
-
Tumor necrosis factor alpha and transforming growth factor beta upregulate astrocyte expression of monocyte chemoattractant protein-1
-
Hurwitz AA, Lyman WD, Berman JW. Tumor necrosis factor alpha and transforming growth factor beta upregulate astrocyte expression of monocyte chemoattractant protein-1. J Neuroimmunol. 1995;57(1-2):193-8.
-
(1995)
J Neuroimmunol
, vol.57
, Issue.1-2
, pp. 193-198
-
-
Hurwitz, A.A.1
Lyman, W.D.2
Berman, J.W.3
-
14
-
-
0025310993
-
Characterization of the activation of latent TGF-beta by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self-regulating system
-
Sato Y, Tsuboi R, Lyons R, Moses H, Rifkin DB. Characterization of the activation of latent TGF-beta by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self-regulating system. J Cell Biol. 1990;111(2):757-63.
-
(1990)
J Cell Biol
, vol.111
, Issue.2
, pp. 757-763
-
-
Sato, Y.1
Tsuboi, R.2
Lyons, R.3
Moses, H.4
Rifkin, D.B.5
-
15
-
-
0001505189
-
An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes
-
Antonelli-Orlidge A, Saunders KB, Smith SR, D'Amore PA. An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci U S A. 1989;86(12):4544-8.
-
(1989)
Proc Natl Acad Sci U S A
, vol.86
, Issue.12
, pp. 4544-4548
-
-
Antonelli-Orlidge, A.1
Saunders, K.B.2
Smith, S.R.3
D'Amore, P.A.4
-
16
-
-
0027212063
-
TGF-beta 1 mRNA increases in macrophage/microglial cells of the hippocampus in response to deafferentation and kainic acid-induced neurodegeneration
-
Morgan TE, Nichols NR, Pasinetti GM, Finch CE. TGF-beta 1 mRNA increases in macrophage/microglial cells of the hippocampus in response to deafferentation and kainic acid-induced neurodegeneration. Exp Neurol. 1993;120(2):291-301.
-
(1993)
Exp Neurol
, vol.120
, Issue.2
, pp. 291-301
-
-
Morgan, T.E.1
Nichols, N.R.2
Pasinetti, G.M.3
Finch, C.E.4
-
17
-
-
0028329252
-
Neuronal rescue with transforming growth factor-[beta] 1 after hypoxic-ischaemic brain injury
-
McNeill H, Williams C, Guan J, Dragunow M, Lawlor P, Sirimanne E, et al. Neuronal rescue with transforming growth factor-[beta] 1 after hypoxic-ischaemic brain injury. Neuroreport. 1994;5(8):901-4.
-
(1994)
Neuroreport
, vol.5
, Issue.8
, pp. 901-904
-
-
McNeill, H.1
Williams, C.2
Guan, J.3
Dragunow, M.4
Lawlor, P.5
Sirimanne, E.6
-
18
-
-
0026437599
-
Synthesis of TGF-beta 1 by vascular endothelial cells is correlated with cell spreading
-
Merrilees MJ, Sodek J. Synthesis of TGF-beta 1 by vascular endothelial cells is correlated with cell spreading. J Vasc Res. 1992;29(5):376-84.
-
(1992)
J Vasc Res
, vol.29
, Issue.5
, pp. 376-384
-
-
Merrilees, M.J.1
Sodek, J.2
-
19
-
-
84867530190
-
TGF beta signaling and its role in glioma pathogenesis
-
Kaminska B, Kocyk M, Kijewska M. TGF beta signaling and its role in glioma pathogenesis. Adv Exp Med Biol. 2013;986:171-87.
-
(2013)
Adv Exp Med Biol
, vol.986
, pp. 171-187
-
-
Kaminska, B.1
Kocyk, M.2
Kijewska, M.3
-
20
-
-
38949165993
-
Microglia-derived TGF-beta as an important regulator of glioblastoma invasion-an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor
-
Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M, et al. Microglia-derived TGF-beta as an important regulator of glioblastoma invasion-an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene. 2008;27(7):918-30.
-
(2008)
Oncogene
, vol.27
, Issue.7
, pp. 918-930
-
-
Wesolowska, A.1
Kwiatkowska, A.2
Slomnicki, L.3
Dembinski, M.4
Master, A.5
Sliwa, M.6
-
21
-
-
0029879741
-
Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans
-
Krupinski J, Kumar P, Kumar S, Kaluza J. Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans. Stroke. 1996;27(5):852-7.
-
(1996)
Stroke
, vol.27
, Issue.5
, pp. 852-857
-
-
Krupinski, J.1
Kumar, P.2
Kumar, S.3
Kaluza, J.4
-
22
-
-
84879390394
-
Serum concentrations of transforming growth factor-Beta 1 in predicting the occurrence of diabetic retinopathy in juvenile patients with type 1 diabetes mellitus
-
Zorena K, Malinowska E, Raczynska D, Mysliwiec M, Raczynska K. Serum concentrations of transforming growth factor-Beta 1 in predicting the occurrence of diabetic retinopathy in juvenile patients with type 1 diabetes mellitus. J Diabetes Res. 2013;2013:614908.
-
(2013)
J Diabetes Res
, vol.2013
, pp. 614908
-
-
Zorena, K.1
Malinowska, E.2
Raczynska, D.3
Mysliwiec, M.4
Raczynska, K.5
-
23
-
-
0028094017
-
Transforming growth factor beta in Alzheimer's disease
-
Chao CC, Hu S, Frey 2nd WH, Ala TA, Tourtellotte WW, Peterson PK. Transforming growth factor beta in Alzheimer's disease. Clin Diagn Lab Immunol. 1994;1(1):109-10.
