-
1
-
-
84875755046
-
Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth
-
Cheng L, Huang Z, Zhou W, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153:139-152.
-
(2013)
Cell
, vol.153
, pp. 139-152
-
-
Cheng, L.1
Huang, Z.2
Zhou, W.3
-
3
-
-
84919459280
-
Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells
-
Guichet PO, Guelfi S, Teigell M, et al. Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells. Stem Cells. 2015;33:21-34.
-
(2015)
Stem Cells
, vol.33
, pp. 21-34
-
-
Guichet, P.O.1
Guelfi, S.2
Teigell, M.3
-
4
-
-
0022567611
-
The pericyte - A review
-
Sims DE. The pericyte - a review. Tissue Cell. 1986;18:153-174.
-
(1986)
Tissue Cell
, vol.18
, pp. 153-174
-
-
Sims, D.E.1
-
5
-
-
0033807429
-
Diversity within pericytes
-
Sims DE. Diversity within pericytes. Clin Exp Pharmacol Physiol. 2000; 27:842-846.
-
(2000)
Clin Exp Pharmacol Physiol
, vol.27
, pp. 842-846
-
-
Sims, D.E.1
-
6
-
-
84906054311
-
Human pathological basis of blood vessels and stromal tissue for nanotechnology
-
Nishihara H. Human pathological basis of blood vessels and stromal tissue for nanotechnology. Adv Drug Deliv Rev. 2014;74:19-27.
-
(2014)
Adv Drug Deliv Rev
, vol.74
, pp. 19-27
-
-
Nishihara, H.1
-
7
-
-
84901047040
-
Targeting pericytes for angiogenic therapies
-
Kelly-Goss MR, Sweat RS, Stapor PC, Peirce SM, Murfee WL. Targeting pericytes for angiogenic therapies. Microcirculation. 2014;21:345-357.
-
(2014)
Microcirculation
, vol.21
, pp. 345-357
-
-
Kelly-Goss, M.R.1
Sweat, R.S.2
Stapor, P.C.3
Peirce, S.M.4
Murfee, W.L.5
-
8
-
-
84855280109
-
Tumor angiogenesis: Pericytes and maturation are not to be ignored
-
Fakhrejahani E, Toi M. Tumor angiogenesis: pericytes and maturation are not to be ignored. J Oncol. 2012;2012:261750.
-
(2012)
J Oncol
, vol.2012
, pp. 261750
-
-
Fakhrejahani, E.1
Toi, M.2
-
10
-
-
84921644961
-
Human myocardial pericytes: Multipotent mesodermal precursors exhibiting cardiac specificity
-
Chen WC, Baily JE, Corselli M, et al. Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells. 2015;33:557-573.
-
(2015)
Stem Cells
, vol.33
, pp. 557-573
-
-
Chen, W.C.1
Baily, J.E.2
Corselli, M.3
-
11
-
-
12844255716
-
Regulator of g-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization
-
Berger M, Bergers G, Arnold B, Hämmerling GJ, Ganss R. Regulator of g-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood. 2005;105: 1094-1101.
-
(2005)
Blood
, vol.105
, pp. 1094-1101
-
-
Berger, M.1
Bergers, G.2
Arnold, B.3
Hämmerling, G.J.4
Ganss, R.5
-
12
-
-
84871235918
-
Adventitial pericyte progenitor/mesenchymal stem cells participate in the restenotic response to arterial injury
-
Tigges U, Komatsu M, Stallcup WB. Adventitial pericyte progenitor/mesenchymal stem cells participate in the restenotic response to arterial injury. J Vasc Res. 2013;50:134-144.
-
(2013)
J Vasc Res
, vol.50
, pp. 134-144
-
-
Tigges, U.1
Komatsu, M.2
Stallcup, W.B.3
-
13
-
-
0033944791
-
Pericyte migration from the vascular wall in response to traumatic brain injury
-
Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res. 2000;60:55-69.
-
(2000)
Microvasc Res
, vol.60
, pp. 55-69
-
-
Dore-Duffy, P.1
Owen, C.2
Balabanov, R.3
Murphy, S.4
Beaumont, T.5
Rafols, J.A.6
-
14
-
-
33744537149
-
Mechanisms of controlled drug release from drug-eluting stents
-
Acharya G, Park K. Mechanisms of controlled drug release from drug-eluting stents. Adv Drug Deliv Rev. 2006;58:387-401.
