메뉴 건너뛰기




Volumn 22, Issue 2, 2017, Pages 210-222

Design of efficient computational workflows for in silico drug repurposing

Author keywords

[No Author keywords available]

Indexed keywords

FASUDIL; 1 (5 ISOQUINOLINESULFONYL) 2 METHYLPIPERAZINE;

EID: 85000896742     PISSN: 13596446     EISSN: 18785832     Source Type: Journal    
DOI: 10.1016/j.drudis.2016.09.019     Document Type: Review
Times cited : (124)

References (101)
  • 1
    • 80052204248 scopus 로고    scopus 로고
    • Identifying R&D outliers
    • 1 Tollman, P., et al. Identifying R&D outliers. Nat. Rev. Drug Discov. 10 (2011), 653–654.
    • (2011) Nat. Rev. Drug Discov. , vol.10 , pp. 653-654
    • Tollman, P.1
  • 2
    • 84857743319 scopus 로고    scopus 로고
    • Diagnosing the decline in pharmaceutical R&D efficiency
    • 2 Scannell, J.W., et al. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 1 (2012), 191–200.
    • (2012) Nat. Rev. Drug Discov. , vol.1 , pp. 191-200
    • Scannell, J.W.1
  • 3
    • 4344668661 scopus 로고    scopus 로고
    • Drug repositioning: identifying and developing new uses for existing drugs
    • 3 Ashburn, T.T., Thor, K.B., Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3 (2004), 673–683.
    • (2004) Nat. Rev. Drug Discov. , vol.3 , pp. 673-683
    • Ashburn, T.T.1    Thor, K.B.2
  • 4
    • 79960796417 scopus 로고    scopus 로고
    • Exploiting drug-disease relationships for computational drug repositioning
    • 4 Dudley, J.T., et al. Exploiting drug-disease relationships for computational drug repositioning. Brief. Bioinform. 12 (2011), 303–311.
    • (2011) Brief. Bioinform. , vol.12 , pp. 303-311
    • Dudley, J.T.1
  • 5
    • 79959786193 scopus 로고    scopus 로고
    • How to revive breakthrough innovation in the pharmaceutical industry
    • 5 Munos, B.H., Chin, W.W., How to revive breakthrough innovation in the pharmaceutical industry. Sci. Transl. Med., 3, 2011, 89cm16.
    • (2011) Sci. Transl. Med. , vol.3 , pp. 89cm16
    • Munos, B.H.1    Chin, W.W.2
  • 6
    • 84950162061 scopus 로고    scopus 로고
    • Why and how have drug discovery strategies in pharma changed? What are the new mindsets?
    • 6 Mignani, S., et al. Why and how have drug discovery strategies in pharma changed? What are the new mindsets?. Drug Discov. Today 21 (2016), 239–249.
    • (2016) Drug Discov. Today , vol.21 , pp. 239-249
    • Mignani, S.1
  • 7
    • 84876888105 scopus 로고    scopus 로고
    • Challenges and opportunities of drug repositioning
    • 7 Novac, N., Challenges and opportunities of drug repositioning. Trends Pharmacol. Sci. 34 (2013), 267–272.
    • (2013) Trends Pharmacol. Sci. , vol.34 , pp. 267-272
    • Novac, N.1
  • 8
    • 85012059856 scopus 로고    scopus 로고
    • Drug repurposing patent applications October–December 2015
    • 8 Mucke, H.A.M., Drug repurposing patent applications October–December 2015. Assay Drug Dev. Technol. 14 (2016), 308–312.
    • (2016) Assay Drug Dev. Technol. , vol.14 , pp. 308-312
    • Mucke, H.A.M.1
  • 9
    • 84940747543 scopus 로고    scopus 로고
    • Therapeutic drug repurposing, repositioning, and rescue: Part III. Market exclusivity using intellectual property and regulatory pathways
    • 9 Naylor, S., et al. Therapeutic drug repurposing, repositioning, and rescue: Part III. Market exclusivity using intellectual property and regulatory pathways. Drug Discov. World, 2015, 62–69.
    • (2015) Drug Discov. World , pp. 62-69
    • Naylor, S.1
  • 10
    • 85012038499 scopus 로고    scopus 로고
    • Sources and targets for drug repurposing: landscaping transitions in therapeutic space
    • 10 Mucke, H.A.M., Mucke, E., Sources and targets for drug repurposing: landscaping transitions in therapeutic space. Drug Repurpos. Rescue Reposition. 1 (2015), 22–27.
