-
1
-
-
80052204248
-
Identifying R&D outliers
-
1 Tollman, P., et al. Identifying R&D outliers. Nat. Rev. Drug Discov. 10 (2011), 653–654.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, pp. 653-654
-
-
Tollman, P.1
-
2
-
-
84857743319
-
Diagnosing the decline in pharmaceutical R&D efficiency
-
2 Scannell, J.W., et al. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 1 (2012), 191–200.
-
(2012)
Nat. Rev. Drug Discov.
, vol.1
, pp. 191-200
-
-
Scannell, J.W.1
-
3
-
-
4344668661
-
Drug repositioning: identifying and developing new uses for existing drugs
-
3 Ashburn, T.T., Thor, K.B., Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3 (2004), 673–683.
-
(2004)
Nat. Rev. Drug Discov.
, vol.3
, pp. 673-683
-
-
Ashburn, T.T.1
Thor, K.B.2
-
4
-
-
79960796417
-
Exploiting drug-disease relationships for computational drug repositioning
-
4 Dudley, J.T., et al. Exploiting drug-disease relationships for computational drug repositioning. Brief. Bioinform. 12 (2011), 303–311.
-
(2011)
Brief. Bioinform.
, vol.12
, pp. 303-311
-
-
Dudley, J.T.1
-
5
-
-
79959786193
-
How to revive breakthrough innovation in the pharmaceutical industry
-
5 Munos, B.H., Chin, W.W., How to revive breakthrough innovation in the pharmaceutical industry. Sci. Transl. Med., 3, 2011, 89cm16.
-
(2011)
Sci. Transl. Med.
, vol.3
, pp. 89cm16
-
-
Munos, B.H.1
Chin, W.W.2
-
6
-
-
84950162061
-
Why and how have drug discovery strategies in pharma changed? What are the new mindsets?
-
6 Mignani, S., et al. Why and how have drug discovery strategies in pharma changed? What are the new mindsets?. Drug Discov. Today 21 (2016), 239–249.
-
(2016)
Drug Discov. Today
, vol.21
, pp. 239-249
-
-
Mignani, S.1
-
7
-
-
84876888105
-
Challenges and opportunities of drug repositioning
-
7 Novac, N., Challenges and opportunities of drug repositioning. Trends Pharmacol. Sci. 34 (2013), 267–272.
-
(2013)
Trends Pharmacol. Sci.
, vol.34
, pp. 267-272
-
-
Novac, N.1
-
8
-
-
85012059856
-
Drug repurposing patent applications October–December 2015
-
8 Mucke, H.A.M., Drug repurposing patent applications October–December 2015. Assay Drug Dev. Technol. 14 (2016), 308–312.
-
(2016)
Assay Drug Dev. Technol.
, vol.14
, pp. 308-312
-
-
Mucke, H.A.M.1
-
9
-
-
84940747543
-
Therapeutic drug repurposing, repositioning, and rescue: Part III. Market exclusivity using intellectual property and regulatory pathways
-
9 Naylor, S., et al. Therapeutic drug repurposing, repositioning, and rescue: Part III. Market exclusivity using intellectual property and regulatory pathways. Drug Discov. World, 2015, 62–69.
-
(2015)
Drug Discov. World
, pp. 62-69
-
-
Naylor, S.1
-
10
-
-
85012038499
-
Sources and targets for drug repurposing: landscaping transitions in therapeutic space
-
10 Mucke, H.A.M., Mucke, E., Sources and targets for drug repurposing: landscaping transitions in therapeutic space. Drug Repurpos. Rescue Reposition. 1 (2015), 22–27.
-
(2015)
Drug Repurpos. Rescue Reposition.
, vol.1
, pp. 22-27
-
-
Mucke, H.A.M.1
Mucke, E.2
-
11
-
-
84903194920
-
Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease
-
11 Yarchoan, M., Arnold, S.E., Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease. Diabetes 63 (2014), 2253–2261.
-
(2014)
Diabetes
, vol.63
, pp. 2253-2261
-
-
Yarchoan, M.1
Arnold, S.E.2
-
12
-
-
84981234292
-
Drug repurposing for vascular dementia: overview and current developments
-
12 Mucke, H.A.M., Drug repurposing for vascular dementia: overview and current developments. Future Neurol. 11 (2016), 215–225.
-
(2016)
Future Neurol.