-
(1994)
Clin Diagn Lab Immunol
, vol.1
, Issue.1
, pp. 109-110
-
-
Chao, C.C.1
Hu, S.2
Frey, W.H.3
Ala, T.A.4
Tourtellotte, W.W.5
Peterson, P.K.6
-
24
-
-
0028465427
-
Serum cytokine levels in patients with Alzheimer's disease
-
Chao CC, Ala TA, Hu S, Crossley KB, Sherman RE, Peterson PK, et al. Serum cytokine levels in patients with Alzheimer's disease. Clin Diagn Lab Immunol. 1994;1(4):433-6.
-
(1994)
Clin Diagn Lab Immunol
, vol.1
, Issue.4
, pp. 433-436
-
-
Chao, C.C.1
Ala, T.A.2
Hu, S.3
Crossley, K.B.4
Sherman, R.E.5
Peterson, P.K.6
-
25
-
-
24144453087
-
Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism
-
Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76(2):77-98.
-
(2005)
Prog Neurobiol
, vol.76
, Issue.2
, pp. 77-98
-
-
Block, M.L.1
Hong, J.S.2
-
26
-
-
0029956457
-
Regulation of microglial activation by TGF-beta, IL-10, and CSF-1
-
Lodge PA, Sriram S. Regulation of microglial activation by TGF-beta, IL-10, and CSF-1. J Leukoc Biol. 1996;60(4):502-8.
-
(1996)
J Leukoc Biol
, vol.60
, Issue.4
, pp. 502-508
-
-
Lodge, P.A.1
Sriram, S.2
-
27
-
-
84891959070
-
Adult human glia, pericytes and meningeal fibroblasts respond similarly to IFNy but not to TGFbeta1 or M-CSF
-
Smith AM, Graham ES, Feng SX, Oldfield RL, Bergin PM, Mee EW, et al. Adult human glia, pericytes and meningeal fibroblasts respond similarly to IFNy but not to TGFbeta1 or M-CSF. PLoS One. 2013;8(12), e80463.
-
(2013)
PLoS One
, vol.8
, Issue.12
-
-
Smith, A.M.1
Graham, E.S.2
Feng, S.X.3
Oldfield, R.L.4
Bergin, P.M.5
Mee, E.W.6
-
28
-
-
0347362913
-
Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain
-
Brionne TC, Tesseur I, Masliah E, Wyss-Coray T. Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron. 2003;40(6):1133-45.
-
(2003)
Neuron
, vol.40
, Issue.6
, pp. 1133-1145
-
-
Brionne, T.C.1
Tesseur, I.2
Masliah, E.3
Wyss-Coray, T.4
-
29
-
-
0034744296
-
TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice
-
Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med. 2001;7(5):612-8.
-
(2001)
Nat Med
, vol.7
, Issue.5
, pp. 612-618
-
-
Wyss-Coray, T.1
Lin, C.2
Yan, F.3
Yu, G.Q.4
Rohde, M.5
McConlogue, L.6
-
30
-
-
84903610889
-
Astrocytic TGF-beta signaling limits inflammation and reduces neuronal damage during central nervous system toxoplasma infection
-
Cekanaviciute E, Dietrich HK, Axtell RC, Williams AM, Egusquiza R, Wai KM, et al. Astrocytic TGF-beta signaling limits inflammation and reduces neuronal damage during central nervous system toxoplasma infection. J Immunol. 2014;193(1):139-49.
-
(2014)
J Immunol
, vol.193
, Issue.1
, pp. 139-149
-
-
Cekanaviciute, E.1
Dietrich, H.K.2
Axtell, R.C.3
Williams, A.M.4
Egusquiza, R.5
Wai, K.M.6
-
31
-
-
0033900999
-
Chronic overproduction of transforming growth factor-beta1 by astrocytes promotes Alzheimer's disease-like microvascular degeneration in transgenic mice
-
Wyss-Coray T, Lin C, Sanan DA, Mucke L, Masliah E. Chronic overproduction of transforming growth factor-beta1 by astrocytes promotes Alzheimer's disease-like microvascular degeneration in transgenic mice. Am J Pathol. 2000;156(1):139-50.
-
(2000)
Am J Pathol
, vol.156
, Issue.1
, pp. 139-150
-
-
Wyss-Coray, T.1
Lin, C.2
Sanan, D.A.3
Mucke, L.4
Masliah, E.5
-
32
-
-
84969442236
-
Studying human brain inflammation in leptomeningeal and choroid plexus explant cultures.
-
Dragunow M, Feng S, Rustenhoven J, Curtis M, Faull R. Studying human brain inflammation in leptomeningeal and choroid plexus explant cultures. Neurochemi Res. 2015;1-10.
-
(2015)
Neurochemi Res.
, pp. 1-10
-
-
Dragunow, M.1
Feng, S.2
Rustenhoven, J.3
Curtis, M.4
Faull, R.5
-
33
-
-
1542373666
-
Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification
-
Guillemin GJ, Brew BJ. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol. 2004;75(3):388-97.
-
(2004)
J Leukoc Biol
, vol.75
, Issue.3
, pp. 388-397
-
-
Guillemin, G.J.1
Brew, B.J.2
-
34
-
-
78649487239
-
Pericytes are required for blood-brain barrier integrity during embryogenesis
-
Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562-6.
-
(2010)
Nature
, vol.468
, Issue.7323
, pp. 562-566
-
-
Daneman, R.1
Zhou, L.2
Kebede, A.A.3
Barres, B.A.4
-
35
-
-
79961230399
-
Pericytes: developmental, physiological, and pathological perspectives, problems, and promises
-
Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193-215.