-
(2006)
Adv Drug Deliv Rev
, vol.58
, pp. 387-401
-
-
Acharya, G.1
Park, K.2
-
15
-
-
0027319870
-
Pericyte physiology
-
Shepro D, Morel NM. Pericyte physiology. FASEB J. 1993;7: 1031-1038.
-
(1993)
FASEB J
, vol.7
, pp. 1031-1038
-
-
Shepro, D.1
Morel, N.M.2
-
16
-
-
84941695242
-
Engineering of a biomimetic pericyte-covered 3D microvascular network
-
Kim J, Chung M, Kim S, Jo DH, Kim JH, Jeon NL. Engineering of a biomimetic pericyte-covered 3D microvascular network. PLoS One. 2015;10:e0133880.
-
(2015)
Plos One
, vol.10
-
-
Kim, J.1
Chung, M.2
Kim, S.3
Jo, D.H.4
Kim, J.H.5
Jeon, N.L.6
-
17
-
-
84883252881
-
Paracrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel
-
Andrejecsk JW, Cui J, Chang WG, Devalliere J, Pober JS, Saltzman WM. Paracrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel. Biomaterials. 2013;34:8899-8908.
-
(2013)
Biomaterials
, vol.34
, pp. 8899-8908
-
-
Andrejecsk, J.W.1
Cui, J.2
Chang, W.G.3
Devalliere, J.4
Pober, J.S.5
Saltzman, W.M.6
-
18
-
-
84892805789
-
Recruitment and retention: Factors that affect pericyte migration
-
Aguilera KY, Brekken RA. Recruitment and retention: factors that affect pericyte migration. Cell Mol Life Sci. 2014;71:299-309.
-
(2014)
Cell Mol Life Sci
, vol.71
, pp. 299-309
-
-
Aguilera, K.Y.1
Brekken, R.A.2
-
19
-
-
34250678411
-
Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing
-
Rajkumar VS, Shiwen X, Bostrom M, et al. Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol. 2006; 169:2254-2265.
-
(2006)
Am J Pathol
, vol.169
, pp. 2254-2265
-
-
Rajkumar, V.S.1
Shiwen, X.2
Bostrom, M.3
-
20
-
-
78649455280
-
Endothelial-derived Pdgf-Bb and Hb-Egf coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization
-
Stratman AN, Schwindt AE, Malotte KM, Davis GE. Endothelial-derived Pdgf-Bb and Hb-Egf coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood. 2010; 116:4720-4730.
-
(2010)
Blood
, vol.116
, pp. 4720-4730
-
-
Stratman, A.N.1
Schwindt, A.E.2
Malotte, K.M.3
Davis, G.E.4
-
21
-
-
0035854589
-
Adenosine activates Atp-sensitive K(+) currents in pericytes of rat retinal microvessels: Role of A1 and A2a receptors
-
Li Q, Puro DG. Adenosine activates Atp-sensitive K(+) currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors. Brain Res. 2001;907:93-99.
-
(2001)
Brain Res
, vol.907
, pp. 93-99
-
-
Li, Q.1
Puro, D.G.2
-
22
-
-
0030723250
-
Evidence for the presence of smooth muscle alpha-actin within pericytes of the renal medulla
-
Park F, Mattson DL, Roberts LA, Cowley AW Jr. Evidence for the presence of smooth muscle alpha-actin within pericytes of the renal medulla. Am J Physiol. 1997;273:R1742-R1748.
-
(1997)
Am J Physiol
, vol.273
-
-
Park, F.1
Mattson, D.L.2
Roberts, L.A.3
Cowley, A.W.4
-
23
-
-
0024593484
-
Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes
-
Skalli O, Pelte MF, Peclet MC, et al. Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem. 1989;37: 315-321.
-
(1989)
J Histochem Cytochem
, vol.37
, pp. 315-321
-
-
Skalli, O.1
Pelte, M.F.2
Peclet, M.C.3
-
24
-
-
3042610072
-
Desmin-positive pericytes in the chick embryo chorioallantoic membrane in response to fibroblast growth factor-2
-
Nico B, Ennas MG, Crivellato E, et al. Desmin-positive pericytes in the chick embryo chorioallantoic membrane in response to fibroblast growth factor-2. Microvasc Res. 2004;68:13-19.
