-
1
-
-
33846571886
-
The origin and cell lineage of microglia: new concepts
-
Chan WY, Kohsaka S, Rezaie P. The origin and cell lineage of microglia: new concepts. Brain Res Rev. 2007;53:344-54.
-
(2007)
Brain Res Rev
, vol.53
, pp. 344-354
-
-
Chan, W.Y.1
Kohsaka, S.2
Rezaie, P.3
-
2
-
-
84875965538
-
Origin and differentiation of microglia
-
Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci. 2013;7:45.
-
(2013)
Front Cell Neurosci
, vol.7
, pp. 45
-
-
Ginhoux, F.1
Lim, S.2
Hoeffel, G.3
Low, D.4
Huber, T.5
-
3
-
-
0027299837
-
Development, differentiation, and proliferation of macrophages in the rat yolk sac
-
Takahashi K, Naito M. Development, differentiation, and proliferation of macrophages in the rat yolk sac. Tissue Cell. 1993;25:351-62.
-
(1993)
Tissue Cell
, vol.25
, pp. 351-362
-
-
Takahashi, K.1
Naito, M.2
-
4
-
-
0032737272
-
Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain
-
Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res. 1999;117:145-52.
-
(1999)
Brain Res Dev Brain Res
, vol.117
, pp. 145-152
-
-
Alliot, F.1
Godin, I.2
Pessac, B.3
-
5
-
-
33749258893
-
Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice
-
Djukic M, Mildner A, Schmidt H, Czesnik D, Bruck W, Priller J, et al. Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain. 2006;129:2394-403.
-
(2006)
Brain
, vol.129
, pp. 2394-2403
-
-
Djukic, M.1
Mildner, A.2
Schmidt, H.3
Czesnik, D.4
Bruck, W.5
Priller, J.6
-
6
-
-
0032908722
-
Leukocyte traffic in the central nervous system: the participants and their roles
-
Hickey WF. Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol. 1999;11:125-37.
-
(1999)
Semin Immunol
, vol.11
, pp. 125-137
-
-
Hickey, W.F.1
-
7
-
-
0026755999
-
Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras
-
Hickey WF, Vass K, Lassmann H. Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol. 1992;51:246-56.
-
(1992)
J Neuropathol Exp Neurol
, vol.51
, pp. 246-256
-
-
Hickey, W.F.1
Vass, K.2
Lassmann, H.3
-
8
-
-
0027030806
-
Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques
-
de Groot CJ, Huppes W, Sminia T, Kraal G, Dijkstra CD. Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques. Glia. 1992;6:301-9.
-
(1992)
Glia
, vol.6
, pp. 301-309
-
-
Groot, C.J.1
Huppes, W.2
Sminia, T.3
Kraal, G.4
Dijkstra, C.D.5
-
9
-
-
84875916641
-
Defining vascular stem cells
-
Lin CS, Lue TF. Defining vascular stem cells. Stem Cells Dev. 2013;22:1018-26.
-
(2013)
Stem Cells Dev
, vol.22
, pp. 1018-1026
-
-
Lin, C.S.1
Lue, T.F.2
-
10
-
-
79957562794
-
Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation
-
Klein D, Weisshardt P, Kleff V, Jastrow H, Jakob HG, Ergun S. Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One. 2011;6:e20540.
-
(2011)
PLoS One
, vol.6
-
-
Klein, D.1
Weisshardt, P.2
Kleff, V.3
Jastrow, H.4
Jakob, H.G.5
Ergun, S.6
-
11
-
-
84904633643
-
Nestin(+) tissue-resident multipotent stem cells contribute to tumor progression by differentiating into pericytes and smooth muscle cells resulting in blood vessel remodeling
-
Klein D, Meissner N, Kleff V, Jastrow H, Yamaguchi M, Ergun S, et al. Nestin(+) tissue-resident multipotent stem cells contribute to tumor progression by differentiating into pericytes and smooth muscle cells resulting in blood vessel remodeling. Front Oncol. 2014;4:169.
-
(2014)
Front Oncol
, vol.4
, pp. 169
-
-
Klein, D.1
Meissner, N.2
Kleff, V.3
Jastrow, H.4
Yamaguchi, M.5
Ergun, S.6
-
12
-
-
77951476043
-
Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential
-
Campagnolo P, Cesselli D, Al Haj Zen A, Beltrami AP, Krankel N, Katare R, et al. Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation. 2010;121:1735-45.