-
(2011)
Dev Cell
, vol.21
, Issue.2
, pp. 193-215
-
-
Armulik, A.1
Genove, G.2
Betsholtz, C.3
-
36
-
-
78649467527
-
Pericytes regulate the blood-brain barrier
-
Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557-61.
-
(2010)
Nature
, vol.468
, Issue.7323
, pp. 557-561
-
-
Armulik, A.1
Genove, G.2
Mae, M.3
Nisancioglu, M.H.4
Wallgard, E.5
Niaudet, C.6
-
37
-
-
84904747301
-
A role for human brain pericytes in neuroinflammation
-
Jansson D, Rustenhoven J, Feng S, Hurley D, Oldfield RL, Bergin PS, et al. A role for human brain pericytes in neuroinflammation. J Neuroinflammation. 2014;11(1):104.
-
(2014)
J Neuroinflammation
, vol.11
, Issue.1
, pp. 104
-
-
Jansson, D.1
Rustenhoven, J.2
Feng, S.3
Hurley, D.4
Oldfield, R.L.5
Bergin, P.S.6
-
38
-
-
84894459903
-
Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro.
-
Pieper C, Marek JJ, Unterberg M, Schwerdtle T, Galla HJ. Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res. 2014;1550:1-8.
-
(2014)
Brain Res.
, vol.1550
, pp. 1-8
-
-
Pieper, C.1
Marek, J.J.2
Unterberg, M.3
Schwerdtle, T.4
Galla, H.J.5
-
39
-
-
80053929920
-
Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide
-
Kovac A, Erickson MA, Banks WA. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation. 2011;8:139.
-
(2011)
J Neuroinflammation
, vol.8
, pp. 139
-
-
Kovac, A.1
Erickson, M.A.2
Banks, W.A.3
-
41
-
-
0030250260
-
CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2
-
Balabanov R, Washington R, Wagnerova J, Dore-Duffy P. CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2. Microvasc Res. 1996;52(2):127-42.
-
(1996)
Microvasc Res
, vol.52
, Issue.2
, pp. 127-142
-
-
Balabanov, R.1
Washington, R.2
Wagnerova, J.3
Dore-Duffy, P.4
-
42
-
-
85018201031
-
An anti-inflammatory role for C/EBPdelta in human brain pericytes
-
Rustenhoven J, Scotter EL, Jansson D, Kho DT, Oldfield RL, Bergin PS, et al. An anti-inflammatory role for C/EBPdelta in human brain pericytes. Sci Rep. 2015;5:12132.
-
(2015)
Sci Rep
, vol.5
, pp. 12132
-
-
Rustenhoven, J.1
Scotter, E.L.2
Jansson, D.3
Kho, D.T.4
Oldfield, R.L.5
Bergin, P.S.6
-
43
-
-
84871300122
-
Transforming growth factor beta-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis
-
Wu CF, Chiang WC, Lai CF, Chang FC, Chen YT, Chou YH, et al. Transforming growth factor beta-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol. 2013;182(1):118-31.
-
(2013)
Am J Pathol
, vol.182
, Issue.1
, pp. 118-131
-
-
Wu, C.F.1
Chiang, W.C.2
Lai, C.F.3
Chang, F.C.4
Chen, Y.T.5
Chou, Y.H.6
-
44
-
-
0242509935
-
TGF-beta 1 signaling controls retinal pericyte contractile protein expression
-
Sieczkiewicz GJ, Herman IM. TGF-beta 1 signaling controls retinal pericyte contractile protein expression. Microvasc Res. 2003;66(3):190-6.
-
(2003)
Microvasc Res
, vol.66
, Issue.3
, pp. 190-196
-
-
Sieczkiewicz, G.J.1
Herman, I.M.2
-
45
-
-
34548482697
-
Cellular composition of human glial cultures from adult biopsy brain tissue
-
Gibbons HM, Hughes SM, Van Roon-Mom W, Greenwood JM, Narayan PJ, Teoh HH, et al. Cellular composition of human glial cultures from adult biopsy brain tissue. J Neurosci Methods. 2007;166(1):89-98.
-
(2007)
J Neurosci Methods
, vol.166
, Issue.1
, pp. 89-98
-
-
Gibbons, H.M.1
Hughes, S.M.2
Roon-Mom, W.3
Greenwood, J.M.4
Narayan, P.J.5
Teoh, H.H.6
-
46
-
-
84937215115
-
Pro-inflammatory TNFaα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells
-
O'Carroll SJ, Kho DT, Wiltshire R, Nelson V, Rotimi O, Johnson R, et al. Pro-inflammatory TNFaα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation. 2015;12(1):131.
-
(2015)
J Neuroinflammation
, vol.12
, Issue.1
, pp. 131
-
-
O'Carroll, S.J.1
Kho, D.T.2
Wiltshire, R.3
Nelson, V.4
Rotimi, O.5
Johnson, R.6
-
47
-
-
79953657142
-
Phagocytic clearance in neurodegeneration
-
Sokolowski JD, Mandell JW. Phagocytic clearance in neurodegeneration. Am J Pathol. 2011;178(4):1416-28.
-
(2011)
Am J Pathol
, vol.178
, Issue.4
, pp. 1416-1428
-
-
Sokolowski, J.D.1
Mandell, J.W.2
-
48
-
-
84874650512
-
Amyloid-β-induced astrocytic phagocytosis is mediated by CD36, CD47 and RAGE
-
Jones RS, Minogue AM, Connor TJ, Lynch MA. Amyloid-β-induced astrocytic phagocytosis is mediated by CD36, CD47 and RAGE. J Neuroimmune Pharmacol. 2013;8(1):301-11.
