메뉴 건너뛰기




Volumn 11, Issue , 2016, Pages 2397-2406

Pericyte-targeting drug delivery and tissue engineering

Author keywords

Angiogenesis; Pericyte targeting drug delivery; Pericytes; Platelet derived growth factor; Tissue engineering; Vascular remodeling

Indexed keywords

ALPHA SMOOTH MUSCLE ACTIN; B RAF KINASE; BEVACIZUMAB; BONE MORPHOGENETIC PROTEIN 4; CD146 ANTIGEN; CD31 ANTIGEN; COLLAGEN TYPE 1; DESMIN; GLUTAMYL AMINOPEPTIDASE; IMATINIB; MICROSOMAL AMINOPEPTIDASE; MYOSIN; PLATELET DERIVED GROWTH FACTOR ALPHA RECEPTOR; PLATELET DERIVED GROWTH FACTOR BB; PLATELET DERIVED GROWTH FACTOR BETA RECEPTOR; PROTEIN TYROSINE KINASE INHIBITOR; RGS PROTEIN; RGS5 PROTEIN; SU 668; TRANSFORMING GROWTH FACTOR BETA; UNCLASSIFIED DRUG; VASCULOTROPIN RECEPTOR; ANTINEOPLASTIC AGENT; PEPTIDE;

EID: 84971574776     PISSN: 11769114     EISSN: 11782013     Source Type: Journal    
DOI: 10.2147/IJN.S105274     Document Type: Review
Times cited : (23)

References (56)
  • 1
    • 84875755046 scopus 로고    scopus 로고
    • Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth
    • Cheng L, Huang Z, Zhou W, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153:139-152.
    • (2013) Cell , vol.153 , pp. 139-152
    • Cheng, L.1    Huang, Z.2    Zhou, W.3
  • 3
    • 84919459280 scopus 로고    scopus 로고
    • Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells
    • Guichet PO, Guelfi S, Teigell M, et al. Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells. Stem Cells. 2015;33:21-34.
    • (2015) Stem Cells , vol.33 , pp. 21-34
    • Guichet, P.O.1    Guelfi, S.2    Teigell, M.3
  • 4
    • 0022567611 scopus 로고
    • The pericyte - A review
    • Sims DE. The pericyte - a review. Tissue Cell. 1986;18:153-174.
    • (1986) Tissue Cell , vol.18 , pp. 153-174
    • Sims, D.E.1
  • 5
    • 0033807429 scopus 로고    scopus 로고
    • Diversity within pericytes
    • Sims DE. Diversity within pericytes. Clin Exp Pharmacol Physiol. 2000; 27:842-846.
    • (2000) Clin Exp Pharmacol Physiol , vol.27 , pp. 842-846
    • Sims, D.E.1
  • 6
    • 84906054311 scopus 로고    scopus 로고
    • Human pathological basis of blood vessels and stromal tissue for nanotechnology
    • Nishihara H. Human pathological basis of blood vessels and stromal tissue for nanotechnology. Adv Drug Deliv Rev. 2014;74:19-27.
    • (2014) Adv Drug Deliv Rev , vol.74 , pp. 19-27
    • Nishihara, H.1
  • 8
    • 84855280109 scopus 로고    scopus 로고
    • Tumor angiogenesis: Pericytes and maturation are not to be ignored
    • Fakhrejahani E, Toi M. Tumor angiogenesis: pericytes and maturation are not to be ignored. J Oncol. 2012;2012:261750.
    • (2012) J Oncol , vol.2012 , pp. 261750
    • Fakhrejahani, E.1    Toi, M.2
  • 10
    • 84921644961 scopus 로고    scopus 로고
    • Human myocardial pericytes: Multipotent mesodermal precursors exhibiting cardiac specificity
    • Chen WC, Baily JE, Corselli M, et al. Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells. 2015;33:557-573.