-
(2010)
Circulation
, vol.121
, pp. 1735-1745
-
-
Campagnolo, P.1
Cesselli, D.2
Haj Zen, A.3
Beltrami, A.P.4
Krankel, N.5
Katare, R.6
-
13
-
-
84904753091
-
Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature
-
Psaltis PJ, Puranik AS, Spoon DB, Chue CD, Hoffman SJ, Witt TA, et al. Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature. Circ Res. 2014;115:364-75.
-
(2014)
Circ Res
, vol.115
, pp. 364-375
-
-
Psaltis, P.J.1
Puranik, A.S.2
Spoon, D.B.3
Chue, C.D.4
Hoffman, S.J.5
Witt, T.A.6
-
14
-
-
84937711807
-
Do vascular pericytes contribute to neurovasculogenesis in the central nervous system as multipotent vascular stem cells?
-
Nakagomi T, Nakano-Doi A, Kawamura M, Matsuyama T. Do vascular pericytes contribute to neurovasculogenesis in the central nervous system as multipotent vascular stem cells? Stem Cells Dev. 2015;24:1730-9.
-
(2015)
Stem Cells Dev
, vol.24
, pp. 1730-1739
-
-
Nakagomi, T.1
Nakano-Doi, A.2
Kawamura, M.3
Matsuyama, T.4
-
15
-
-
50849139576
-
A perivascular origin for mesenchymal stem cells in multiple human organs
-
Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301-13.
-
(2008)
Cell Stem Cell
, vol.3
, pp. 301-313
-
-
Crisan, M.1
Yap, S.2
Casteilla, L.3
Chen, C.W.4
Corselli, M.5
Park, T.S.6
-
17
-
-
0015258932
-
The relation of the microglia with the pericytes in the cat cerebral cortex
-
Baron M, Gallego A. The relation of the microglia with the pericytes in the cat cerebral cortex. Z Zellforsch Mikrosk Anat. 1972;128:42-57.
-
(1972)
Z Zellforsch Mikrosk Anat
, vol.128
, pp. 42-57
-
-
Baron, M.1
Gallego, A.2
-
18
-
-
0014447594
-
Identification of microglia in light and electron microscopy
-
Mori S, Leblond CP. Identification of microglia in light and electron microscopy. J Comp Neurol. 1969;135:57-80.
-
(1969)
J Comp Neurol
, vol.135
, pp. 57-80
-
-
Mori, S.1
Leblond, C.P.2
-
19
-
-
0030253528
-
Do microglia arise from pericytes? An ultrastructural and distribution study in the rat cerebellar cortex
-
Monteiro RA, Rocha E, Marini-Abreu MM. Do microglia arise from pericytes? An ultrastructural and distribution study in the rat cerebellar cortex. J Submicrosc Cytol Pathol. 1996;28:457-69.
-
(1996)
J Submicrosc Cytol Pathol
, vol.28
, pp. 457-469
-
-
Monteiro, R.A.1
Rocha, E.2
Marini-Abreu, M.M.3
-
20
-
-
84929839390
-
Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells
-
Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, et al. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells. 2015;33:1962-74.
-
(2015)
Stem Cells
, vol.33
, pp. 1962-1974
-
-
Nakagomi, T.1
Kubo, S.2
Nakano-Doi, A.3
Sakuma, R.4
Lu, S.5
Narita, A.6
-
21
-
-
0346655312
-
Microglia, a potential source of neurons, astrocytes, and oligodendrocytes
-
Yokoyama A, Yang L, Itoh S, Mori K, Tanaka J. Microglia, a potential source of neurons, astrocytes, and oligodendrocytes. Glia. 2004;45:96-104.
-
(2004)
Glia
, vol.45
, pp. 96-104
-
-
Yokoyama, A.1
Yang, L.2
Itoh, S.3
Mori, K.4
Tanaka, J.5
-
22
-
-
33646248378
-
NG2 proteoglycan-expressing microglia as multipotent neural progenitors in normal and pathologic brains
-
Yokoyama A, Sakamoto A, Kameda K, Imai Y, Tanaka J. NG2 proteoglycan-expressing microglia as multipotent neural progenitors in normal and pathologic brains. Glia. 2006;53:754-68.