, vol.11
, pp. 215-225
-
-
Mucke, H.A.M.1
-
13
-
-
84982851736
-
Repurposing FDA-approved drugs for anti-aging therapies
-
Published online August 2, 2016
-
13 Snell, W.T., et al. Repurposing FDA-approved drugs for anti-aging therapies. Biogerontology, 2016, 10.1007/s10522-016-9660-x Published online August 2, 2016.
-
(2016)
Biogerontology
-
-
Snell, W.T.1
-
14
-
-
84954512298
-
Challenges and perspective of drug repurposing strategies in early phase clinical trials
-
14 Shumei, K., et al. Challenges and perspective of drug repurposing strategies in early phase clinical trials. Oncoscience 2 (2015), 576–580.
-
(2015)
Oncoscience
, vol.2
, pp. 576-580
-
-
Shumei, K.1
-
15
-
-
84980385928
-
Tumor deconstruction as a tool for advanced drug screening and repositioning
-
15 Rutika, R., et al. Tumor deconstruction as a tool for advanced drug screening and repositioning. Pharmacol. Res. 111 (2016), 815–819.
-
(2016)
Pharmacol. Res.
, vol.111
, pp. 815-819
-
-
Rutika, R.1
-
16
-
-
84960389367
-
Repurposing old drugs to chemoprevention: the case of metformin
-
16 Heckman-Stoddard, B.M., et al. Repurposing old drugs to chemoprevention: the case of metformin. Semin. Oncol. 43 (2016), 123–133.
-
(2016)
Semin. Oncol.
, vol.43
, pp. 123-133
-
-
Heckman-Stoddard, B.M.1
-
17
-
-
84951335652
-
Repurposing Vitamin D as an anticancer drug
-
17 Gilbert, D.C., Repurposing Vitamin D as an anticancer drug. Clin. Oncol. 28 (2016), 36–41.
-
(2016)
Clin. Oncol.
, vol.28
, pp. 36-41
-
-
Gilbert, D.C.1
-
18
-
-
84902357848
-
Recent advances in drug repositioning for the discovery of new anticancer drugs
-
18 Shim, J.S., Liu, J.O., Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci. 10 (2014), 654–663.
-
(2014)
Int. J. Biol. Sci.
, vol.10
, pp. 654-663
-
-
Shim, J.S.1
Liu, J.O.2
-
19
-
-
84956680067
-
Network-based in silico drug efficacy screening
-
19 Guney, E., et al. Network-based in silico drug efficacy screening. Nat. Commun., 7, 2016, 10331.
-
(2016)
Nat. Commun.
, vol.7
, pp. 10331
-
-
Guney, E.1
-
20
-
-
84899087809
-
Priority Medicines for Europe and the World Update 2013
-
WHO
-
20 Kaplan, W., et al. Priority Medicines for Europe and the World Update 2013. 2013, WHO.
-
(2013)
-
-
Kaplan, W.1
-
21
-
-
84963553689
-
In silico methods for drug repurposing and pharmacology
-
21 Hodos, R.A., et al. In silico methods for drug repurposing and pharmacology. WIREs Syst. Biol. Med. 8 (2016), 186–210.
-
(2016)
WIREs Syst. Biol. Med.
, vol.8
, pp. 186-210
-
-
Hodos, R.A.1
-
22
-
-
84877743291
-
Network-based drug repositioning
-
22 Wu, Z., et al. Network-based drug repositioning. Mol. BioSyst. 9 (2013), 1268–1281.
-
(2013)
Mol. BioSyst.
, vol.9
, pp. 1268-1281
-
-
Wu, Z.1
-
23
-
-
84885612492
-
Advanced systems biology methods in drug discovery and translational biomedicine
-
23 Zou, J., et al. Advanced systems biology methods in drug discovery and translational biomedicine. BioMed Res. Int., 2013, 2013, 742835.
-
(2013)
BioMed Res. Int.
, vol.2013
, pp. 742835
-
-
Zou, J.1
-
24
-
-
84959523909
-
Systems biology approaches to a rational drug discovery paradigm
-
24 Prathipati, P., Mizuguchi, K., Systems biology approaches to a rational drug discovery paradigm. Curr. Top. Med. Chem. 16 (2016), 1009–1025.
-
(2016)
Curr. Top. Med. Chem.