-
(2013)
J Neuroimmune Pharmacol
, vol.8
, Issue.1
, pp. 301-311
-
-
Jones, R.S.1
Minogue, A.M.2
Connor, T.J.3
Lynch, M.A.4
-
49
-
-
0030248270
-
Microglial cells internalize aggregates of the Alzheimer's disease amyloid β-protein via a scavenger receptor
-
Paresce DM, Ghosh RN, Maxfield FR. Microglial cells internalize aggregates of the Alzheimer's disease amyloid β-protein via a scavenger receptor. Neuron. 1996;17(3):553-65.
-
(1996)
Neuron
, vol.17
, Issue.3
, pp. 553-565
-
-
Paresce, D.M.1
Ghosh, R.N.2
Maxfield, F.R.3
-
50
-
-
84904370000
-
Tumor necrosis factor-alpha-stimulated brain pericytes possess a unique cytokine and chemokine release profile and enhance microglial activation.
-
Matsumoto J, Takata F, Machida T, Takahashi H, Soejima Y, Funakoshi M et al. Tumor necrosis factor-alpha-stimulated brain pericytes possess a unique cytokine and chemokine release profile and enhance microglial activation. Neurosci Lett. 2014;578:133-8.
-
(2014)
Neurosci Lett.
, vol.578
, pp. 133-138
-
-
Matsumoto, J.1
Takata, F.2
Machida, T.3
Takahashi, H.4
Soejima, Y.5
Funakoshi, M.6
-
51
-
-
0030964023
-
Interleukin-6 (IL-6)-a molecule with both beneficial and destructive potentials
-
Gadient RA, Otten UH. Interleukin-6 (IL-6)-a molecule with both beneficial and destructive potentials. Prog Neurobiol. 1997;52(5):379-90.
-
(1997)
Prog Neurobiol
, vol.52
, Issue.5
, pp. 379-390
-
-
Gadient, R.A.1
Otten, U.H.2
-
52
-
-
0033557201
-
Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice
-
Penkowa M, Moos T, Carrasco J, Hadberg H, Molinero A, Bluethmann H, et al. Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice. Glia. 1999;25(4):343-57.
-
(1999)
Glia
, vol.25
, Issue.4
, pp. 343-357
-
-
Penkowa, M.1
Moos, T.2
Carrasco, J.3
Hadberg, H.4
Molinero, A.5
Bluethmann, H.6
-
53
-
-
0024466595
-
Interleukin-6 as a neurotrophic factor for promoting the survival of cultured basal forebrain cholinergic neurons from postnatal rats
-
Hama T, Miyamoto M, Tsukui H, Nishio C, Hatanaka H. Interleukin-6 as a neurotrophic factor for promoting the survival of cultured basal forebrain cholinergic neurons from postnatal rats. Neurosci Lett. 1989;104(3):340-4.
-
(1989)
Neurosci Lett
, vol.104
, Issue.3
, pp. 340-344
-
-
Hama, T.1
Miyamoto, M.2
Tsukui, H.3
Nishio, C.4
Hatanaka, H.5
-
54
-
-
21044442392
-
Prostaglandins and cyclooxygenases in glial cells during brain inflammation
-
Tzeng SF, Hsiao HY, Mak OT. Prostaglandins and cyclooxygenases in glial cells during brain inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):335-40.
-
(2005)
Curr Drug Targets Inflamm Allergy
, vol.4
, Issue.3
, pp. 335-340
-
-
Tzeng, S.F.1
Hsiao, H.Y.2
Mak, O.T.3
-
56
-
-
4444333049
-
Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases
-
Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol. 2004;63(9):901-10.
-
(2004)
J Neuropathol Exp Neurol
, vol.63
, Issue.9
, pp. 901-910
-
-
Minghetti, L.1
-
57
-
-
0030044480
-
Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer
-
Liabakk N-B, Talbot I, Smith RA, Wilkinson K, Balkwill F. Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Res. 1996;56(1):190-6.
-
(1996)
Cancer Res
, vol.56
, Issue.1
, pp. 190-196
-
-
Liabakk, N.-B.1
Talbot, I.2
Smith, R.A.3
Wilkinson, K.4
Balkwill, F.5
-
58
-
-
84863230646
-
Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage
-
Liu J, Jin X, Liu KJ, Liu W. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J Neurosci. 2012;32(9):3044-57.
-
(2012)
J Neurosci
, vol.32
, Issue.9
, pp. 3044-3057
-
-
Liu, J.1
Jin, X.2
Liu, K.J.3
Liu, W.4
-
59
-
-
84924623154
-
Focal MMP-2 and MMP-9 activity at the blood-brain barrier promotes chemokine-induced leukocyte migration
-
Song J, Wu C, Korpos E, Zhang X, Agrawal SM, Wang Y, et al. Focal MMP-2 and MMP-9 activity at the blood-brain barrier promotes chemokine-induced leukocyte migration. Cell Rep. 2015;10(7):1040-54.
-
(2015)
Cell Rep
, vol.10
, Issue.7
, pp. 1040-1054
-
-
Song, J.1
Wu, C.2
Korpos, E.3
Zhang, X.4
Agrawal, S.M.5
Wang, Y.6
-
60
-
-
84880917848
-
Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood-brain barrier dysfunction in an animal model of severe sepsis
-
Dal-Pizzol F, Rojas HA, dos Santos EM, Vuolo F, Constantino L, Feier G, et al. Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood-brain barrier dysfunction in an animal model of severe sepsis. Mol Neurobiol. 2013;48(1):62-70.
-
(2013)
Mol Neurobiol
, vol.48
, Issue.1
, pp. 62-70
-
-
Dal-Pizzol, F.1
Rojas, H.A.2
Santos, E.M.3
Vuolo, F.4
Constantino, L.5
Feier, G.6
-
61
-
-
0034765067
-
Glioma cell invasion: regulation of metalloproteinase activity by TGF-β
-
Wick W, Platten M, Weller M. Glioma cell invasion: regulation of metalloproteinase activity by TGF-β. J Neurooncol. 2001;53(2):177-85.