-
(2006)
Glia
, vol.53
, pp. 754-768
-
-
Yokoyama, A.1
Sakamoto, A.2
Kameda, K.3
Imai, Y.4
Tanaka, J.5
-
24
-
-
81855206167
-
Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction
-
Decimo I, Bifari F, Rodriguez FJ, Malpeli G, Dolci S, Lavarini V, et al. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem Cells. 2011;29:2062-76.
-
(2011)
Stem Cells
, vol.29
, pp. 2062-2076
-
-
Decimo, I.1
Bifari, F.2
Rodriguez, F.J.3
Malpeli, G.4
Dolci, S.5
Lavarini, V.6
-
25
-
-
82455168158
-
Ischemia-induced neural stem/progenitor cells in the pia mater following cortical infarction
-
Nakagomi T, Molnar Z, Nakano-Doi A, Taguchi A, Saino O, Kubo S, et al. Ischemia-induced neural stem/progenitor cells in the pia mater following cortical infarction. Stem Cells Dev. 2011;20:2037-51.
-
(2011)
Stem Cells Dev
, vol.20
, pp. 2037-2051
-
-
Nakagomi, T.1
Molnar, Z.2
Nakano-Doi, A.3
Taguchi, A.4
Saino, O.5
Kubo, S.6
-
26
-
-
84865714669
-
Leptomeningeal-derived doublecortin-expressing cells in poststroke brain
-
Nakagomi T, Molnar Z, Taguchi A, Nakano-Doi A, Lu S, Kasahara Y, et al. Leptomeningeal-derived doublecortin-expressing cells in poststroke brain. Stem Cells Dev. 2012;21:2350-4.
-
(2012)
Stem Cells Dev
, vol.21
, pp. 2350-2354
-
-
Nakagomi, T.1
Molnar, Z.2
Taguchi, A.3
Nakano-Doi, A.4
Lu, S.5
Kasahara, Y.6
-
27
-
-
84926311515
-
Leptomeninges: a novel stem cell niche harboring ischemia-induced neural progenitors
-
Nakagomi T, Nakano-Doi A, Matsuyama T: Leptomeninges: a novel stem cell niche harboring ischemia-induced neural progenitors. Histol Histopathol. 2015;30:391-99.
-
(2015)
Histol Histopathol
, vol.30
, pp. 391-399
-
-
Nakagomi, T.1
Nakano-Doi, A.2
Matsuyama, T.3
-
28
-
-
65549091557
-
Isolation and characterization of neural stem/progenitor cells from post-stroke cerebral cortex in mice
-
Nakagomi T, Taguchi A, Fujimori Y, Saino O, Nakano-Doi A, Kubo S, et al. Isolation and characterization of neural stem/progenitor cells from post-stroke cerebral cortex in mice. Eur J Neurosci. 2009;29:1842-52.
-
(2009)
Eur J Neurosci
, vol.29
, pp. 1842-1852
-
-
Nakagomi, T.1
Taguchi, A.2
Fujimori, Y.3
Saino, O.4
Nakano-Doi, A.5
Kubo, S.6
-
29
-
-
70349847390
-
Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction
-
Nakagomi N, Nakagomi T, Kubo S, Nakano-Doi A, Saino O, Takata M, et al. Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells. 2009;27:2185-95.
-
(2009)
Stem Cells
, vol.27
, pp. 2185-2195
-
-
Nakagomi, N.1
Nakagomi, T.2
Kubo, S.3
Nakano-Doi, A.4
Saino, O.5
Takata, M.6
-
30
-
-
77954832481
-
Bone marrow mononuclear cells promote proliferation of endogenous neural stem cells through vascular niches after cerebral infarction
-
Nakano-Doi A, Nakagomi T, Fujikawa M, Nakagomi N, Kubo S, Lu S, et al. Bone marrow mononuclear cells promote proliferation of endogenous neural stem cells through vascular niches after cerebral infarction. Stem Cells. 2010;28:1292-302.