, vol.16
, pp. 1009-1025
-
-
Prathipati, P.1
Mizuguchi, K.2
-
25
-
-
84953329262
-
In silico methods to address polypharmacology: current status, applications and future perspectives
-
25 Lavecchia, A., Cerchia, C., In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discov. Today 21 (2016), 288–298.
-
(2016)
Drug Discov. Today
, vol.21
, pp. 288-298
-
-
Lavecchia, A.1
Cerchia, C.2
-
26
-
-
84948578044
-
Identification of drug candidates and repurposing opportunities through compound–target interaction networks
-
26 Cichonska, A., et al. Identification of drug candidates and repurposing opportunities through compound–target interaction networks. Expert Opin. Drug Discov. 10 (2015), 1333–1345.
-
(2015)
Expert Opin. Drug Discov.
, vol.10
, pp. 1333-1345
-
-
Cichonska, A.1
-
27
-
-
79953716848
-
Mind-best: web server for drugs and target discovery; design, synthesis, and assay of MAO-B inhibitors and theoretical-experimental study of G3PDH protein from Trichomonas gallinae
-
27 Gonzalez-Daz, H., et al. Mind-best: web server for drugs and target discovery; design, synthesis, and assay of MAO-B inhibitors and theoretical-experimental study of G3PDH protein from Trichomonas gallinae. J. Proteome Res. 10 (2011), 1698–1718.
-
(2011)
J. Proteome Res.
, vol.10
, pp. 1698-1718
-
-
Gonzalez-Daz, H.1
-
28
-
-
79955562721
-
Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir
-
28 Xie, L., et al. Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLoS Comput. Biol., 7, 2011, e1002037.
-
(2011)
PLoS Comput. Biol.
, vol.7
, pp. e1002037
-
-
Xie, L.1
-
29
-
-
47249146126
-
Drug target identification using side-effect similarity
-
29 Campillos, M., et al. Drug target identification using side-effect similarity. Science 321 (2008), 263–266.
-
(2008)
Science
, vol.321
, pp. 263-266
-
-
Campillos, M.1
-
30
-
-
84871748184
-
DvD: an R/Cytoscape pipeline for drug repurposing using public repositories of gene expression data
-
30 Pacini, C., et al. DvD: an R/Cytoscape pipeline for drug repurposing using public repositories of gene expression data. Bioinformatics 29 (2013), 132–134.
-
(2013)
Bioinformatics
, vol.29
, pp. 132-134
-
-
Pacini, C.1
-
31
-
-
84890027846
-
A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors
-
31 Jahchan, N.S., et al. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov. 3 (2013), 1364–1377.
-
(2013)
Cancer Discov.
, vol.3
, pp. 1364-1377
-
-
Jahchan, N.S.1
-
32
-
-
84976407069
-
Deep biomarkers of human aging: application of deep neural networks to biomarker development
-
32 Putin, E., et al. Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging 8 (2016), 1021–1033.
-
(2016)
Aging
, vol.8
, pp. 1021-1033
-
-
Putin, E.1
-
33
-
-
84979019529
-
Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data
-
33 Aliper, A., et al. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm. 13 (2016), 2524–2530.
-
(2016)
Mol. Pharm.
, vol.13
, pp. 2524-2530
-
-
Aliper, A.1
-
34
-
-
84985021911
-
Recommendation techniques for drug–target interaction prediction and drug repositioning. Data mining techniques for the life sciences
-
34 Alaimo, S., et al. Recommendation techniques for drug–target interaction prediction and drug repositioning. Data mining techniques for the life sciences. Methods Mol. Biol. 1415 (2016), 441–462.
-
(2016)
Methods Mol. Biol.
, vol.1415
, pp. 441-462
-
-
Alaimo, S.1
-
35
-
-
77957044703
-
Discovery of drug mode of action and drug repositioning from transcriptional responses
-
35 Iorio, F., et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 14621–14626.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 14621-14626
-
-
Iorio, F.1
-
36
-
-
33749335282
-
The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease
-
36 Lamb, J., et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313 (2006), 1929–1935.
-
(2006)
Science
, vol.313
, pp. 1929-1935
-
-
Lamb, J.1
-
37
-
-
59649109178
-
Identifying network of drug mode of action by gene expression profiling
-
37 Iorio, F., et al. Identifying network of drug mode of action by gene expression profiling. J. Comput. Biol. 16 (2009), 241–251.