    • (2015) Stem Cells , vol.33 , pp. 557-573
    • Chen, W.C.1    Baily, J.E.2    Corselli, M.3
  • 11
    • 12844255716 scopus 로고    scopus 로고
    • Regulator of g-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization
    • Berger M, Bergers G, Arnold B, Hämmerling GJ, Ganss R. Regulator of g-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood. 2005;105: 1094-1101.
    • (2005) Blood , vol.105 , pp. 1094-1101
    • Berger, M.1    Bergers, G.2    Arnold, B.3    Hämmerling, G.J.4    Ganss, R.5
  • 12
    • 84871235918 scopus 로고    scopus 로고
    • Adventitial pericyte progenitor/mesenchymal stem cells participate in the restenotic response to arterial injury
    • Tigges U, Komatsu M, Stallcup WB. Adventitial pericyte progenitor/mesenchymal stem cells participate in the restenotic response to arterial injury. J Vasc Res. 2013;50:134-144.
    • (2013) J Vasc Res , vol.50 , pp. 134-144
    • Tigges, U.1    Komatsu, M.2    Stallcup, W.B.3
  • 14
    • 33744537149 scopus 로고    scopus 로고
    • Mechanisms of controlled drug release from drug-eluting stents
    • Acharya G, Park K. Mechanisms of controlled drug release from drug-eluting stents. Adv Drug Deliv Rev. 2006;58:387-401.
    • (2006) Adv Drug Deliv Rev , vol.58 , pp. 387-401
    • Acharya, G.1    Park, K.2
  • 15
    • 0027319870 scopus 로고
    • Pericyte physiology
    • Shepro D, Morel NM. Pericyte physiology. FASEB J. 1993;7: 1031-1038.
    • (1993) FASEB J , vol.7 , pp. 1031-1038
    • Shepro, D.1    Morel, N.M.2
  • 16
    • 84941695242 scopus 로고    scopus 로고
    • Engineering of a biomimetic pericyte-covered 3D microvascular network
    • Kim J, Chung M, Kim S, Jo DH, Kim JH, Jeon NL. Engineering of a biomimetic pericyte-covered 3D microvascular network. PLoS One. 2015;10:e0133880.
    • (2015) Plos One , vol.10
    • Kim, J.1    Chung, M.2    Kim, S.3    Jo, D.H.4    Kim, J.H.5    Jeon, N.L.6
  • 17
    • 84883252881 scopus 로고    scopus 로고
    • Paracrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel
    • Andrejecsk JW, Cui J, Chang WG, Devalliere J, Pober JS, Saltzman WM. Paracrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel. Biomaterials. 2013;34:8899-8908.
    • (2013) Biomaterials , vol.34 , pp. 8899-8908
    • Andrejecsk, J.W.1    Cui, J.2    Chang, W.G.3    Devalliere, J.4    Pober, J.S.5    Saltzman, W.M.6
  • 18
    • 84892805789 scopus 로고    scopus 로고
    • Recruitment and retention: Factors that affect pericyte migration
    • Aguilera KY, Brekken RA. Recruitment and retention: factors that affect pericyte migration. Cell Mol Life Sci. 2014;71:299-309.
    • (2014) Cell Mol Life Sci , vol.71 , pp. 299-309
    • Aguilera, K.Y.1    Brekken, R.A.2
  • 19
    • 34250678411 scopus 로고    scopus 로고
    • Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing
    • Rajkumar VS, Shiwen X, Bostrom M, et al. Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol. 2006; 169:2254-2265.
    • (2006) Am J Pathol , vol.169 , pp. 2254-2265
    • Rajkumar, V.S.1    Shiwen, X.2    Bostrom, M.3
  • 20
    • 78649455280 scopus 로고    scopus 로고
    • Endothelial-derived Pdgf-Bb and Hb-Egf coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization
    • Stratman AN, Schwindt AE, Malotte KM, Davis GE. Endothelial-derived Pdgf-Bb and Hb-Egf coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood. 2010; 116:4720-4730.