-
(2010)
Stem Cells
, vol.28
, pp. 1292-1302
-
-
Nakano-Doi, A.1
Nakagomi, T.2
Fujikawa, M.3
Nakagomi, N.4
Kubo, S.5
Lu, S.6
-
31
-
-
77955370220
-
Immunodeficiency reduces neural stem/progenitor cell apoptosis and enhances neurogenesis in the cerebral cortex after stroke
-
Saino O, Taguchi A, Nakagomi T, Nakano-Doi A, Kashiwamura S, Doe N, et al. Immunodeficiency reduces neural stem/progenitor cell apoptosis and enhances neurogenesis in the cerebral cortex after stroke. J Neurosci Res. 2010;88:2385-97.
-
(2010)
J Neurosci Res
, vol.88
, pp. 2385-2397
-
-
Saino, O.1
Taguchi, A.2
Nakagomi, T.3
Nakano-Doi, A.4
Kashiwamura, S.5
Doe, N.6
-
32
-
-
84881183042
-
Role of pericytes in skeletal muscle regeneration and fat accumulation
-
Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, et al. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev. 2013;22:2298-314.
-
(2013)
Stem Cells Dev
, vol.22
, pp. 2298-2314
-
-
Birbrair, A.1
Zhang, T.2
Wang, Z.M.3
Messi, M.L.4
Enikolopov, G.N.5
Mintz, A.6
-
34
-
-
84937414504
-
Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes
-
Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron. 2015;87:95-110.
-
(2015)
Neuron
, vol.87
, pp. 95-110
-
-
Hill, R.A.1
Tong, L.2
Yuan, P.3
Murikinati, S.4
Gupta, S.5
Grutzendler, J.6
-
35
-
-
83055181916
-
Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice
-
Perego C, Fumagalli S, De Simoni MG. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation. 2011;8:174.
-
(2011)
J Neuroinflammation
, vol.8
, pp. 174
-
-
Perego, C.1
Fumagalli, S.2
Simoni, M.G.3
-
36
-
-
84906319162
-
Brain pericytes acquire a microglial phenotype after stroke
-
Ozen I, Deierborg T, Miharada K, Padel T, Englund E, Genove G, et al. Brain pericytes acquire a microglial phenotype after stroke. Acta Neuropathol. 2014;128:381-96.
-
(2014)
Acta Neuropathol
, vol.128
, pp. 381-396
-
-
Ozen, I.1
Deierborg, T.2
Miharada, K.3
Padel, T.4
Englund, E.5
Genove, G.6
-
37
-
-
84868221535
-
Skeletal muscle pericyte subtypes differ in their differentiation potential
-
Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, et al. Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res. 2012;10:67-84.
-
(2012)
Stem Cell Res.
, vol.10
, pp. 67-84
-
-
Birbrair, A.1
Zhang, T.2
Wang, Z.M.3
Messi, M.L.4
Enikolopov, G.N.5
Mintz, A.6
-
38
-
-
5644222546
-
Chondrogenic and adipogenic potential of microvascular pericytes
-
Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation. 2004;110:2226-32.
-
(2004)
Circulation
, vol.110
, pp. 2226-2232
-
-
Farrington-Rock, C.1
Crofts, N.J.2
Doherty, M.J.3
Ashton, B.A.4
Griffin-Jones, C.5
Canfield, A.E.6
-
39
-
-
0031955152
-
Vascular pericytes express osteogenic potential in vitro and in vivo
-
Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE. Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res. 1998;13:828-38.
-
(1998)
J Bone Miner Res
, vol.13
, pp. 828-838
-
-
Doherty, M.J.1
Ashton, B.A.2
Walsh, S.3
Beresford, J.N.4
Grant, M.E.5
Canfield, A.E.6
-
40
-
-
84855407739
-
Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb
-
Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, et al. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation. 2012;125:87-99.
-
(2012)
Circulation
, vol.125
, pp. 87-99
-
-
Dar, A.1
Domev, H.2
Ben-Yosef, O.3
Tzukerman, M.4
Zeevi-Levin, N.5
Novak, A.6
-
41
-
-
84867353088
-
Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells
-
Karow M, Sanchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, et al. Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell. 2012;11:471-6.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 471-476
-
-
Karow, M.1
Sanchez, R.2
Schichor, C.3
Masserdotti, G.4
Ortega, F.5
Heinrich, C.6
-
42
-
-
84907147584
-
Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle
-
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci. 2014;6:245.