-
(2009)
J. Comput. Biol.
, vol.16
, pp. 241-251
-
-
Iorio, F.1
-
38
-
-
0001332440
-
Spearman's footrule as a measure of disarray
-
38 Diaconis, P., Graham, R., Spearman's footrule as a measure of disarray. J. R. Stat. Soc. 39 (1977), 262–268.
-
(1977)
J. R. Stat. Soc.
, vol.39
, pp. 262-268
-
-
Diaconis, P.1
Graham, R.2
-
39
-
-
77952044175
-
Space oriented rank-based data integration
-
39 Lin, S., et al. Space oriented rank-based data integration. Stat. Appl. Genet. Mol. Biol., 9, 2010, Article 20.
-
(2010)
Stat. Appl. Genet. Mol. Biol.
, vol.9
, pp. Article 20
-
-
Lin, S.1
-
40
-
-
27344435774
-
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
-
40 Subramanian, A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102 (2005), 15545–15550.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 15545-15550
-
-
Subramanian, A.1
-
41
-
-
33745012299
-
Modularity and community structure in networks
-
41 Newman, M.E., Modularity and community structure in networks. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 8577–8582.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 8577-8582
-
-
Newman, M.E.1
-
42
-
-
33847172327
-
Clustering by passing messages between data points
-
42 Frey, B.J., Dueck, D., Clustering by passing messages between data points. Science 315 (2007), 972–976.
-
(2007)
Science
, vol.315
, pp. 972-976
-
-
Frey, B.J.1
Dueck, D.2
-
43
-
-
0001969211
-
Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching
-
43 Gribskov, M., Robinson, N.L., Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching. Comput. Chem. 20 (1996), 25–33.
-
(1996)
Comput. Chem.
, vol.20
, pp. 25-33
-
-
Gribskov, M.1
Robinson, N.L.2
-
44
-
-
0038364056
-
Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy
-
44 Ravikumar, B., et al. Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy. Hum. Mol. Genet. 12 (2003), 985–994.
-
(2003)
Hum. Mol. Genet.
, vol.12
, pp. 985-994
-
-
Ravikumar, B.1
-
45
-
-
70349644001
-
Tamoxifen and AEBS ligands induced apoptosis and autophagy in breast cancer cells through the stimulation of sterol accumulation
-
45 de Medina, P., et al. Tamoxifen and AEBS ligands induced apoptosis and autophagy in breast cancer cells through the stimulation of sterol accumulation. Autophagy 5 (2009), 1066–1067.
-
(2009)
Autophagy
, vol.5
, pp. 1066-1067
-
-
de Medina, P.1
-
46
-
-
84923306828
-
Uncovering disease–disease relationships through the incomplete interactome
-
46 Menche, J., et al. Uncovering disease–disease relationships through the incomplete interactome. Science, 347, 2015, 1257601.
-
(2015)
Science
, vol.347
, pp. 1257601
-
-
Menche, J.1
-
47
-
-
84928753287
-
Network-based inference methods for drug repositioning
-
47 Chen, H., et al. Network-based inference methods for drug repositioning. Comput. Math. Methods Med., 2015, 2015, 130620.
-
(2015)
Comput. Math. Methods Med.
, vol.2015
, pp. 130620
-
-
Chen, H.1
-
48
-
-
79958754253
-
PREDICT: a method for inferring novel drug indications with application to personalized medicine
-
48 Gottlieb, A., et al. PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol., 7, 2011, 496.
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 496
-
-
Gottlieb, A.1
-
49
-
-
68449088145
-
Human disease–drug network based on genomic expression profiles
-
49 Hu, G., Agarwal, P., Human disease–drug network based on genomic expression profiles. PLoS ONE, 4, 2009, e6536.
-
(2009)
PLoS ONE
, vol.4
, pp. e6536
-
-
Hu, G.1
Agarwal, P.2
-
50
-
-
84867338003
-
Discovery and preclinical validation of drug indications using compendia of public gene expression data
-
50 Sirota, M., et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Transl. Med., 3, 2011, 96ra77.
-
(2011)
Sci. Transl. Med.
, vol.3
, pp. 96ra77
-
-
Sirota, M.1
-
51
-
-
84930642740
-
Matrix factorization-based prediction of novel drug indications by integrating genomic space
-
51 Dai, W., et al. Matrix factorization-based prediction of novel drug indications by integrating genomic space. Comput. Math. Methods Med., 2015, 2015, 275045.