    • (2010) Blood , vol.116 , pp. 4720-4730
    • Stratman, A.N.1    Schwindt, A.E.2    Malotte, K.M.3    Davis, G.E.4
  • 21
    • 0035854589 scopus 로고    scopus 로고
    • Adenosine activates Atp-sensitive K(+) currents in pericytes of rat retinal microvessels: Role of A1 and A2a receptors
    • Li Q, Puro DG. Adenosine activates Atp-sensitive K(+) currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors. Brain Res. 2001;907:93-99.
    • (2001) Brain Res , vol.907 , pp. 93-99
    • Li, Q.1    Puro, D.G.2
  • 22
    • 0030723250 scopus 로고    scopus 로고
    • Evidence for the presence of smooth muscle alpha-actin within pericytes of the renal medulla
    • Park F, Mattson DL, Roberts LA, Cowley AW Jr. Evidence for the presence of smooth muscle alpha-actin within pericytes of the renal medulla. Am J Physiol. 1997;273:R1742-R1748.
    • (1997) Am J Physiol , vol.273
    • Park, F.1    Mattson, D.L.2    Roberts, L.A.3    Cowley, A.W.4
  • 23
    • 0024593484 scopus 로고
    • Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes
    • Skalli O, Pelte MF, Peclet MC, et al. Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem. 1989;37: 315-321.
    • (1989) J Histochem Cytochem , vol.37 , pp. 315-321
    • Skalli, O.1    Pelte, M.F.2    Peclet, M.C.3
  • 24
    • 3042610072 scopus 로고    scopus 로고
    • Desmin-positive pericytes in the chick embryo chorioallantoic membrane in response to fibroblast growth factor-2
    • Nico B, Ennas MG, Crivellato E, et al. Desmin-positive pericytes in the chick embryo chorioallantoic membrane in response to fibroblast growth factor-2. Microvasc Res. 2004;68:13-19.
    • (2004) Microvasc Res , vol.68 , pp. 13-19
    • Nico, B.1    Ennas, M.G.2    Crivellato, E.3
  • 25
    • 84958523857 scopus 로고    scopus 로고
    • NG2 Proteoglycan-dependent contributions of pericytes and macrophages to brain tumor vascularization and progression
    • Stallcup WB, You WK, Kucharova K, Cejudo-Martin P, Yotsumoto F. NG2 Proteoglycan-dependent contributions of pericytes and macrophages to brain tumor vascularization and progression. Microcirculation. 2016;23(2):122-133.
    • (2016) Microcirculation , vol.23 , Issue.2 , pp. 122-133
    • Stallcup, W.B.1    You, W.K.2    Kucharova, K.3    Cejudo-Martin, P.4    Yotsumoto, F.5
  • 26
    • 12444253931 scopus 로고    scopus 로고
    • Pathological angiogenesis is reduced by targeting pericytes via the Ng2 proteoglycan
    • Ozerdem U, Stallcup WB. Pathological angiogenesis is reduced by targeting pericytes via the Ng2 proteoglycan. Angiogenesis. 2004;7: 269-276.
    • (2004) Angiogenesis , vol.7 , pp. 269-276
    • Ozerdem, U.1    Stallcup, W.B.2
  • 27
    • 0033230207 scopus 로고    scopus 로고
    • Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N, aminopeptidase a, and nestin
    • Alliot F, Rutin J, Leenen PJ, Pessac B. Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N, aminopeptidase a, and nestin. J Neurosci Res. 1999;58:367-378.
    • (1999) J Neurosci Res , vol.58 , pp. 367-378
    • Alliot, F.1    Rutin, J.2    Leenen, P.J.3    Pessac, B.4
  • 29
    • 33847635618 scopus 로고    scopus 로고
    • Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of Tgf-beta signaling
    • Kano MR, Bae Y, Iwata C, et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of Tgf-beta signaling. Proc Natl Acad Sci U S A. 2007;104:3460-3465.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 3460-3465
    • Kano, M.R.1    Bae, Y.2    Iwata, C.3
  • 30
    • 84879940905 scopus 로고    scopus 로고
    • Tumor angiogenesis: A new source of pericytes
    • Liu AY, Ouyang G. Tumor angiogenesis: a new source of pericytes. Curr Biol. 2013;23:R565-R568.