-
(2001)
J Neurooncol
, vol.53
, Issue.2
, pp. 177-185
-
-
Wick, W.1
Platten, M.2
Weller, M.3
-
62
-
-
0033038483
-
Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas
-
Forsyth P, Wong H, Laing T, Rewcastle N, Morris D, Muzik H, et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer. 1999;79(11-12):1828.
-
(1999)
Br J Cancer
, vol.79
, Issue.11-12
, pp. 1828
-
-
Forsyth, P.1
Wong, H.2
Laing, T.3
Rewcastle, N.4
Morris, D.5
Muzik, H.6
-
63
-
-
84872684798
-
TGF-β as a therapeutic target in high grade gliomas-promises and challenges
-
Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA. TGF-β as a therapeutic target in high grade gliomas-promises and challenges. Biochem Pharmacol. 2013;85(4):478-85.
-
(2013)
Biochem Pharmacol
, vol.85
, Issue.4
, pp. 478-485
-
-
Joseph, J.V.1
Balasubramaniyan, V.2
Walenkamp, A.3
Kruyt, F.A.4
-
64
-
-
33745947969
-
Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type II receptor signaling within the aged arterial wall
-
Wang M, Zhao D, Spinetti G, Zhang J, Jiang LQ, Pintus G, et al. Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type II receptor signaling within the aged arterial wall. Arterioscler Thromb Vasc Biol. 2006;26(7):1503-9.
-
(2006)
Arterioscler Thromb Vasc Biol
, vol.26
, Issue.7
, pp. 1503-1509
-
-
Wang, M.1
Zhao, D.2
Spinetti, G.3
Zhang, J.4
Jiang, L.Q.5
Pintus, G.6
-
65
-
-
84916226547
-
p38 MAP kinase mediates transforming-growth factor-beta1-induced upregulation of matrix metalloproteinase-9 but not -2 in human brain pericytes
-
Takahashi Y, Maki T, Liang AC, Itoh K, Lok J, Osumi N, et al. p38 MAP kinase mediates transforming-growth factor-beta1-induced upregulation of matrix metalloproteinase-9 but not -2 in human brain pericytes. Brain Res. 2014;1593:1-8.
-
(2014)
Brain Res
, vol.1593
, pp. 1-8
-
-
Takahashi, Y.1
Maki, T.2
Liang, A.C.3
Itoh, K.4
Lok, J.5
Osumi, N.6
-
66
-
-
33846794822
-
The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology
-
Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245-313.
-
(2007)
Physiol Rev
, vol.87
, Issue.1
, pp. 245-313
-
-
Bedard, K.1
Krause, K.-H.2
-
67
-
-
0037177164
-
Superoxide production and expression of nox family proteins in human atherosclerosis
-
Sorescu D, Weiss D, Lassègue B, Clempus RE, Szöcs K, Sorescu GP, et al. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation. 2002;105(12):1429-35.
-
(2002)
Circulation
, vol.105
, Issue.12
, pp. 1429-1435
-
-
Sorescu, D.1
Weiss, D.2
Lassègue, B.3
Clempus, R.E.4
Szöcs, K.5
Sorescu, G.P.6
-
68
-
-
35649015344
-
NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke
-
Kahles T, Luedike P, Endres M, Galla H-J, Steinmetz H, Busse R, et al. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke. 2007;38(11):3000-6.
-
(2007)
Stroke
, vol.38
, Issue.11
, pp. 3000-3006
-
-
Kahles, T.1
Luedike, P.2
Endres, M.3
Galla, H.-J.4
Steinmetz, H.5
Busse, R.6
-
69
-
-
65249103435
-
Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-aα in cerebral vascular endothelial cells
-
Basuroy S, Bhattacharya S, Leffler CW, Parfenova H. Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-aα in cerebral vascular endothelial cells. Am J Physiol Cell Physiol. 2009;296(3):C422-32.
-
(2009)
Am J Physiol Cell Physiol
, vol.296
, Issue.3
, pp. C422-C432
-
-
Basuroy, S.1
Bhattacharya, S.2
Leffler, C.W.3
Parfenova, H.4
-
70
-
-
9144255403
-
Nox4 as the major catalytic component of an endothelial NAD (P) H oxidase
-
Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, et al. Nox4 as the major catalytic component of an endothelial NAD (P) H oxidase. Circulation. 2004;109(2):227-33.
-
(2004)
Circulation
, vol.109
, Issue.2
, pp. 227-233
-
-
Ago, T.1
Kitazono, T.2
Ooboshi, H.3
Iyama, T.4
Han, Y.H.5
Takada, J.6
-
71
-
-
36048979879
-
Important role of Nox4 type NADPH oxidase in angiogenic responses in human microvascular endothelial cells in vitro
-
Datla SR, Peshavariya H, Dusting GJ, Mahadev K, Goldstein BJ, Jiang F. Important role of Nox4 type NADPH oxidase in angiogenic responses in human microvascular endothelial cells in vitro. Arterioscler Thromb Vasc Biol. 2007;27(11):2319-24.
-
(2007)
Arterioscler Thromb Vasc Biol
, vol.27
, Issue.11
, pp. 2319-2324
-
-
Datla, S.R.1
Peshavariya, H.2
Dusting, G.J.3
Mahadev, K.4
Goldstein, B.J.5
Jiang, F.6
-
72
-
-
1842423370
-
Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells
-
Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK. Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2004;24(4):677-83.