-
(2015)
Comput. Math. Methods Med.
, vol.2015
, pp. 275045
-
-
Dai, W.1
-
52
-
-
84863695210
-
Prediction of drug–target interactions and drug repositioning via network-based inference
-
52 Cheng, F., et al. Prediction of drug–target interactions and drug repositioning via network-based inference. PLoS Comput. Biol., 8, 2011, e1002503.
-
(2011)
PLoS Comput. Biol.
, vol.8
, pp. e1002503
-
-
Cheng, F.1
-
53
-
-
84863087650
-
Rational drug repositioning guided by an integrated pharmacological network of protein, disease and drug
-
53 Lee, H.S., et al. Rational drug repositioning guided by an integrated pharmacological network of protein, disease and drug. BMC Syst. Biol., 6, 2012, 80.
-
(2012)
BMC Syst. Biol.
, vol.6
, pp. 80
-
-
Lee, H.S.1
-
54
-
-
84907472686
-
Drug repositioning discovery for early- and late-stage non-small-cell lung cancer
-
54 Huang, C.H., et al. Drug repositioning discovery for early- and late-stage non-small-cell lung cancer. BioMed Res. Int., 2014, 2014, 193817.
-
(2014)
BioMed Res. Int.
, vol.2014
, pp. 193817
-
-
Huang, C.H.1
-
55
-
-
80051831092
-
Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease
-
96ra76
-
55 Dudley, J.T., et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl. Med., 3, 2011 96ra76.
-
(2011)
Sci. Transl. Med.
, vol.3
-
-
Dudley, J.T.1
-
56
-
-
84902075817
-
Drug-repurposing identified the combination of Trolox C and Cytisine for the treatment of type 2 diabetes
-
56 Jin, L., et al. Drug-repurposing identified the combination of Trolox C and Cytisine for the treatment of type 2 diabetes. J. Transl. Med., 12, 2014, 153.
-
(2014)
J. Transl. Med.
, vol.12
, pp. 153
-
-
Jin, L.1
-
57
-
-
84881116194
-
Systematic identification of proteins that elicit drug side effects
-
57 Kuhn, M., et al. Systematic identification of proteins that elicit drug side effects. Mol. Syst. Biol., 9, 2013, 663.
-
(2013)
Mol. Syst. Biol.
, vol.9
, pp. 663
-
-
Kuhn, M.1
-
58
-
-
84938394268
-
Network-based approaches for drug response prediction and targeted therapy development in cancer
-
58 Dorel, M., et al. Network-based approaches for drug response prediction and targeted therapy development in cancer. Biochem. Biophys. Res. Commun. 464 (2015), 386–391.
-
(2015)
Biochem. Biophys. Res. Commun.
, vol.464
, pp. 386-391
-
-
Dorel, M.1
-
59
-
-
84863243471
-
Identification of common biological pathways and drug targets across multiple respiratory viruses based on human host gene expression analysis
-
59 Smith, S.B., et al. Identification of common biological pathways and drug targets across multiple respiratory viruses based on human host gene expression analysis. PLoS ONE, 7, 2012, e33174.
-
(2012)
PLoS ONE
, vol.7
, pp. e33174
-
-
Smith, S.B.1
-
60
-
-
84943190030
-
Drug-Path: a database for drug-induced pathways
-
60 Zeng, H., et al. Drug-Path: a database for drug-induced pathways. Database, 2015, 2015, bav061.
-
(2015)
Database
, vol.2015
, pp. bav061
-
-
Zeng, H.1
-
61
-
-
84894660885
-
Pathway analysis for drug repositioning based on public database mining
-
61 Pan, Y., et al. Pathway analysis for drug repositioning based on public database mining. J. Chem. Inf. Model. 54 (2014), 407–418.
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 407-418
-
-
Pan, Y.1
-
62
-
-
50949089899
-
Inference of protein complex activities from chemical-genetic profile and its applications: predicting drug–target pathways
-
62 Han, S., Kim, D., Inference of protein complex activities from chemical-genetic profile and its applications: predicting drug–target pathways. PLoS Comput. Biol., 4, 2008, e1000162.
-
(2008)
PLoS Comput. Biol.