-
(2004)
Microvasc Res
, vol.68
, pp. 13-19
-
-
Nico, B.1
Ennas, M.G.2
Crivellato, E.3
-
25
-
-
84958523857
-
NG2 Proteoglycan-dependent contributions of pericytes and macrophages to brain tumor vascularization and progression
-
Stallcup WB, You WK, Kucharova K, Cejudo-Martin P, Yotsumoto F. NG2 Proteoglycan-dependent contributions of pericytes and macrophages to brain tumor vascularization and progression. Microcirculation. 2016;23(2):122-133.
-
(2016)
Microcirculation
, vol.23
, Issue.2
, pp. 122-133
-
-
Stallcup, W.B.1
You, W.K.2
Kucharova, K.3
Cejudo-Martin, P.4
Yotsumoto, F.5
-
26
-
-
12444253931
-
Pathological angiogenesis is reduced by targeting pericytes via the Ng2 proteoglycan
-
Ozerdem U, Stallcup WB. Pathological angiogenesis is reduced by targeting pericytes via the Ng2 proteoglycan. Angiogenesis. 2004;7: 269-276.
-
(2004)
Angiogenesis
, vol.7
, pp. 269-276
-
-
Ozerdem, U.1
Stallcup, W.B.2
-
27
-
-
0033230207
-
Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N, aminopeptidase a, and nestin
-
Alliot F, Rutin J, Leenen PJ, Pessac B. Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N, aminopeptidase a, and nestin. J Neurosci Res. 1999;58:367-378.
-
(1999)
J Neurosci Res
, vol.58
, pp. 367-378
-
-
Alliot, F.1
Rutin, J.2
Leenen, P.J.3
Pessac, B.4
-
28
-
-
0029793759
-
Aminopeptidase a is a constituent of activated pericytes in angiogenesis
-
Schlingemann RO, Oosterwijk E, Wesseling P, Rietveld FJ, Ruiter DJ. Aminopeptidase a is a constituent of activated pericytes in angiogenesis. J Pathol. 1996;179:436-442.
-
(1996)
J Pathol
, vol.179
, pp. 436-442
-
-
Schlingemann, R.O.1
Oosterwijk, E.2
Wesseling, P.3
Rietveld, F.J.4
Ruiter, D.J.5
-
29
-
-
33847635618
-
Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of Tgf-beta signaling
-
Kano MR, Bae Y, Iwata C, et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of Tgf-beta signaling. Proc Natl Acad Sci U S A. 2007;104:3460-3465.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 3460-3465
-
-
Kano, M.R.1
Bae, Y.2
Iwata, C.3
-
30
-
-
84879940905
-
Tumor angiogenesis: A new source of pericytes
-
Liu AY, Ouyang G. Tumor angiogenesis: a new source of pericytes. Curr Biol. 2013;23:R565-R568.
-
(2013)
Curr Biol
, vol.23
, pp. R565-R568
-
-
Liu, A.Y.1
Ouyang, G.2
-
31
-
-
84922308838
-
Matrix metalloproteinase-14 both sheds cell surface neuronal glial antigen 2 (NG2) proteoglycan on macrophages and governs the response to peripheral nerve injury
-
Nishihara T, Remacle AG, Angert M, et al. Matrix metalloproteinase-14 both sheds cell surface neuronal glial antigen 2 (NG2) proteoglycan on macrophages and governs the response to peripheral nerve injury. J Biol Chem. 2015;290:3693-3707.
-
(2015)
J Biol Chem
, vol.290
, pp. 3693-3707
-
-
Nishihara, T.1
Remacle, A.G.2
Angert, M.3
-
32
-
-
84861205310
-
Pericyte-coverage of human tumor vasculature and nanoparticle permeability
-
Zhang L, Nishihara H, Kano MR. Pericyte-coverage of human tumor vasculature and nanoparticle permeability. Biol Pharm Bull. 2012; 35:761-766.
-
(2012)
Biol Pharm Bull
, vol.35
, pp. 761-766
-
-
Zhang, L.1
Nishihara, H.2
Kano, M.R.3
-
33
-
-
0035297541
-
Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors
-
Pietras K, Ostman A, Sjoquist M, et al. Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res. 2001;61: 2929-2934.
-
(2001)
Cancer Res
, vol.61
, pp. 2929-2934
-
-
Pietras, K.1
Ostman, A.2
Sjoquist, M.3
-
34
-
-
0036790060
-
Inhibition of Pdgf receptor signaling in tumor stroma enhances antitumor effect of chemotherapy
-
Pietras K, Rubin K, Sjoblom T, et al. Inhibition of Pdgf receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res. 2002;62:5476-5484.