-
(2004)
Arterioscler Thromb Vasc Biol
, vol.24
, Issue.4
, pp. 677-683
-
-
Hilenski, L.L.1
Clempus, R.E.2
Quinn, M.T.3
Lambeth, J.D.4
Griendling, K.K.5
-
73
-
-
33847616048
-
Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype
-
Clempus RE, Sorescu D, Dikalova AE, Pounkova L, Jo P, Sorescu GP, et al. Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol. 2007;27(1):42-8.
-
(2007)
Arterioscler Thromb Vasc Biol
, vol.27
, Issue.1
, pp. 42-48
-
-
Clempus, R.E.1
Sorescu, D.2
Dikalova, A.E.3
Pounkova, L.4
Jo, P.5
Sorescu, G.P.6
-
74
-
-
84924250456
-
Nox4 is a major source of superoxide production in human brain pericytes
-
Kuroda J, Ago T, Nishimura A, Nakamura K, Matsuo R, Wakisaka Y, et al. Nox4 is a major source of superoxide production in human brain pericytes. J Vasc Res. 2014;51(6):429-38.
-
(2014)
J Vasc Res
, vol.51
, Issue.6
, pp. 429-438
-
-
Kuroda, J.1
Ago, T.2
Nishimura, A.3
Nakamura, K.4
Matsuo, R.5
Wakisaka, Y.6
-
75
-
-
0025161990
-
VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site
-
Elices MJ, Osborn L, Takada Y, Crouse C, Luhowskyj S, Hemler ME, et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell. 1990;60(4):577-84.
-
(1990)
Cell
, vol.60
, Issue.4
, pp. 577-584
-
-
Elices, M.J.1
Osborn, L.2
Takada, Y.3
Crouse, C.4
Luhowskyj, S.5
Hemler, M.E.6
-
76
-
-
0028791506
-
Lymphocyte adhesion and transendothelial migration in the central nervous system: the role of LFA-1, ICAM-1, VLA-4 and VCAM-1
-
Greenwood J, Wang Y, Calder V. Lymphocyte adhesion and transendothelial migration in the central nervous system: the role of LFA-1, ICAM-1, VLA-4 and VCAM-1. Immunology. 1995;86(3):408.
-
(1995)
Immunology
, vol.86
, Issue.3
, pp. 408
-
-
Greenwood, J.1
Wang, Y.2
Calder, V.3
-
77
-
-
34548230927
-
Getting to the site of inflammation: the leukocyte adhesion cascade updated
-
Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678-89.
-
(2007)
Nat Rev Immunol
, vol.7
, Issue.9
, pp. 678-689
-
-
Ley, K.1
Laudanna, C.2
Cybulsky, M.I.3
Nourshargh, S.4
-
78
-
-
34249815827
-
Regulation of cell adhesion by affinity and conformational unbending of aα4β1 integrin
-
Chigaev A, Waller A, Zwartz GJ, Buranda T, Sklar LA. Regulation of cell adhesion by affinity and conformational unbending of aα4β1 integrin. J Immunol. 2007;178(11):6828-39.
-
(2007)
J Immunol
, vol.178
, Issue.11
, pp. 6828-6839
-
-
Chigaev, A.1
Waller, A.2
Zwartz, G.J.3
Buranda, T.4
Sklar, L.A.5
-
79
-
-
84871189221
-
Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and 'instruct' them with pattern-recognition and motility programs
-
Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Bruhl ML, et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and 'instruct' them with pattern-recognition and motility programs. Nat Immunol. 2013;14(1):41-51.
-
(2013)
Nat Immunol
, vol.14
, Issue.1
, pp. 41-51
-
-
Stark, K.1
Eckart, A.2
Haidari, S.3
Tirniceriu, A.4
Lorenz, M.5
Bruhl, M.L.6
-
80
-
-
17644363389
-
Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability
-
Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, et al. Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab. 2005;25(5):593-606.
-
(2005)
J Cereb Blood Flow Metab
, vol.25
, Issue.5
, pp. 593-606
-
-
Stamatovic, S.M.1
Shakui, P.2
Keep, R.F.3
Moore, B.B.4
Kunkel, S.L.5
Rooijen, N.6
-
81
-
-
84867819155
-
Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood-brain barrier through paracellular transmigration and ERK activation
-
Sagar D, Lamontagne A, Foss CA, Khan ZK, Pomper MG, Jain P. Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood-brain barrier through paracellular transmigration and ERK activation. J Neuroinflammation. 2012;9:245.
-
(2012)
J Neuroinflammation
, vol.9
, pp. 245
-
-
Sagar, D.1
Lamontagne, A.2
Foss, C.A.3
Khan, Z.K.4
Pomper, M.G.5
Jain, P.6
-
83
-
-
0030723388
-
Identification and molecular characterization of fractalkine receptor CX 3 CR1, which mediates both leukocyte migration and adhesion
-
Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, et al. Identification and molecular characterization of fractalkine receptor CX 3 CR1, which mediates both leukocyte migration and adhesion. Cell. 1997;91(4):521-30.
-
(1997)
Cell
, vol.91
, Issue.4
, pp. 521-530
-
-
Imai, T.1
Hieshima, K.2
Haskell, C.3
Baba, M.4
Nagira, M.5
Nishimura, M.6
-
84
-
-
0034743823
-
Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1
-
Umehara H, Goda S, Imai T, Nagano Y, Minami Y, Tanaka Y, et al. Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunol Cell Biol. 2001;79(3):298-302.
-
(2001)
Immunol Cell Biol
, vol.79
, Issue.3
, pp. 298-302
-
-
Umehara, H.1
Goda, S.2
Imai, T.3
Nagano, Y.4
Minami, Y.5
Tanaka, Y.6
-
85
-
-
0030949298
-
Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation
-
Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo J-A, et al. Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature. 1997;387(6633):611-6.