, vol.4
, pp. e1000162
-
-
Han, S.1
Kim, D.2
-
63
-
-
35148838537
-
Drug–target network
-
63 Yildirim, M.A., et al. Drug–target network. Nat. Biotechnol. 25 (2007), 1119–1126.
-
(2007)
Nat. Biotechnol.
, vol.25
, pp. 1119-1126
-
-
Yildirim, M.A.1
-
64
-
-
84931056137
-
Improving compound–protein interaction prediction by building up highly credible negative samples
-
64 Liu, H., et al. Improving compound–protein interaction prediction by building up highly credible negative samples. Bioinformatics 31 (2015), i221–i229.
-
(2015)
Bioinformatics
, vol.31
, pp. i221-i229
-
-
Liu, H.1
-
65
-
-
84859638338
-
Use of genome-wide association studies for drug repositioning
-
65 Sanseau, P., et al. Use of genome-wide association studies for drug repositioning. Nat. Biotechnol. 30 (2012), 317–320.
-
(2012)
Nat. Biotechnol.
, vol.30
, pp. 317-320
-
-
Sanseau, P.1
-
66
-
-
84991518561
-
An integrated data driven approach to drug repositioning using gene–disease associations
-
66 Mullen, J., et al. An integrated data driven approach to drug repositioning using gene–disease associations. PLOS ONE, 11, 2016, e0155811.
-
(2016)
PLOS ONE
, vol.11
, pp. e0155811
-
-
Mullen, J.1
-
67
-
-
84877358657
-
Compensating for literature annotation bias when predicting novel drug–disease relationships through Medical Subject Heading Over representation Profile (MeSHOP) similarity
-
67 Cheung, W.A., et al. Compensating for literature annotation bias when predicting novel drug–disease relationships through Medical Subject Heading Over representation Profile (MeSHOP) similarity. BMC Med. Genomics, 6(Suppl. 2), 2013, S3.
-
(2013)
BMC Med. Genomics
, vol.6
, pp. S3
-
-
Cheung, W.A.1
-
68
-
-
84958987044
-
Leveraging big data to transform target selection and drug discovery
-
68 Chen, B., Butte, A.J., Leveraging big data to transform target selection and drug discovery. Clin. Pharmacol. Ther. 99 (2016), 285–297.
-
(2016)
Clin. Pharmacol. Ther.
, vol.99
, pp. 285-297
-
-
Chen, B.1
Butte, A.J.2
-
69
-
-
84981164692
-
Comparing drug images and repurposing drugs with BioGPS and FLAPdock: the thymidylate synthase case
-
69 Siragusa, L., et al. Comparing drug images and repurposing drugs with BioGPS and FLAPdock: the thymidylate synthase case. ChemMedChem 11 (2016), 1–15.
-
(2016)
ChemMedChem
, vol.11
, pp. 1-15
-
-
Siragusa, L.1
-
70
-
-
79959926410
-
DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome
-
70 Luo, H., et al. DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res. 39 (2011), W492–W498.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. W492-W498
-
-
Luo, H.1
-
71
-
-
70449634957
-
Predicting new molecular targets for known drugs
-
71 Keiser, M.J., et al. Predicting new molecular targets for known drugs. Nature 462 (2009), 175–181.
-
(2009)
Nature
, vol.462
, pp. 175-181
-
-
Keiser, M.J.1
-
72
-
-
33846876695
-
Relating protein pharmacology by ligand chemistry
-
72 Keiser, M.J., et al. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25 (2007), 197–206.
-
(2007)
Nat. Biotechnol.
, vol.25
, pp. 197-206
-
-
Keiser, M.J.1
-
73
-
-
44449159422
-
Quantifying the relationships among drug classes
-
73 Hert, J., et al. Quantifying the relationships among drug classes. J. Chem. Inf. Model. 48 (2008), 755–765.
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 755-765
-
-
Hert, J.1
-
74
-
-
77949497025
-
Solving the apparent diversity-accuracy dilemma of recommender systems
-
74 Zhou, T., et al. Solving the apparent diversity-accuracy dilemma of recommender systems. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 4511–4515.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 4511-4515
-
-
Zhou, T.1
-
75
-
-
84880993729
-
Drug–target interaction prediction through domain-tuned network-based inference
-
75 Alaimo, S., et al. Drug–target interaction prediction through domain-tuned network-based inference. Bioinformatics 29 (2013), 2004–2008.