-
(2002)
Cancer Res
, vol.62
, pp. 5476-5484
-
-
Pietras, K.1
Rubin, K.2
Sjoblom, T.3
-
36
-
-
84934292399
-
Towards personalized medicine: Chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform
-
Ruppen J, Wildhaber FD, Strub C, et al. Towards personalized medicine: chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform. Lab Chip. 2015;15:3076-3085.
-
(2015)
Lab Chip
, vol.15
, pp. 3076-3085
-
-
Ruppen, J.1
Wildhaber, F.D.2
Strub, C.3
-
37
-
-
77953357460
-
Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma
-
Loi M, Marchio S, Becherini P, et al. Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma. J Control Release. 2010; 145:66-73.
-
(2010)
J Control Release
, vol.145
, pp. 66-73
-
-
Loi, M.1
Marchio, S.2
Becherini, P.3
-
38
-
-
84895022848
-
Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis
-
Guan YY, Luan X, Xu JR, et al. Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis. Biomaterials. 2014;35:3060-3070.
-
(2014)
Biomaterials
, vol.35
, pp. 3060-3070
-
-
Guan, Y.Y.1
Luan, X.2
Xu, J.R.3
-
39
-
-
77953958904
-
A novel approach to deliver anticancer drugs to key cell types in tumors using a Pdgf receptor-binding cyclic peptide containing carrier
-
Prakash J, de Jong E, Post E, Gouw AS, Beljaars L, Poelstra K. A novel approach to deliver anticancer drugs to key cell types in tumors using a Pdgf receptor-binding cyclic peptide containing carrier. J Control Release. 2010;145:91-101.
-
(2010)
J Control Release
, vol.145
, pp. 91-101
-
-
Prakash, J.1
De Jong, E.2
Post, E.3
Gouw, A.S.4
Beljaars, L.5
Poelstra, K.6
-
40
-
-
80052164636
-
Targeting tumor stromal cells through a PDGF-beta receptor binding carrier
-
Prakash J, de Jong E, Post E, Mohammad AK, Beljaars L, Poelstra K. Targeting tumor stromal cells through a PDGF-beta receptor binding carrier. J Control Release. 2010;148:e116.
-
(2010)
J Control Release
, vol.148
-
-
Prakash, J.1
De Jong, E.2
Post, E.3
Mohammad, A.K.4
Beljaars, L.5
Poelstra, K.6
-
41
-
-
80053066716
-
Effects of the histone deacetylase inhibitor valproic acid on human pericytes in vitro
-
Karen J, Rodriguez A, Friman T, Dencker L, Sundberg C, Scholz B. Effects of the histone deacetylase inhibitor valproic acid on human pericytes in vitro. PLoS One. 2011;6:e24954.
-
(2011)
Plos One
, vol.6
-
-
Karen, J.1
Rodriguez, A.2
Friman, T.3
Dencker, L.4
Sundberg, C.5
Scholz, B.6
-
42
-
-
77749279762
-
Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of Pdgfrbeta/B-Raf
-
Murphy EA, Shields DJ, Stoletov K, et al. Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of Pdgfrbeta/B-Raf. Proc Natl Acad Sci U S A. 2010;107: 4299-4304.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 4299-4304
-
-
Murphy, E.A.1
Shields, D.J.2
Stoletov, K.3
-
43
-
-
84884171117
-
Imatinib tackles lymphoma via the PDGFRβ+ pericyte
-
Chute JP, Himburg HA. Imatinib tackles lymphoma via the PDGFRβ+ pericyte. Blood. 2013;121:5107-5108.
-
(2013)
Blood
, vol.121
, pp. 5107-5108
-
-
Chute, J.P.1
Himburg, H.A.2
-
45
-
-
84871392869
-
Targeting olfactomedin-like 3 inhibits tumor growth by impairing angiogenesis and pericyte coverage
-
Miljkovic-Licina M, Hammel P, Garrido-Urbani S, et al. Targeting olfactomedin-like 3 inhibits tumor growth by impairing angiogenesis and pericyte coverage. Mol Cancer Ther. 2012;11:2588-2599.
-
(2012)
Mol Cancer Ther
, vol.11
, pp. 2588-2599
-
-
Miljkovic-Licina, M.1
Hammel, P.2
Garrido-Urbani, S.3
-
46
-
-
0038476608
-
Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors
-
Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest. 2003;111:1287-1295.