    • (2015) Drug Repurpos. Rescue Reposition. , vol.1 , pp. 22-27
    • Mucke, H.A.M.1    Mucke, E.2
  • 11
    • 84903194920 scopus 로고    scopus 로고
    • Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease
    • 11 Yarchoan, M., Arnold, S.E., Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease. Diabetes 63 (2014), 2253–2261.
    • (2014) Diabetes , vol.63 , pp. 2253-2261
    • Yarchoan, M.1    Arnold, S.E.2
  • 12
    • 84981234292 scopus 로고    scopus 로고
    • Drug repurposing for vascular dementia: overview and current developments
    • 12 Mucke, H.A.M., Drug repurposing for vascular dementia: overview and current developments. Future Neurol. 11 (2016), 215–225.
    • (2016) Future Neurol. , vol.11 , pp. 215-225
    • Mucke, H.A.M.1
  • 13
    • 84982851736 scopus 로고    scopus 로고
    • Repurposing FDA-approved drugs for anti-aging therapies
    • Published online August 2, 2016
    • 13 Snell, W.T., et al. Repurposing FDA-approved drugs for anti-aging therapies. Biogerontology, 2016, 10.1007/s10522-016-9660-x Published online August 2, 2016.
    • (2016) Biogerontology
    • Snell, W.T.1
  • 14
    • 84954512298 scopus 로고    scopus 로고
    • Challenges and perspective of drug repurposing strategies in early phase clinical trials
    • 14 Shumei, K., et al. Challenges and perspective of drug repurposing strategies in early phase clinical trials. Oncoscience 2 (2015), 576–580.
    • (2015) Oncoscience , vol.2 , pp. 576-580
    • Shumei, K.1
  • 15
    • 84980385928 scopus 로고    scopus 로고
    • Tumor deconstruction as a tool for advanced drug screening and repositioning
    • 15 Rutika, R., et al. Tumor deconstruction as a tool for advanced drug screening and repositioning. Pharmacol. Res. 111 (2016), 815–819.
    • (2016) Pharmacol. Res. , vol.111 , pp. 815-819
    • Rutika, R.1
  • 16
    • 84960389367 scopus 로고    scopus 로고
    • Repurposing old drugs to chemoprevention: the case of metformin
    • 16 Heckman-Stoddard, B.M., et al. Repurposing old drugs to chemoprevention: the case of metformin. Semin. Oncol. 43 (2016), 123–133.
    • (2016) Semin. Oncol. , vol.43 , pp. 123-133
    • Heckman-Stoddard, B.M.1
  • 17
    • 84951335652 scopus 로고    scopus 로고
    • Repurposing Vitamin D as an anticancer drug
    • 17 Gilbert, D.C., Repurposing Vitamin D as an anticancer drug. Clin. Oncol. 28 (2016), 36–41.
    • (2016) Clin. Oncol. , vol.28 , pp. 36-41
    • Gilbert, D.C.1
  • 18
    • 84902357848 scopus 로고    scopus 로고
    • Recent advances in drug repositioning for the discovery of new anticancer drugs
    • 18 Shim, J.S., Liu, J.O., Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci. 10 (2014), 654–663.
    • (2014) Int. J. Biol. Sci. , vol.10 , pp. 654-663
    • Shim, J.S.1    Liu, J.O.2
  • 19
    • 84956680067 scopus 로고    scopus 로고
    • Network-based in silico drug efficacy screening
    • 19 Guney, E., et al. Network-based in silico drug efficacy screening. Nat. Commun., 7, 2016, 10331.
    • (2016) Nat. Commun. , vol.7 , pp. 10331
    • Guney, E.1
  • 20
    • 84899087809 scopus 로고    scopus 로고
    • Priority Medicines for Europe and the World Update 2013
    • WHO
    • 20 Kaplan, W., et al. Priority Medicines for Europe and the World Update 2013. 2013, WHO.
    • (2013)
    • Kaplan, W.1
  • 21
    • 84963553689 scopus 로고    scopus 로고
    • In silico methods for drug repurposing and pharmacology
    • 21 Hodos, R.A., et al. In silico methods for drug repurposing and pharmacology. WIREs Syst. Biol. Med. 8 (2016), 186–210.
    • (2016) WIREs Syst. Biol. Med. , vol.8 , pp. 186-210
    • Hodos, R.A.1
  • 22
    • 84877743291 scopus 로고    scopus 로고
    • Network-based drug repositioning
    • 22 Wu, Z., et al. Network-based drug repositioning. Mol. BioSyst. 9 (2013), 1268–1281.
    • (2013) Mol. BioSyst. , vol.9 , pp. 1268-1281
    • Wu, Z.1
  • 23
    • 84885612492 scopus 로고    scopus 로고
    • Advanced systems biology methods in drug discovery and translational biomedicine
    • 23 Zou, J., et al. Advanced systems biology methods in drug discovery and translational biomedicine. BioMed Res. Int., 2013, 2013, 742835.