-
(1997)
Nature
, vol.387
, Issue.6633
, pp. 611-616
-
-
Pan, Y.1
Lloyd, C.2
Zhou, H.3
Dolich, S.4
Deeds, J.5
Gonzalo, J.-A.6
-
86
-
-
0031036347
-
A new class of membrane-bound chemokine with a CX3C motif
-
Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, et al. A new class of membrane-bound chemokine with a CX3C motif. Nature. 1997;385:640-4.
-
(1997)
Nature
, vol.385
, pp. 640-644
-
-
Bazan, J.F.1
Bacon, K.B.2
Hardiman, G.3
Wang, W.4
Soo, K.5
Rossi, D.6
-
87
-
-
0032547581
-
Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow
-
Fong AM, Robinson LA, Steeber DA, Tedder TF, Yoshie O, Imai T, et al. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med. 1998;188(8):1413-9.
-
(1998)
J Exp Med
, vol.188
, Issue.8
, pp. 1413-1419
-
-
Fong, A.M.1
Robinson, L.A.2
Steeber, D.A.3
Tedder, T.F.4
Yoshie, O.5
Imai, T.6
-
88
-
-
33745573660
-
Control of microglial neurotoxicity by the fractalkine receptor
-
Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci. 2006;9(7):917-24.
-
(2006)
Nat Neurosci
, vol.9
, Issue.7
, pp. 917-924
-
-
Cardona, A.E.1
Pioro, E.P.2
Sasse, M.E.3
Kostenko, V.4
Cardona, S.M.5
Dijkstra, I.M.6
-
89
-
-
84897478440
-
Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage
-
Sheridan GK, Murphy KJ. Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol. 2013;3(12):130181.
-
(2013)
Open Biol
, vol.3
, Issue.12
, pp. 130181
-
-
Sheridan, G.K.1
Murphy, K.J.2
-
90
-
-
0032510831
-
Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia?
-
Nishiyori A, Minami M, Ohtani Y, Takami S, Yamamoto J, Kawaguchi N, et al. Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia? FEBS Lett. 1998;429(2):167-72.
-
(1998)
FEBS Lett
, vol.429
, Issue.2
, pp. 167-172
-
-
Nishiyori, A.1
Minami, M.2
Ohtani, Y.3
Takami, S.4
Yamamoto, J.5
Kawaguchi, N.6
-
91
-
-
44949173099
-
Blocking TGF-β-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology
-
Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J, et al. Blocking TGF-β-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med. 2008;14(6):681-7.
-
(2008)
Nat Med
, vol.14
, Issue.6
, pp. 681-687
-
-
Town, T.1
Laouar, Y.2
Pittenger, C.3
Mori, T.4
Szekely, C.A.5
Tan, J.6
-
92
-
-
0142139197
-
FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways.
-
Papetti M, Shujath J, Riley KN, Herman IM. FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways. Invest Ophthalmol Vis Sci. 2003;44(11):4994-5005.
-
(2003)
Invest Ophthalmol Vis Sci.
, vol.44
, Issue.11
, pp. 4994-5005
-
-
Papetti, M.1
Shujath, J.2
Riley, K.N.3
Herman, I.M.4
-
93
-
-
78649716241
-
Transforming growth factor-b1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK-and JNK-NF-kB pathways
-
Hsieh H-L, Wang H-H, Wu W-B, Chu P-J, Yang C-M. Transforming growth factor-b1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK-and JNK-NF-kB pathways. J Neuroinflammation. 2010;7:88.
-
(2010)
J Neuroinflammation
, vol.7
, pp. 88
-
-
Hsieh, H.-L.1
Wang, H.-H.2
Wu, W.-B.3
Chu, P.-J.4
Yang, C.-M.5
-
94
-
-
0030570452
-
NF-κB is induced in the nuclei of cultured rat aortic smooth muscle cells by stimulation of various growth factors
-
Obata H, Biro S, Arima N, Kaieda H, Kihara T, Eto H, et al. NF-κB is induced in the nuclei of cultured rat aortic smooth muscle cells by stimulation of various growth factors. Biochem Biophys Res Commun. 1996;224(1):27-32.
-
(1996)
Biochem Biophys Res Commun
, vol.224
, Issue.1
, pp. 27-32
-
-
Obata, H.1
Biro, S.2
Arima, N.3
Kaieda, H.4
Kihara, T.5
Eto, H.6
-
95
-
-
84973322290
-
Detrimental role of pericyte Nox4 in the acute phase of brain ischemia.
-
0271678X15606456.
-
Nishimura A, Ago T, Kuroda J, Arimura K, Tachibana M, Nakamura K et al. Detrimental role of pericyte Nox4 in the acute phase of brain ischemia. J Cereb Blood Flow Metab. 2015;0271678X15606456.
-
(2015)
J Cereb Blood Flow Metab.
-
-
Nishimura, A.1
Ago, T.2
Kuroda, J.3
Arimura, K.4
Tachibana, M.5
Nakamura, K.6
-
96
-
-
0033407485
-
Brain macrophages: on the role of pericytes and perivascular cells
-
Thomas WE. Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Rev. 1999;31(1):42-57.
-
(1999)
Brain Res Rev
, vol.31
, Issue.1
, pp. 42-57
-
-
Thomas, W.E.1
-
97
-
-
0030764732
-
Amyloidogenic role of cytokine TGF-β1 in transgenic mice and in Alzheimer's disease
-
Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C, et al. Amyloidogenic role of cytokine TGF-β1 in transgenic mice and in Alzheimer's disease. Nature. 1997;389(6651):603-6.