-
(2014)
Front Aging Neurosci
, vol.6
, pp. 245
-
-
Birbrair, A.1
Zhang, T.2
Wang, Z.M.3
Messi, M.L.4
Mintz, A.5
Delbono, O.6
-
43
-
-
84903591996
-
Type-2 pericytes participate in normal and tumoral angiogenesis
-
Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, et al. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol. 2014;307:C25-38.
-
(2014)
Am J Physiol Cell Physiol
, vol.307
, pp. C25-C38
-
-
Birbrair, A.1
Zhang, T.2
Wang, Z.M.3
Messi, M.L.4
Olson, J.D.5
Mintz, A.6
-
44
-
-
84863632660
-
Follicular dendritic cells emerge from ubiquitous perivascular precursors
-
Krautler NJ, Kana V, Kranich J, Tian Y, Perera D, Lemm D, et al. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell. 2012;150:194-206.
-
(2012)
Cell
, vol.150
, pp. 194-206
-
-
Krautler, N.J.1
Kana, V.2
Kranich, J.3
Tian, Y.4
Perera, D.5
Lemm, D.6
-
45
-
-
0030250260
-
CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2
-
Balabanov R, Washington R, Wagnerova J, Dore-Duffy P. CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2. Microvasc Res. 1996;52:127-42.
-
(1996)
Microvasc Res
, vol.52
, pp. 127-142
-
-
Balabanov, R.1
Washington, R.2
Wagnerova, J.3
Dore-Duffy, P.4
-
46
-
-
34548335261
-
Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo
-
Ferreira LS, Gerecht S, Shieh HF, Watson N, Rupnick MA, Dallabrida SM, et al. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ Res. 2007;101:286-94.
-
(2007)
Circ Res
, vol.101
, pp. 286-294
-
-
Ferreira, L.S.1
Gerecht, S.2
Shieh, H.F.3
Watson, N.4
Rupnick, M.A.5
Dallabrida, S.M.6
-
47
-
-
48249129697
-
A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells
-
Passman JN, Dong XR, Wu SP, Maguire CT, Hogan KA, Bautch VL, et al. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci USA. 2008;105:9349-54.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 9349-9354
-
-
Passman, J.N.1
Dong, X.R.2
Wu, S.P.3
Maguire, C.T.4
Hogan, K.A.5
Bautch, V.L.6
-
48
-
-
8744288607
-
Vascular adventitia generates neuronal progenitors in the monkey hippocampus after ischemia
-
Yamashima T, Tonchev AB, Vachkov IH, Popivanova BK, Seki T, Sawamoto K, et al. Vascular adventitia generates neuronal progenitors in the monkey hippocampus after ischemia. Hippocampus. 2004;14:861-75.
-
(2004)
Hippocampus
, vol.14
, pp. 861-875
-
-
Yamashima, T.1
Tonchev, A.B.2
Vachkov, I.H.3
Popivanova, B.K.4
Seki, T.5
Sawamoto, K.6
-
49
-
-
84867747480
-
Monocytes-macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow
-
Ludin A, Itkin T, Gur-Cohen S, Mildner A, Shezen E, Golan K, et al. Monocytes-macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol. 2012;13:1072-82.
-
(2012)
Nat Immunol
, vol.13
, pp. 1072-1082
-
-
Ludin, A.1
Itkin, T.2
Gur-Cohen, S.3
Mildner, A.4
Shezen, E.5
Golan, K.6
-
50
-
-
84928554168
-
Concise review: are stimulated somatic cells truly reprogrammed into an ES/iPS-like pluripotent state? Better understanding by ischemia-induced multipotent stem cells in a mouse model of cerebral infarction
-
Nakagomi T, Nakano-Doi A, Narita A, Matsuyama T. Concise review: are stimulated somatic cells truly reprogrammed into an ES/iPS-like pluripotent state? Better understanding by ischemia-induced multipotent stem cells in a mouse model of cerebral infarction. Stem Cells Int. 2015;2015:630693.
-
(2015)
Stem Cells Int
, vol.2015
, pp. 630693
-
-
Nakagomi, T.1
Nakano-Doi, A.2
Narita, A.3
Matsuyama, T.4
-
51
-
-
0033944791
-
Pericyte migration from the vascular wall in response to traumatic brain injury
-
Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res. 2000;60:55-69.