    • (2013) BioMed Res. Int. , vol.2013 , pp. 742835
    • Zou, J.1
  • 24
    • 84959523909 scopus 로고    scopus 로고
    • Systems biology approaches to a rational drug discovery paradigm
    • 24 Prathipati, P., Mizuguchi, K., Systems biology approaches to a rational drug discovery paradigm. Curr. Top. Med. Chem. 16 (2016), 1009–1025.
    • (2016) Curr. Top. Med. Chem. , vol.16 , pp. 1009-1025
    • Prathipati, P.1    Mizuguchi, K.2
  • 25
    • 84953329262 scopus 로고    scopus 로고
    • In silico methods to address polypharmacology: current status, applications and future perspectives
    • 25 Lavecchia, A., Cerchia, C., In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discov. Today 21 (2016), 288–298.
    • (2016) Drug Discov. Today , vol.21 , pp. 288-298
    • Lavecchia, A.1    Cerchia, C.2
  • 26
    • 84948578044 scopus 로고    scopus 로고
    • Identification of drug candidates and repurposing opportunities through compound–target interaction networks
    • 26 Cichonska, A., et al. Identification of drug candidates and repurposing opportunities through compound–target interaction networks. Expert Opin. Drug Discov. 10 (2015), 1333–1345.
    • (2015) Expert Opin. Drug Discov. , vol.10 , pp. 1333-1345
    • Cichonska, A.1
  • 27
    • 79953716848 scopus 로고    scopus 로고
    • Mind-best: web server for drugs and target discovery; design, synthesis, and assay of MAO-B inhibitors and theoretical-experimental study of G3PDH protein from Trichomonas gallinae
    • 27 Gonzalez-Daz, H., et al. Mind-best: web server for drugs and target discovery; design, synthesis, and assay of MAO-B inhibitors and theoretical-experimental study of G3PDH protein from Trichomonas gallinae. J. Proteome Res. 10 (2011), 1698–1718.
    • (2011) J. Proteome Res. , vol.10 , pp. 1698-1718
    • Gonzalez-Daz, H.1
  • 28
    • 79955562721 scopus 로고    scopus 로고
    • Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir
    • 28 Xie, L., et al. Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLoS Comput. Biol., 7, 2011, e1002037.
    • (2011) PLoS Comput. Biol. , vol.7 , pp. e1002037
    • Xie, L.1
  • 29
    • 47249146126 scopus 로고    scopus 로고
    • Drug target identification using side-effect similarity
    • 29 Campillos, M., et al. Drug target identification using side-effect similarity. Science 321 (2008), 263–266.
    • (2008) Science , vol.321 , pp. 263-266
    • Campillos, M.1
  • 30
    • 84871748184 scopus 로고    scopus 로고
    • DvD: an R/Cytoscape pipeline for drug repurposing using public repositories of gene expression data
    • 30 Pacini, C., et al. DvD: an R/Cytoscape pipeline for drug repurposing using public repositories of gene expression data. Bioinformatics 29 (2013), 132–134.
    • (2013) Bioinformatics , vol.29 , pp. 132-134
    • Pacini, C.1
  • 31
    • 84890027846 scopus 로고    scopus 로고
    • A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors
    • 31 Jahchan, N.S., et al. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov. 3 (2013), 1364–1377.
    • (2013) Cancer Discov. , vol.3 , pp. 1364-1377
    • Jahchan, N.S.1
  • 32
    • 84976407069 scopus 로고    scopus 로고
    • Deep biomarkers of human aging: application of deep neural networks to biomarker development
    • 32 Putin, E., et al. Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging 8 (2016), 1021–1033.
    • (2016) Aging , vol.8 , pp. 1021-1033
    • Putin, E.1
  • 33
    • 84979019529 scopus 로고    scopus 로고
    • Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data
    • 33 Aliper, A., et al. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm. 13 (2016), 2524–2530.
    • (2016) Mol. Pharm. , vol.13 , pp. 2524-2530
    • Aliper, A.1
  • 34
    • 84985021911 scopus 로고    scopus 로고
    • Recommendation techniques for drug–target interaction prediction and drug repositioning. Data mining techniques for the life sciences
    • 34 Alaimo, S., et al. Recommendation techniques for drug–target interaction prediction and drug repositioning. Data mining techniques for the life sciences. Methods Mol. Biol. 1415 (2016), 441–462.