-
(2013)
Bioinformatics
, vol.29
, pp. 2004-2008
-
-
Alaimo, S.1
-
76
-
-
33745391215
-
Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases
-
76 Nidhi, et al. Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J. Chem. Inf. Model. 46 (2006), 1124–1133.
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 1124-1133
-
-
Nidhi1
-
77
-
-
84887096924
-
Using molecular features of xenobiotics to predict hepatic gene expression response
-
77 Fernald, G.H., Altman, R.B., Using molecular features of xenobiotics to predict hepatic gene expression response. J. Chem. Inf. Model. 53 (2013), 2765–2773.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2765-2773
-
-
Fernald, G.H.1
Altman, R.B.2
-
78
-
-
67651166638
-
Generating genome-scale candidate gene lists for pharmacogenomics
-
78 Hansen, N.T., et al. Generating genome-scale candidate gene lists for pharmacogenomics. Clin. Pharmacol. Ther. 86 (2009), 183–189.
-
(2009)
Clin. Pharmacol. Ther.
, vol.86
, pp. 183-189
-
-
Hansen, N.T.1
-
79
-
-
46249090791
-
Prediction of drug–target interaction networks from the integration of chemical and genomic spaces
-
79 Yamanishi, Y., et al. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24 (2008), i232–i240.
-
(2008)
Bioinformatics
, vol.24
, pp. i232-i240
-
-
Yamanishi, Y.1
-
80
-
-
84886775358
-
Pathway-based drug repositioning using causal inference
-
80 Li, J., Lu, Z., Pathway-based drug repositioning using causal inference. BMC Bioinform., 14(Suppl. 16), 2013, S3.
-
(2013)
BMC Bioinform.
, vol.14
, pp. S3
-
-
Li, J.1
Lu, Z.2
-
81
-
-
83755163958
-
Systematic drug repositioning based on clinical side-effects
-
81 Yang, L., Agarwal, P., Systematic drug repositioning based on clinical side-effects. PLoS ONE, 6, 2011, e28025.
-
(2011)
PLoS ONE
, vol.6
, pp. e28025
-
-
Yang, L.1
Agarwal, P.2
-
83
-
-
84873429648
-
SVDFeature: a toolkit for feature-based collaborative filtering
-
83 Chen, T., et al. SVDFeature: a toolkit for feature-based collaborative filtering. J. Mach. Learn. Res. 13 (2012), 3619–3622.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 3619-3622
-
-
Chen, T.1
-
84
-
-
84872509876
-
Drug–target interaction prediction by learning from local information and neighbors
-
84 Mei, J.P., et al. Drug–target interaction prediction by learning from local information and neighbors. Bioinformatics 29 (2013), 238–245.
-
(2013)
Bioinformatics
, vol.29
, pp. 238-245
-
-
Mei, J.P.1
-
86
-
-
69849094133
-
Supervised prediction of drug–target interactions using bipartite local models
-
86 Bleakley, K., Yamanishi, Y., Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25 (2009), 2397–2403.
-
(2009)
Bioinformatics
, vol.25
, pp. 2397-2403
-
-
Bleakley, K.1
Yamanishi, Y.2
-
87
-
-
80054881553
-
Gaussian interaction profile kernels for predicting drug–target interaction
-
87 van Laarhoven, T., et al. Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27 (2011), 3036–3043.
-
(2011)
Bioinformatics
, vol.27
, pp. 3036-3043
-
-
van Laarhoven, T.1
-
88
-
-
0024689801
-
A critical investigation of recall and precision as measures of retrieval system performance
-
88 Raghavan, V.V., et al. A critical investigation of recall and precision as measures of retrieval system performance. ACM Trans. Inf. Syst. 7 (1989), 205–229.
-
(1989)
ACM Trans. Inf. Syst.
, vol.7
, pp. 205-229
-
-
Raghavan, V.V.1
-
89
-
-
84859264011
-
A co-module approach for elucidating drug-disease associations and revealing their molecular basis
-
89 Zhao, S., Li, S., A co-module approach for elucidating drug-disease associations and revealing their molecular basis. Bioinformatics 28 (2012), 955–961.