-
(2000)
Microvasc Res
, vol.60
, pp. 55-69
-
-
Dore-Duffy, P.1
Owen, C.2
Balabanov, R.3
Murphy, S.4
Beaumont, T.5
Rafols, J.A.6
-
52
-
-
84890152999
-
Activated microglia in a rat stroke model express NG2 proteoglycan in peri-infarct tissue through the involvement of TGF-beta1
-
Sugimoto K, Nishioka R, Ikeda A, Mise A, Takahashi H, Yano H, et al. Activated microglia in a rat stroke model express NG2 proteoglycan in peri-infarct tissue through the involvement of TGF-beta1. Glia. 2014;62:185-98.
-
(2014)
Glia
, vol.62
, pp. 185-198
-
-
Sugimoto, K.1
Nishioka, R.2
Ikeda, A.3
Mise, A.4
Takahashi, H.5
Yano, H.6
-
53
-
-
1542722942
-
Hematopoietic origin of microglial and perivascular cells in brain
-
Hess DC, Abe T, Hill WD, Studdard AM, Carothers J, Masuya M, et al. Hematopoietic origin of microglial and perivascular cells in brain. Exp Neurol. 2004;186:134-44.
-
(2004)
Exp Neurol
, vol.186
, pp. 134-144
-
-
Hess, D.C.1
Abe, T.2
Hill, W.D.3
Studdard, A.M.4
Carothers, J.5
Masuya, M.6
-
54
-
-
0030891163
-
Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice
-
Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA. 1997;94:4080-5.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, pp. 4080-4085
-
-
Eglitis, M.A.1
Mezey, E.2
-
55
-
-
84922479533
-
Immortalized multipotent pericytes derived from the vasa vasorum in the injured vasculature. A cellular tool for studies of vascular remodeling and regeneration
-
Kabara M, Kawabe J, Matsuki M, Hira Y, Minoshima A, Shimamura K, et al. Immortalized multipotent pericytes derived from the vasa vasorum in the injured vasculature. A cellular tool for studies of vascular remodeling and regeneration. Lab Invest. 2014;94:1340-54.
-
(2014)
Lab Invest
, vol.94
, pp. 1340-1354
-
-
Kabara, M.1
Kawabe, J.2
Matsuki, M.3
Hira, Y.4
Minoshima, A.5
Shimamura, K.6
-
56
-
-
77958478957
-
Kruppel-like factor-4 transcriptionally regulates VE-cadherin expression and endothelial barrier function
-
Cowan CE, Kohler EE, Dugan TA, Mirza MK, Malik AB, Wary KK. Kruppel-like factor-4 transcriptionally regulates VE-cadherin expression and endothelial barrier function. Circ Res. 2010;107:959-66.
-
(2010)
Circ Res
, vol.107
, pp. 959-966
-
-
Cowan, C.E.1
Kohler, E.E.2
Dugan, T.A.3
Mirza, M.K.4
Malik, A.B.5
Wary, K.K.6
-
57
-
-
33748697185
-
Platelet-derived growth factor receptor-beta promotes early endothelial cell differentiation
-
Rolny C, Nilsson I, Magnusson P, Armulik A, Jakobsson L, Wentzel P, et al. Platelet-derived growth factor receptor-beta promotes early endothelial cell differentiation. Blood. 2006;108:1877-86.
-
(2006)
Blood
, vol.108
, pp. 1877-1886
-
-
Rolny, C.1
Nilsson, I.2
Magnusson, P.3
Armulik, A.4
Jakobsson, L.5
Wentzel, P.6
-
58
-
-
41649107551
-
FGF2-dependent neovascularization of subcutaneous Matrigel plugs is initiated by bone marrow-derived pericytes and macrophages
-
Tigges U, Hyer EG, Scharf J, Stallcup WB. FGF2-dependent neovascularization of subcutaneous Matrigel plugs is initiated by bone marrow-derived pericytes and macrophages. Development. 2008;135:523-32.
-
(2008)
Development
, vol.135
, pp. 523-532
-
-
Tigges, U.1
Hyer, E.G.2
Scharf, J.3
Stallcup, W.B.4
|