    • (2016) Methods Mol. Biol. , vol.1415 , pp. 441-462
    • Alaimo, S.1
  • 35
    • 77957044703 scopus 로고    scopus 로고
    • Discovery of drug mode of action and drug repositioning from transcriptional responses
    • 35 Iorio, F., et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 14621–14626.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 14621-14626
    • Iorio, F.1
  • 36
    • 33749335282 scopus 로고    scopus 로고
    • The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease
    • 36 Lamb, J., et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313 (2006), 1929–1935.
    • (2006) Science , vol.313 , pp. 1929-1935
    • Lamb, J.1
  • 37
    • 59649109178 scopus 로고    scopus 로고
    • Identifying network of drug mode of action by gene expression profiling
    • 37 Iorio, F., et al. Identifying network of drug mode of action by gene expression profiling. J. Comput. Biol. 16 (2009), 241–251.
    • (2009) J. Comput. Biol. , vol.16 , pp. 241-251
    • Iorio, F.1
  • 38
    • 0001332440 scopus 로고
    • Spearman's footrule as a measure of disarray
    • 38 Diaconis, P., Graham, R., Spearman's footrule as a measure of disarray. J. R. Stat. Soc. 39 (1977), 262–268.
    • (1977) J. R. Stat. Soc. , vol.39 , pp. 262-268
    • Diaconis, P.1    Graham, R.2
  • 39
    • 77952044175 scopus 로고    scopus 로고
    • Space oriented rank-based data integration
    • 39 Lin, S., et al. Space oriented rank-based data integration. Stat. Appl. Genet. Mol. Biol., 9, 2010, Article 20.
    • (2010) Stat. Appl. Genet. Mol. Biol. , vol.9 , pp. Article 20
    • Lin, S.1
  • 40
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
    • 40 Subramanian, A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102 (2005), 15545–15550.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 15545-15550
    • Subramanian, A.1
  • 41
    • 33745012299 scopus 로고    scopus 로고
    • Modularity and community structure in networks
    • 41 Newman, M.E., Modularity and community structure in networks. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 8577–8582.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 8577-8582
    • Newman, M.E.1
  • 42
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • 42 Frey, B.J., Dueck, D., Clustering by passing messages between data points. Science 315 (2007), 972–976.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 43
    • 0001969211 scopus 로고    scopus 로고
    • Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching
    • 43 Gribskov, M., Robinson, N.L., Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching. Comput. Chem. 20 (1996), 25–33.
    • (1996) Comput. Chem. , vol.20 , pp. 25-33
    • Gribskov, M.1    Robinson, N.L.2
  • 44
    • 0038364056 scopus 로고    scopus 로고
    • Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy
    • 44 Ravikumar, B., et al. Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy. Hum. Mol. Genet. 12 (2003), 985–994.
    • (2003) Hum. Mol. Genet. , vol.12 , pp. 985-994
    • Ravikumar, B.1
  • 45
    • 70349644001 scopus 로고    scopus 로고
    • Tamoxifen and AEBS ligands induced apoptosis and autophagy in breast cancer cells through the stimulation of sterol accumulation
    • 45 de Medina, P., et al. Tamoxifen and AEBS ligands induced apoptosis and autophagy in breast cancer cells through the stimulation of sterol accumulation. Autophagy 5 (2009), 1066–1067.
    • (2009) Autophagy , vol.5 , pp. 1066-1067
    • de Medina, P.1
  • 46
    • 84923306828 scopus 로고    scopus 로고
    • Uncovering disease–disease relationships through the incomplete interactome
    • 46 Menche, J., et al. Uncovering disease–disease relationships through the incomplete interactome. Science, 347, 2015, 1257601.
    • (2015) Science , vol.347 , pp. 1257601
    • Menche, J.1
  • 47
    • 84928753287 scopus 로고    scopus 로고
    • Network-based inference methods for drug repositioning
    • 47 Chen, H., et al. Network-based inference methods for drug repositioning. Comput. Math. Methods Med., 2015, 2015, 130620.
    • (2015) Comput. Math. Methods Med. , vol.2015 , pp. 130620
    • Chen, H.1
  • 48
    • 79958754253 scopus 로고    scopus 로고
    • PREDICT: a method for inferring novel drug indications with application to personalized medicine
    • 48 Gottlieb, A., et al. PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol., 7, 2011, 496.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 496
    • Gottlieb, A.1
  • 49
    • 68449088145 scopus 로고    scopus 로고
    • Human disease–drug network based on genomic expression profiles
    • 49 Hu, G., Agarwal, P., Human disease–drug network based on genomic expression profiles. PLoS ONE, 4, 2009, e6536.
    • (2009) PLoS ONE , vol.4 , pp. e6536
    • Hu, G.1    Agarwal, P.2
  • 50
    • 84867338003 scopus 로고    scopus 로고
    • Discovery and preclinical validation of drug indications using compendia of public gene expression data
    • 50 Sirota, M., et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Transl. Med., 3, 2011, 96ra77.