-
(2012)
Bioinformatics
, vol.28
, pp. 955-961
-
-
Zhao, S.1
Li, S.2
-
90
-
-
84863691513
-
Drug repositioning through incomplete bi-cliques in an integrated drug–target–disease network
-
90 Daminelli, S., et al. Drug repositioning through incomplete bi-cliques in an integrated drug–target–disease network. Integr. Biol. 4 (2012), 778–788.
-
(2012)
Integr. Biol.
, vol.4
, pp. 778-788
-
-
Daminelli, S.1
-
91
-
-
84973352442
-
Opportunities for web-based drug repositioning: searching for potential antihypertensive agents with hypotension adverse events
-
91 Wang, K., et al. Opportunities for web-based drug repositioning: searching for potential antihypertensive agents with hypotension adverse events. J. Med. Internet Res., 18, 2016, e76.
-
(2016)
J. Med. Internet Res.
, vol.18
, pp. e76
-
-
Wang, K.1
-
92
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
92 Oquab, M., et al. Learning and transferring mid-level image representations using convolutional neural networks. Proc. 2014 IEEE Conf. Computer Vision Pattern Recogni., 2014, 1717–1724.
-
(2014)
Proc. 2014 IEEE Conf. Computer Vision Pattern Recogni.
, pp. 1717-1724
-
-
Oquab, M.1
-
93
-
-
84923367417
-
Deep neural nets as a method for quantitative structure-activity relationships
-
93 Ma, J., et al. Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 55 (2015), 263–274.
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 263-274
-
-
Ma, J.1
-
94
-
-
84922788059
-
Pairwise input neural network for target–ligand interaction prediction
-
94 Wang, C., et al. Pairwise input neural network for target–ligand interaction prediction. 2014 IEEE Int. Conf. Bioinformatics Biomed., 2014, 67–70.
-
(2014)
2014 IEEE Int. Conf. Bioinformatics Biomed.
, pp. 67-70
-
-
Wang, C.1
-
95
-
-
84968861400
-
Applications of deep learning in biomedicine
-
95 Mamoshina, P., et al. Applications of deep learning in biomedicine. Mol. Pharm. 13 (2016), 1445–1454.
-
(2016)
Mol. Pharm.
, vol.13
, pp. 1445-1454
-
-
Mamoshina, P.1
-
96
-
-
84945557463
-
Deep learning for drug-induced liver injury
-
96 Xu, Y., et al. Deep learning for drug-induced liver injury. J. Chem. Inf. Model. 55 (2015), 2085–2093.
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 2085-2093
-
-
Xu, Y.1
-
97
-
-
84945573112
-
Modeling epoxidation of drug-like molecules with a deep machine learning network
-
97 Hughes, T.B., et al. Modeling epoxidation of drug-like molecules with a deep machine learning network. ACS Cent. Sci. 1 (2015), 168–180.
-
(2015)
ACS Cent. Sci.
, vol.1
, pp. 168-180
-
-
Hughes, T.B.1
-
98
-
-
84987943069
-
DeepTox: toxicity prediction using deep learning
-
Published online February 2, 2016
-
98 Mayr, A., et al. DeepTox: toxicity prediction using deep learning. Front. Environ. Sci., 2016 Published online February 2, 2016 http://dx.doi.org/10.3389/fenvs.2015.00080.
-
(2016)
Front. Environ. Sci.
-
-
Mayr, A.1
-
99
-
-
84927735077
-
Massively Multitask Networks for Drug Discovery
-
arXiv:1502.02072
-
99 Ramsundar, B., et al. Massively Multitask Networks for Drug Discovery. 2015 arXiv:1502.02072.
-
(2015)
-
-
Ramsundar, B.1
-
100
-
-
84923361116
-
Multi-task Neural Networks for QSAR Predictions
-
arXiv:1406.1231
-
100 Dahl, G.E., et al. Multi-task Neural Networks for QSAR Predictions. 2014 arXiv:1406.1231.
-
(2014)
-
-
Dahl, G.E.1
-
101
-
-
85009418044
-
X-TREPAN: A Multi-class Regression and Adapted Extraction of Comprehensible Decision Tree in Artificial Neural Networks
-
arXiv:1508.07551
-
101 Karim, A., Zhou, S., X-TREPAN: A Multi-class Regression and Adapted Extraction of Comprehensible Decision Tree in Artificial Neural Networks. 2015 arXiv:1508.07551.
-
(2015)
-
-
Karim, A.1
Zhou, S.2
|