-
(2003)
J Clin Invest
, vol.111
, pp. 1287-1295
-
-
Bergers, G.1
Song, S.2
Meyer-Morse, N.3
Bergsland, E.4
Hanahan, D.5
-
47
-
-
66249101249
-
Cellular source and amount of vascular endothelial growth factor and platelet-derived growth factor in tumors determine response to angiogenesis inhibitors
-
Sennino B, Kuhnert F, Tabruyn SP, et al. Cellular source and amount of vascular endothelial growth factor and platelet-derived growth factor in tumors determine response to angiogenesis inhibitors. Cancer Res. 2009;69:4527-4536.
-
(2009)
Cancer Res
, vol.69
, pp. 4527-4536
-
-
Sennino, B.1
Kuhnert, F.2
Tabruyn, S.P.3
-
48
-
-
77953604802
-
Targeting pericytes with a Pdgf-B aptamer in human ovarian carcinoma models
-
Lu C, Shahzad MM, Moreno-Smith M, et al. Targeting pericytes with a Pdgf-B aptamer in human ovarian carcinoma models. Cancer Biol Ther. 2010;9:176-182.
-
(2010)
Cancer Biol Ther
, vol.9
, pp. 176-182
-
-
Lu, C.1
Shahzad, M.M.2
Moreno-Smith, M.3
-
49
-
-
84954509044
-
VEGF-induced expression of mir-17-92 cluster in endothelial cells is mediated by ERK/ELK1 activation and regulates angiogenesis
-
Chamorro-Jorganes A, Lee MY, Araldi E, et al. VEGF-induced expression of mir-17-92 cluster in endothelial cells is mediated by ERK/ELK1 activation and regulates angiogenesis. Circ Res. 2016;118(1):38-47.
-
(2016)
Circ Res
, vol.118
, Issue.1
, pp. 38-47
-
-
Chamorro-Jorganes, A.1
Lee, M.Y.2
Araldi, E.3
-
50
-
-
84946206105
-
Inhibition of the Vegf/Vegfr pathway improves survival in advanced kidney cancer: A systematic review and meta-analysis
-
Iacovelli R, Sternberg CN, Porta C, et al. Inhibition of the Vegf/Vegfr pathway improves survival in advanced kidney cancer: a systematic review and meta-analysis. Curr Drug Targets. 2015;16:164-170.
-
(2015)
Curr Drug Targets
, vol.16
, pp. 164-170
-
-
Iacovelli, R.1
Sternberg, C.N.2
Porta, C.3
-
52
-
-
84876704168
-
Engineering of functional, perfusable 3D microvascular networks on a chip
-
Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip. 2013;13:1489-1500.
-
(2013)
Lab Chip
, vol.13
, pp. 1489-1500
-
-
Kim, S.1
Lee, H.2
Chung, M.3
Jeon, N.L.4
-
53
-
-
77956182567
-
Pericyte-based human tissue engineered vascular grafts
-
He W, Nieponice A, Soletti L, et al. Pericyte-based human tissue engineered vascular grafts. Biomaterials. 2010;31:8235-8244.
-
(2010)
Biomaterials
, vol.31
, pp. 8235-8244
-
-
He, W.1
Nieponice, A.2
Soletti, L.3
-
54
-
-
84904280973
-
3D Hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering
-
Fuoco C, Sangalli E, Vono R, et al. 3D Hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering. Front Physiol. 2014;5:203.
-
(2014)
Front Physiol
, vol.5
, pp. 203
-
-
Fuoco, C.1
Sangalli, E.2
Vono, R.3
-
55
-
-
84864053203
-
Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs
-
Mendes LF, Pirraco RP, Szymczyk W, et al. Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs. PLoS One. 2012;7:e41051.
-
(2012)
Plos One
, vol.7
-
-
Mendes, L.F.1
Pirraco, R.P.2
Szymczyk, W.3
-
56
-
-
78049427358
-
Covalently immobilized platelet-derived growth factor-Bb promotes angiogenesis in biomimetic poly(Ethylene glycol) hydrogels
-
Saik JE, Gould DJ, Watkins EM, Dickinson ME, West JL. Covalently immobilized platelet-derived growth factor-Bb promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta Biomater. 2011;7: 133-143.
-
(2011)
Acta Biomater
, vol.7
, pp. 133-143
-
-
Saik, J.E.1
Gould, D.J.2
Watkins, E.M.3
Dickinson, M.E.4
West, J.L.5
|