    • (2011) Sci. Transl. Med. , vol.3 , pp. 96ra77
    • Sirota, M.1
  • 51
    • 84930642740 scopus 로고    scopus 로고
    • Matrix factorization-based prediction of novel drug indications by integrating genomic space
    • 51 Dai, W., et al. Matrix factorization-based prediction of novel drug indications by integrating genomic space. Comput. Math. Methods Med., 2015, 2015, 275045.
    • (2015) Comput. Math. Methods Med. , vol.2015 , pp. 275045
    • Dai, W.1
  • 52
    • 84863695210 scopus 로고    scopus 로고
    • Prediction of drug–target interactions and drug repositioning via network-based inference
    • 52 Cheng, F., et al. Prediction of drug–target interactions and drug repositioning via network-based inference. PLoS Comput. Biol., 8, 2011, e1002503.
    • (2011) PLoS Comput. Biol. , vol.8 , pp. e1002503
    • Cheng, F.1
  • 53
    • 84863087650 scopus 로고    scopus 로고
    • Rational drug repositioning guided by an integrated pharmacological network of protein, disease and drug
    • 53 Lee, H.S., et al. Rational drug repositioning guided by an integrated pharmacological network of protein, disease and drug. BMC Syst. Biol., 6, 2012, 80.
    • (2012) BMC Syst. Biol. , vol.6 , pp. 80
    • Lee, H.S.1
  • 54
    • 84907472686 scopus 로고    scopus 로고
    • Drug repositioning discovery for early- and late-stage non-small-cell lung cancer
    • 54 Huang, C.H., et al. Drug repositioning discovery for early- and late-stage non-small-cell lung cancer. BioMed Res. Int., 2014, 2014, 193817.
    • (2014) BioMed Res. Int. , vol.2014 , pp. 193817
    • Huang, C.H.1
  • 55
    • 80051831092 scopus 로고    scopus 로고
    • Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease
    • 96ra76
    • 55 Dudley, J.T., et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl. Med., 3, 2011 96ra76.
    • (2011) Sci. Transl. Med. , vol.3
    • Dudley, J.T.1
  • 56
    • 84902075817 scopus 로고    scopus 로고
    • Drug-repurposing identified the combination of Trolox C and Cytisine for the treatment of type 2 diabetes
    • 56 Jin, L., et al. Drug-repurposing identified the combination of Trolox C and Cytisine for the treatment of type 2 diabetes. J. Transl. Med., 12, 2014, 153.
    • (2014) J. Transl. Med. , vol.12 , pp. 153
    • Jin, L.1
  • 57
    • 84881116194 scopus 로고    scopus 로고
    • Systematic identification of proteins that elicit drug side effects
    • 57 Kuhn, M., et al. Systematic identification of proteins that elicit drug side effects. Mol. Syst. Biol., 9, 2013, 663.
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 663
    • Kuhn, M.1
  • 58
    • 84938394268 scopus 로고    scopus 로고
    • Network-based approaches for drug response prediction and targeted therapy development in cancer
    • 58 Dorel, M., et al. Network-based approaches for drug response prediction and targeted therapy development in cancer. Biochem. Biophys. Res. Commun. 464 (2015), 386–391.
    • (2015) Biochem. Biophys. Res. Commun. , vol.464 , pp. 386-391
    • Dorel, M.1
  • 59
    • 84863243471 scopus 로고    scopus 로고
    • Identification of common biological pathways and drug targets across multiple respiratory viruses based on human host gene expression analysis
    • 59 Smith, S.B., et al. Identification of common biological pathways and drug targets across multiple respiratory viruses based on human host gene expression analysis. PLoS ONE, 7, 2012, e33174.
    • (2012) PLoS ONE , vol.7 , pp. e33174
    • Smith, S.B.1
  • 60
    • 84943190030 scopus 로고    scopus 로고
    • Drug-Path: a database for drug-induced pathways
    • 60 Zeng, H., et al. Drug-Path: a database for drug-induced pathways. Database, 2015, 2015, bav061.
    • (2015) Database , vol.2015 , pp. bav061
    • Zeng, H.1
  • 61
    • 84894660885 scopus 로고    scopus 로고
    • Pathway analysis for drug repositioning based on public database mining
    • 61 Pan, Y., et al. Pathway analysis for drug repositioning based on public database mining. J. Chem. Inf. Model. 54 (2014), 407–418.
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 407-418
    • Pan, Y.1
  • 62
    • 50949089899 scopus 로고    scopus 로고
    • Inference of protein complex activities from chemical-genetic profile and its applications: predicting drug–target pathways
    • 62 Han, S., Kim, D., Inference of protein complex activities from chemical-genetic profile and its applications: predicting drug–target pathways. PLoS Comput. Biol., 4, 2008, e1000162.