    • (2013) Curr Biol , vol.23 , pp. R565-R568
    • Liu, A.Y.1    Ouyang, G.2
  • 31
    • 84922308838 scopus 로고    scopus 로고
    • Matrix metalloproteinase-14 both sheds cell surface neuronal glial antigen 2 (NG2) proteoglycan on macrophages and governs the response to peripheral nerve injury
    • Nishihara T, Remacle AG, Angert M, et al. Matrix metalloproteinase-14 both sheds cell surface neuronal glial antigen 2 (NG2) proteoglycan on macrophages and governs the response to peripheral nerve injury. J Biol Chem. 2015;290:3693-3707.
    • (2015) J Biol Chem , vol.290 , pp. 3693-3707
    • Nishihara, T.1    Remacle, A.G.2    Angert, M.3
  • 32
    • 84861205310 scopus 로고    scopus 로고
    • Pericyte-coverage of human tumor vasculature and nanoparticle permeability
    • Zhang L, Nishihara H, Kano MR. Pericyte-coverage of human tumor vasculature and nanoparticle permeability. Biol Pharm Bull. 2012; 35:761-766.
    • (2012) Biol Pharm Bull , vol.35 , pp. 761-766
    • Zhang, L.1    Nishihara, H.2    Kano, M.R.3
  • 33
    • 0035297541 scopus 로고    scopus 로고
    • Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors
    • Pietras K, Ostman A, Sjoquist M, et al. Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res. 2001;61: 2929-2934.
    • (2001) Cancer Res , vol.61 , pp. 2929-2934
    • Pietras, K.1    Ostman, A.2    Sjoquist, M.3
  • 34
    • 0036790060 scopus 로고    scopus 로고
    • Inhibition of Pdgf receptor signaling in tumor stroma enhances antitumor effect of chemotherapy
    • Pietras K, Rubin K, Sjoblom T, et al. Inhibition of Pdgf receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res. 2002;62:5476-5484.
    • (2002) Cancer Res , vol.62 , pp. 5476-5484
    • Pietras, K.1    Rubin, K.2    Sjoblom, T.3
  • 35
    • 33644643376 scopus 로고    scopus 로고
    • Pericytes limit tumor cell metastasis
    • Xian X, Hakansson J, Stahlberg A, et al. Pericytes limit tumor cell metastasis. J Clin Invest. 2006;116:642-651.
    • (2006) J Clin Invest , vol.116 , pp. 642-651
    • Xian, X.1    Hakansson, J.2    Stahlberg, A.3
  • 36
    • 84934292399 scopus 로고    scopus 로고
    • Towards personalized medicine: Chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform
    • Ruppen J, Wildhaber FD, Strub C, et al. Towards personalized medicine: chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform. Lab Chip. 2015;15:3076-3085.
    • (2015) Lab Chip , vol.15 , pp. 3076-3085
    • Ruppen, J.1    Wildhaber, F.D.2    Strub, C.3
  • 37
    • 77953357460 scopus 로고    scopus 로고
    • Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma
    • Loi M, Marchio S, Becherini P, et al. Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma. J Control Release. 2010; 145:66-73.
    • (2010) J Control Release , vol.145 , pp. 66-73
    • Loi, M.1    Marchio, S.2    Becherini, P.3
  • 38
    • 84895022848 scopus 로고    scopus 로고
    • Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis
    • Guan YY, Luan X, Xu JR, et al. Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis. Biomaterials. 2014;35:3060-3070.