-
(1997)
Nature
, vol.389
, Issue.6651
, pp. 603-606
-
-
Wyss-Coray, T.1
Masliah, E.2
Mallory, M.3
McConlogue, L.4
Johnson-Wood, K.5
Lin, C.6
-
98
-
-
84890576583
-
Pericyte loss influences Alzheimer-like neurodegeneration in mice.
-
Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun. 2013;4.
-
(2013)
Nat Commun.
, vol.4
-
-
Sagare, A.P.1
Bell, R.D.2
Zhao, Z.3
Ma, Q.4
Winkler, E.A.5
Ramanathan, A.6
-
99
-
-
84955153531
-
Isolation of highly enriched primary human microglia for functional studies
-
Rustenhoven J, Park TI, Schweder P, Scotter J, Correia J, Smith AM, et al. Isolation of highly enriched primary human microglia for functional studies. Sci Rep. 2016;6:19371.
-
(2016)
Sci Rep
, vol.6
, pp. 19371
-
-
Rustenhoven, J.1
Park, T.I.2
Schweder, P.3
Scotter, J.4
Correia, J.5
Smith, A.M.6
-
100
-
-
0036847848
-
Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system
-
Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC. Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia. 2002;40(2):195-205.
-
(2002)
Glia
, vol.40
, Issue.2
, pp. 195-205
-
-
Husemann, J.1
Loike, J.D.2
Anankov, R.3
Febbraio, M.4
Silverstein, S.C.5
-
101
-
-
0034122925
-
The role of scavenger receptors in the innate immune system
-
Gough PJ, Gordon S. The role of scavenger receptors in the innate immune system. Microbes Infect. 2000;2(3):305-11.
-
(2000)
Microbes Infect
, vol.2
, Issue.3
, pp. 305-311
-
-
Gough, P.J.1
Gordon, S.2
-
102
-
-
7744235869
-
Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism
-
Koenigsknecht J, Landreth G. Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism. J Neurosci. 2004;24(44):9838-46.
-
(2004)
J Neurosci
, vol.24
, Issue.44
, pp. 9838-9846
-
-
Koenigsknecht, J.1
Landreth, G.2
-
103
-
-
0037387147
-
A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation
-
Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci. 2003;23(7):2665-74.
-
(2003)
J Neurosci
, vol.23
, Issue.7
, pp. 2665-2674
-
-
Bamberger, M.E.1
Harris, M.E.2
McDonald, D.R.3
Husemann, J.4
Landreth, G.E.5
-
104
-
-
0034014222
-
TGF-β1 downregulates CD36 and scavenger receptor A but upregulates LOX-1 in human macrophages
-
Draude G, Lorenz RL. TGF-β1 downregulates CD36 and scavenger receptor A but upregulates LOX-1 in human macrophages. Am J Physiol Heart Circ Physiol. 2000;278(4):H1042-8.
-
(2000)
Am J Physiol Heart Circ Physiol
, vol.278
, Issue.4
, pp. H1042-H1048
-
-
Draude, G.1
Lorenz, R.L.2
-
105
-
-
0033968252
-
Transforming growth factor-β1 (TGF-β1) and TGF-β2 decrease expression of CD36, the type B scavenger receptor, through mitogen-activated protein kinase phosphorylation of peroxisome proliferator-activated receptor-γ
-
Han J, Hajjar DP, Tauras JM, Feng J, Gotto AM, Nicholson AC. Transforming growth factor-β1 (TGF-β1) and TGF-β2 decrease expression of CD36, the type B scavenger receptor, through mitogen-activated protein kinase phosphorylation of peroxisome proliferator-activated receptor-γ. J Biol Chem. 2000;275(2):1241-6.
-
(2000)
J Biol Chem
, vol.275
, Issue.2
, pp. 1241-1246
-
-
Han, J.1
Hajjar, D.P.2
Tauras, J.M.3
Feng, J.4
Gotto, A.M.5
Nicholson, A.C.6
-
106
-
-
84903159199
-
Nox4 and redox signaling mediate TGF-beta-induced endothelial cell apoptosis and phenotypic switch
-
Yan F, Wang Y, Wu X, Peshavariya HM, Dusting GJ, Zhang M, et al. Nox4 and redox signaling mediate TGF-beta-induced endothelial cell apoptosis and phenotypic switch. Cell Death Dis. 2014;5, e1010.
-
(2014)
Cell Death Dis
, vol.5
-
-
Yan, F.1
Wang, Y.2
Wu, X.3
Peshavariya, H.M.4
Dusting, G.J.5
Zhang, M.6
-
107
-
-
84938096217
-
TGFβ1 exacerbates blood-brain barrier permeability in a mouse model of hepatic encephalopathy via upregulation of MMP9 and downregulation of claudin-5.
-
McMillin MA, Frampton GA, Seiwell AP, Patel NS, Jacobs AN, DeMorrow S. TGFβ1 exacerbates blood-brain barrier permeability in a mouse model of hepatic encephalopathy via upregulation of MMP9 and downregulation of claudin-5. Lab Investig. 2015.
-
(2015)
Lab Investig.
-
-
McMillin, M.A.1
Frampton, G.A.2
Seiwell, A.P.3
Patel, N.S.4
Jacobs, A.N.5
DeMorrow, S.6
-
108
-
-
84924110689
-
TGF-β1 prevents blood-brain barrier damage and hemorrhagic transformation after thrombolysis in rats
-
Cai Y, Liu X, Chen W, Wang Z, Xu G, Zeng Y, et al. TGF-β1 prevents blood-brain barrier damage and hemorrhagic transformation after thrombolysis in rats. Exp Neurol. 2015;266:120-6.
-
(2015)
Exp Neurol
, vol.266
, pp. 120-126
-
-
Cai, Y.1
Liu, X.2
Chen, W.3
Wang, Z.4
Xu, G.5
Zeng, Y.6
|