    • (2008) PLoS Comput. Biol. , vol.4 , pp. e1000162
    • Han, S.1    Kim, D.2
  • 63
    • 35148838537 scopus 로고    scopus 로고
    • Drug–target network
    • 63 Yildirim, M.A., et al. Drug–target network. Nat. Biotechnol. 25 (2007), 1119–1126.
    • (2007) Nat. Biotechnol. , vol.25 , pp. 1119-1126
    • Yildirim, M.A.1
  • 64
    • 84931056137 scopus 로고    scopus 로고
    • Improving compound–protein interaction prediction by building up highly credible negative samples
    • 64 Liu, H., et al. Improving compound–protein interaction prediction by building up highly credible negative samples. Bioinformatics 31 (2015), i221–i229.
    • (2015) Bioinformatics , vol.31 , pp. i221-i229
    • Liu, H.1
  • 65
    • 84859638338 scopus 로고    scopus 로고
    • Use of genome-wide association studies for drug repositioning
    • 65 Sanseau, P., et al. Use of genome-wide association studies for drug repositioning. Nat. Biotechnol. 30 (2012), 317–320.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 317-320
    • Sanseau, P.1
  • 66
    • 84991518561 scopus 로고    scopus 로고
    • An integrated data driven approach to drug repositioning using gene–disease associations
    • 66 Mullen, J., et al. An integrated data driven approach to drug repositioning using gene–disease associations. PLOS ONE, 11, 2016, e0155811.
    • (2016) PLOS ONE , vol.11 , pp. e0155811
    • Mullen, J.1
  • 67
    • 84877358657 scopus 로고    scopus 로고
    • Compensating for literature annotation bias when predicting novel drug–disease relationships through Medical Subject Heading Over representation Profile (MeSHOP) similarity
    • 67 Cheung, W.A., et al. Compensating for literature annotation bias when predicting novel drug–disease relationships through Medical Subject Heading Over representation Profile (MeSHOP) similarity. BMC Med. Genomics, 6(Suppl. 2), 2013, S3.
    • (2013) BMC Med. Genomics , vol.6 , pp. S3
    • Cheung, W.A.1
  • 68
    • 84958987044 scopus 로고    scopus 로고
    • Leveraging big data to transform target selection and drug discovery
    • 68 Chen, B., Butte, A.J., Leveraging big data to transform target selection and drug discovery. Clin. Pharmacol. Ther. 99 (2016), 285–297.
    • (2016) Clin. Pharmacol. Ther. , vol.99 , pp. 285-297
    • Chen, B.1    Butte, A.J.2
  • 69
    • 84981164692 scopus 로고    scopus 로고
    • Comparing drug images and repurposing drugs with BioGPS and FLAPdock: the thymidylate synthase case
    • 69 Siragusa, L., et al. Comparing drug images and repurposing drugs with BioGPS and FLAPdock: the thymidylate synthase case. ChemMedChem 11 (2016), 1–15.
    • (2016) ChemMedChem , vol.11 , pp. 1-15
    • Siragusa, L.1
  • 70
    • 79959926410 scopus 로고    scopus 로고
    • DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome
    • 70 Luo, H., et al. DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res. 39 (2011), W492–W498.
    • (2011) Nucleic Acids Res. , vol.39 , pp. W492-W498
    • Luo, H.1
  • 71
    • 70449634957 scopus 로고    scopus 로고
    • Predicting new molecular targets for known drugs
    • 71 Keiser, M.J., et al. Predicting new molecular targets for known drugs. Nature 462 (2009), 175–181.
    • (2009) Nature , vol.462 , pp. 175-181
    • Keiser, M.J.1
  • 72
    • 33846876695 scopus 로고    scopus 로고
    • Relating protein pharmacology by ligand chemistry
    • 72 Keiser, M.J., et al. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25 (2007), 197–206.
    • (2007) Nat. Biotechnol. , vol.25 , pp. 197-206
    • Keiser, M.J.1
  • 73
    • 44449159422 scopus 로고    scopus 로고
    • Quantifying the relationships among drug classes
    • 73 Hert, J., et al. Quantifying the relationships among drug classes. J. Chem. Inf. Model. 48 (2008), 755–765.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 755-765
    • Hert, J.1
  • 74
    • 77949497025 scopus 로고    scopus 로고
    • Solving the apparent diversity-accuracy dilemma of recommender systems
    • 74 Zhou, T., et al. Solving the apparent diversity-accuracy dilemma of recommender systems. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 4511–4515.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 4511-4515
    • Zhou, T.1
  • 75
    • 84880993729 scopus 로고    scopus 로고
    • Drug–target interaction prediction through domain-tuned network-based inference
    • 75 Alaimo, S., et al. Drug–target interaction prediction through domain-tuned network-based inference. Bioinformatics 29 (2013), 2004–2008.