    • (2014) Biomaterials , vol.35 , pp. 3060-3070
    • Guan, Y.Y.1    Luan, X.2    Xu, J.R.3
  • 39
    • 77953958904 scopus 로고    scopus 로고
    • A novel approach to deliver anticancer drugs to key cell types in tumors using a Pdgf receptor-binding cyclic peptide containing carrier
    • Prakash J, de Jong E, Post E, Gouw AS, Beljaars L, Poelstra K. A novel approach to deliver anticancer drugs to key cell types in tumors using a Pdgf receptor-binding cyclic peptide containing carrier. J Control Release. 2010;145:91-101.
    • (2010) J Control Release , vol.145 , pp. 91-101
    • Prakash, J.1    De Jong, E.2    Post, E.3    Gouw, A.S.4    Beljaars, L.5    Poelstra, K.6
  • 41
    • 80053066716 scopus 로고    scopus 로고
    • Effects of the histone deacetylase inhibitor valproic acid on human pericytes in vitro
    • Karen J, Rodriguez A, Friman T, Dencker L, Sundberg C, Scholz B. Effects of the histone deacetylase inhibitor valproic acid on human pericytes in vitro. PLoS One. 2011;6:e24954.
    • (2011) Plos One , vol.6
    • Karen, J.1    Rodriguez, A.2    Friman, T.3    Dencker, L.4    Sundberg, C.5    Scholz, B.6
  • 42
    • 77749279762 scopus 로고    scopus 로고
    • Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of Pdgfrbeta/B-Raf
    • Murphy EA, Shields DJ, Stoletov K, et al. Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of Pdgfrbeta/B-Raf. Proc Natl Acad Sci U S A. 2010;107: 4299-4304.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 4299-4304
    • Murphy, E.A.1    Shields, D.J.2    Stoletov, K.3
  • 43
    • 84884171117 scopus 로고    scopus 로고
    • Imatinib tackles lymphoma via the PDGFRβ+ pericyte
    • Chute JP, Himburg HA. Imatinib tackles lymphoma via the PDGFRβ+ pericyte. Blood. 2013;121:5107-5108.
    • (2013) Blood , vol.121 , pp. 5107-5108
    • Chute, J.P.1    Himburg, H.A.2
  • 45
    • 84871392869 scopus 로고    scopus 로고
    • Targeting olfactomedin-like 3 inhibits tumor growth by impairing angiogenesis and pericyte coverage
    • Miljkovic-Licina M, Hammel P, Garrido-Urbani S, et al. Targeting olfactomedin-like 3 inhibits tumor growth by impairing angiogenesis and pericyte coverage. Mol Cancer Ther. 2012;11:2588-2599.
    • (2012) Mol Cancer Ther , vol.11 , pp. 2588-2599
    • Miljkovic-Licina, M.1    Hammel, P.2    Garrido-Urbani, S.3
  • 46
    • 0038476608 scopus 로고    scopus 로고
    • Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors
    • Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest. 2003;111:1287-1295.
    • (2003) J Clin Invest , vol.111 , pp. 1287-1295
    • Bergers, G.1    Song, S.2    Meyer-Morse, N.3    Bergsland, E.4    Hanahan, D.5
  • 47
    • 66249101249 scopus 로고    scopus 로고
    • Cellular source and amount of vascular endothelial growth factor and platelet-derived growth factor in tumors determine response to angiogenesis inhibitors
    • Sennino B, Kuhnert F, Tabruyn SP, et al. Cellular source and amount of vascular endothelial growth factor and platelet-derived growth factor in tumors determine response to angiogenesis inhibitors. Cancer Res. 2009;69:4527-4536.
    • (2009) Cancer Res , vol.69 , pp. 4527-4536
    • Sennino, B.1    Kuhnert, F.2    Tabruyn, S.P.3
  • 48
    • 77953604802 scopus 로고    scopus 로고
    • Targeting pericytes with a Pdgf-B aptamer in human ovarian carcinoma models
    • Lu C, Shahzad MM, Moreno-Smith M, et al. Targeting pericytes with a Pdgf-B aptamer in human ovarian carcinoma models. Cancer Biol Ther. 2010;9:176-182.