    • (2013) Bioinformatics , vol.29 , pp. 2004-2008
    • Alaimo, S.1
  • 76
    • 33745391215 scopus 로고    scopus 로고
    • Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases
    • 76 Nidhi, et al. Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J. Chem. Inf. Model. 46 (2006), 1124–1133.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1124-1133
    • Nidhi1
  • 77
    • 84887096924 scopus 로고    scopus 로고
    • Using molecular features of xenobiotics to predict hepatic gene expression response
    • 77 Fernald, G.H., Altman, R.B., Using molecular features of xenobiotics to predict hepatic gene expression response. J. Chem. Inf. Model. 53 (2013), 2765–2773.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2765-2773
    • Fernald, G.H.1    Altman, R.B.2
  • 78
    • 67651166638 scopus 로고    scopus 로고
    • Generating genome-scale candidate gene lists for pharmacogenomics
    • 78 Hansen, N.T., et al. Generating genome-scale candidate gene lists for pharmacogenomics. Clin. Pharmacol. Ther. 86 (2009), 183–189.
    • (2009) Clin. Pharmacol. Ther. , vol.86 , pp. 183-189
    • Hansen, N.T.1
  • 79
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug–target interaction networks from the integration of chemical and genomic spaces
    • 79 Yamanishi, Y., et al. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24 (2008), i232–i240.
    • (2008) Bioinformatics , vol.24 , pp. i232-i240
    • Yamanishi, Y.1
  • 80
    • 84886775358 scopus 로고    scopus 로고
    • Pathway-based drug repositioning using causal inference
    • 80 Li, J., Lu, Z., Pathway-based drug repositioning using causal inference. BMC Bioinform., 14(Suppl. 16), 2013, S3.
    • (2013) BMC Bioinform. , vol.14 , pp. S3
    • Li, J.1    Lu, Z.2
  • 81
    • 83755163958 scopus 로고    scopus 로고
    • Systematic drug repositioning based on clinical side-effects
    • 81 Yang, L., Agarwal, P., Systematic drug repositioning based on clinical side-effects. PLoS ONE, 6, 2011, e28025.
    • (2011) PLoS ONE , vol.6 , pp. e28025
    • Yang, L.1    Agarwal, P.2
  • 82
  • 83
    • 84873429648 scopus 로고    scopus 로고
    • SVDFeature: a toolkit for feature-based collaborative filtering
    • 83 Chen, T., et al. SVDFeature: a toolkit for feature-based collaborative filtering. J. Mach. Learn. Res. 13 (2012), 3619–3622.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 3619-3622
    • Chen, T.1
  • 84
    • 84872509876 scopus 로고    scopus 로고
    • Drug–target interaction prediction by learning from local information and neighbors
    • 84 Mei, J.P., et al. Drug–target interaction prediction by learning from local information and neighbors. Bioinformatics 29 (2013), 238–245.
    • (2013) Bioinformatics , vol.29 , pp. 238-245
    • Mei, J.P.1
  • 86
    • 69849094133 scopus 로고    scopus 로고
    • Supervised prediction of drug–target interactions using bipartite local models
    • 86 Bleakley, K., Yamanishi, Y., Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25 (2009), 2397–2403.
    • (2009) Bioinformatics , vol.25 , pp. 2397-2403
    • Bleakley, K.1    Yamanishi, Y.2
  • 87
    • 80054881553 scopus 로고    scopus 로고
    • Gaussian interaction profile kernels for predicting drug–target interaction
    • 87 van Laarhoven, T., et al. Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27 (2011), 3036–3043.
    • (2011) Bioinformatics , vol.27 , pp. 3036-3043
    • van Laarhoven, T.1
  • 88
    • 0024689801 scopus 로고
    • A critical investigation of recall and precision as measures of retrieval system performance
    • 88 Raghavan, V.V., et al. A critical investigation of recall and precision as measures of retrieval system performance. ACM Trans. Inf. Syst. 7 (1989), 205–229.
    • (1989) ACM Trans. Inf. Syst. , vol.7 , pp. 205-229
    • Raghavan, V.V.1
  • 89
    • 84859264011 scopus 로고    scopus 로고
    • A co-module approach for elucidating drug-disease associations and revealing their molecular basis
    • 89 Zhao, S., Li, S., A co-module approach for elucidating drug-disease associations and revealing their molecular basis. Bioinformatics 28 (2012), 955–961.
    • (2012) Bioinformatics , vol.28 , pp. 955-961
    • Zhao, S.1    Li, S.2
  • 90
    • 84863691513 scopus 로고    scopus 로고
    • Drug repositioning through incomplete bi-cliques in an integrated drug–target–disease network
    • 90 Daminelli, S., et al. Drug repositioning through incomplete bi-cliques in an integrated drug–target–disease network. Integr. Biol. 4 (2012), 778–788.
    • (2012) Integr. Biol. , vol.4 , pp. 778-788
    • Daminelli, S.1
  • 91
    • 84973352442 scopus 로고    scopus 로고
    • Opportunities for web-based drug repositioning: searching for potential antihypertensive agents with hypotension adverse events
    • 91 Wang, K., et al. Opportunities for web-based drug repositioning: searching for potential antihypertensive agents with hypotension adverse events. J. Med. Internet Res., 18, 2016, e76.
    • (2016) J. Med. Internet Res. , vol.18 , pp. e76
    • Wang, K.1
  • 92
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • 92 Oquab, M., et al. Learning and transferring mid-level image representations using convolutional neural networks. Proc. 2014 IEEE Conf. Computer Vision Pattern Recogni., 2014, 1717–1724.
    • (2014) Proc. 2014 IEEE Conf. Computer Vision Pattern Recogni. , pp. 1717-1724
    • Oquab, M.1
  • 93
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure-activity relationships
    • 93 Ma, J., et al. Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 55 (2015), 263–274.
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 263-274
    • Ma, J.1
  • 94
    • 84922788059 scopus 로고    scopus 로고
    • Pairwise input neural network for target–ligand interaction prediction
    • 94 Wang, C., et al. Pairwise input neural network for target–ligand interaction prediction. 2014 IEEE Int. Conf. Bioinformatics Biomed., 2014, 67–70.
    • (2014) 2014 IEEE Int. Conf. Bioinformatics Biomed. , pp. 67-70
    • Wang, C.1
  • 95
    • 84968861400 scopus 로고    scopus 로고
    • Applications of deep learning in biomedicine
    • 95 Mamoshina, P., et al. Applications of deep learning in biomedicine. Mol. Pharm. 13 (2016), 1445–1454.
    • (2016) Mol. Pharm. , vol.13 , pp. 1445-1454
    • Mamoshina, P.1
  • 96
    • 84945557463 scopus 로고    scopus 로고
    • Deep learning for drug-induced liver injury
    • 96 Xu, Y., et al. Deep learning for drug-induced liver injury. J. Chem. Inf. Model. 55 (2015), 2085–2093.
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 2085-2093
    • Xu, Y.1
  • 97
    • 84945573112 scopus 로고    scopus 로고
    • Modeling epoxidation of drug-like molecules with a deep machine learning network
    • 97 Hughes, T.B., et al. Modeling epoxidation of drug-like molecules with a deep machine learning network. ACS Cent. Sci. 1 (2015), 168–180.
    • (2015) ACS Cent. Sci. , vol.1 , pp. 168-180
    • Hughes, T.B.1
  • 98
    • 84987943069 scopus 로고    scopus 로고
    • DeepTox: toxicity prediction using deep learning
    • Published online February 2, 2016
    • 98 Mayr, A., et al. DeepTox: toxicity prediction using deep learning. Front. Environ. Sci., 2016 Published online February 2, 2016 http://dx.doi.org/10.3389/fenvs.2015.00080.
    • (2016) Front. Environ. Sci.
    • Mayr, A.1
  • 99
    • 84927735077 scopus 로고    scopus 로고
    • Massively Multitask Networks for Drug Discovery
    • arXiv:1502.02072
    • 99 Ramsundar, B., et al. Massively Multitask Networks for Drug Discovery. 2015 arXiv:1502.02072.
    • (2015)
    • Ramsundar, B.1
  • 100
    • 84923361116 scopus 로고    scopus 로고
    • Multi-task Neural Networks for QSAR Predictions
    • arXiv:1406.1231
    • 100 Dahl, G.E., et al. Multi-task Neural Networks for QSAR Predictions. 2014 arXiv:1406.1231.
    • (2014)
    • Dahl, G.E.1
  • 101
    • 85009418044 scopus 로고    scopus 로고
    • X-TREPAN: A Multi-class Regression and Adapted Extraction of Comprehensible Decision Tree in Artificial Neural Networks
    • arXiv:1508.07551
    • 101 Karim, A., Zhou, S., X-TREPAN: A Multi-class Regression and Adapted Extraction of Comprehensible Decision Tree in Artificial Neural Networks. 2015 arXiv:1508.07551.
    • (2015)
    • Karim, A.1    Zhou, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.