    • (2010) Cancer Biol Ther , vol.9 , pp. 176-182
    • Lu, C.1    Shahzad, M.M.2    Moreno-Smith, M.3
  • 49
    • 84954509044 scopus 로고    scopus 로고
    • VEGF-induced expression of mir-17-92 cluster in endothelial cells is mediated by ERK/ELK1 activation and regulates angiogenesis
    • Chamorro-Jorganes A, Lee MY, Araldi E, et al. VEGF-induced expression of mir-17-92 cluster in endothelial cells is mediated by ERK/ELK1 activation and regulates angiogenesis. Circ Res. 2016;118(1):38-47.
    • (2016) Circ Res , vol.118 , Issue.1 , pp. 38-47
    • Chamorro-Jorganes, A.1    Lee, M.Y.2    Araldi, E.3
  • 50
    • 84946206105 scopus 로고    scopus 로고
    • Inhibition of the Vegf/Vegfr pathway improves survival in advanced kidney cancer: A systematic review and meta-analysis
    • Iacovelli R, Sternberg CN, Porta C, et al. Inhibition of the Vegf/Vegfr pathway improves survival in advanced kidney cancer: a systematic review and meta-analysis. Curr Drug Targets. 2015;16:164-170.
    • (2015) Curr Drug Targets , vol.16 , pp. 164-170
    • Iacovelli, R.1    Sternberg, C.N.2    Porta, C.3
  • 51
    • 84943223212 scopus 로고    scopus 로고
    • Pericytes: Properties, functions and applications in tissue engineering
    • Gokcinar-Yagci B, Uckan-Cetinkaya D, Celebi-Saltik B. Pericytes: properties, functions and applications in tissue engineering. Stem Cell Rev. 2015;11:549-559.
    • (2015) Stem Cell Rev , vol.11 , pp. 549-559
    • Gokcinar-Yagci, B.1    Uckan-Cetinkaya, D.2    Celebi-Saltik, B.3
  • 52
    • 84876704168 scopus 로고    scopus 로고
    • Engineering of functional, perfusable 3D microvascular networks on a chip
    • Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip. 2013;13:1489-1500.
    • (2013) Lab Chip , vol.13 , pp. 1489-1500
    • Kim, S.1    Lee, H.2    Chung, M.3    Jeon, N.L.4
  • 53
    • 77956182567 scopus 로고    scopus 로고
    • Pericyte-based human tissue engineered vascular grafts
    • He W, Nieponice A, Soletti L, et al. Pericyte-based human tissue engineered vascular grafts. Biomaterials. 2010;31:8235-8244.
    • (2010) Biomaterials , vol.31 , pp. 8235-8244
    • He, W.1    Nieponice, A.2    Soletti, L.3
  • 54
    • 84904280973 scopus 로고    scopus 로고
    • 3D Hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering
    • Fuoco C, Sangalli E, Vono R, et al. 3D Hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering. Front Physiol. 2014;5:203.
    • (2014) Front Physiol , vol.5 , pp. 203
    • Fuoco, C.1    Sangalli, E.2    Vono, R.3
  • 55
    • 84864053203 scopus 로고    scopus 로고
    • Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs
    • Mendes LF, Pirraco RP, Szymczyk W, et al. Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs. PLoS One. 2012;7:e41051.
    • (2012) Plos One , vol.7
    • Mendes, L.F.1    Pirraco, R.P.2    Szymczyk, W.3
  • 56
    • 78049427358 scopus 로고    scopus 로고
    • Covalently immobilized platelet-derived growth factor-Bb promotes angiogenesis in biomimetic poly(Ethylene glycol) hydrogels
    • Saik JE, Gould DJ, Watkins EM, Dickinson ME, West JL. Covalently immobilized platelet-derived growth factor-Bb promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta Biomater. 2011;7: 133-143.
    • (2011) Acta Biomater , vol.7 , pp. 133-143
    • Saik, J.E.1    Gould, D.J.2    Watkins, E.M.3    Dickinson, M.E.4    West, J.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.